当前位置:文档之家› 浮法玻璃熔窑的结构

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构
浮法玻璃熔窑的结构

浮法玻璃熔窑的结构

浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。

一投料池

投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。

1.投料池的尺寸

图1-1 浮法玻璃熔窑平面图

1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室

图1-2 浮法玻璃熔窑立面图

1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴

投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。

(1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。

(2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使用,它的投料方式与垄式投料机相似,只是投料面比垄式投料机要宽得多,因此其投料池的尺寸在设计上与采用垄式投料机的投料池尺寸没有太大的区别,仍然决定于熔化池的宽度和投料面的要求。

随着玻璃熔化技术的成熟和熔化工艺的更新,浮法玻璃熔窑投料池的宽度越来越大。因为配合料吸收的热量与其覆盖面积是成正比的,投料池越宽,配合料的覆盖面积越大,越有利于提高热效率和节能,有利于提高熔化率。因此,目前在大型浮法玻璃熔窑的设计中,均采用投料池与熔化池等宽和准等宽的模式。随着投料池宽度的不断增大,大型斜毯式投料机也应运而生,熔化池和投料池宽度均在11m的熔窑,采用两台斜毯式投料机即可满足生产和技术要求。

二熔化部

浮法玻璃熔窑的熔化部是进行配合料熔化和玻璃液澄清、均化的部位。熔化部前后由熔化区和澄清区组成;上下又分为上部火焰空间和下部窑池。其中上部空间又称为火焰空间,由前脸墙、玻璃液表面、窑顶的大碹与窑壁的胸墙所围成的充满火焰的空间;下部池窑由池

底和池壁组成。也就是说熔化区的功能是配合料在高温下经物理、化学反应形成玻璃液,而澄清区的功能是使形成的玻璃液中的气泡迅速完全排出,达到生产所需的玻璃液质量。

熔化部的下部池窑由池底和池壁组成,如图1—3所示。

1、火焰空间火焰空间内充满了来自热源供给的灼热火焰气体,火焰气体将自身热量用于熔化配合料,同时也辐射给玻璃液、窑墙和窑顶。火焰空间应能够满足燃料完全燃烧,保证供给玻璃熔化、澄清和均化所需的热量,并应尽量减少散热。

2、池窑池窑是配合料熔化成玻璃液并进行澄清和均化的部位,它应该能供给足够量的熔化完全的透明玻璃液。为使窑池达到一定的使用年限,池壁厚度一般在250~300㎜.池底厚度根据其保温情况而异,不采用保温带池底厚度一般为300㎜。

(1)前脸墙结构

前脸墙是熔化部火焰空间的前部端墙,横跨在投料池的上部,以阻挡熔窑前端投料口处的的热气体(含火焰)的逸出和热辐射。由于前脸墙受到火焰的烧损和料粉侵蚀容易损坏,并且在热风烤窑时容易变形,为此,目前国内大多数浮法玻璃生产企业采用的是L型吊墙,L型吊墙结构见图1—4。

L型吊墙与以往的多幅碹相比,具有延长前脸墙使用寿命、增强节能效果、改善现场环境、保护投料机、提高熔化速度、减少粉尘飞扬、提高格子体的寿命等特点。在前脸墙的设计过程中,应注意合理选择与熔化部1#小炉中心线的距离。距离过小会加速前脸墙的烧损,减少配合料的预热效果,增加1#、2#小炉烧损及堵塞等;距离过大又会造成投料池温度过低,料堆熔化、前进困难等缺陷,目前国内浮法玻璃生产线根据燃料和吨位的不同,前脸墙与熔化部1#小炉中心线的距离范围一般在3.2~4.3m。

①拱碹结构前脸墙这种前脸墙是由两层或三层碹和砌在碹上耐火砖构成,前脸墙下弓形形口还需加挡火墙阻挡火焰喷出,以节约燃料,保护投料机。挡火墙的承重靠一横跨投料

池的大水包提供,大水包上挂刀把形耐火砖,以阻止火焰直接与水包接触,刀把形砖上码砌条形砖,其结构如图1-5所示。采用这种结构形式的前脸墙,由于安全因素,受到其股跨比的限制,其跨度不宜太大,一般不超过7m,即便这样,由于前脸碹和挡火墙受到火焰烧损和碱性气氛的侵蚀,很容易损坏,挡火墙和水包损坏后,可以热修更换,前脸碹一旦烧损严重,只能放水冷修。因此,这种前脸墙结构在浮法玻璃熔窑上正在被淘汰,浮法玻璃熔窑以外的平板玻璃熔窑仍在使用。

普通拱碹结构前脸墙受到跨度和安全因素的限制,而欲进一步提高熔化面积,必须加宽投料池、扩大投料面,为解决此矛盾,产生了L形吊墙。

②L形吊墙结构大型浮法玻璃熔窑较为广泛采用的是L形前脸吊墙。该吊墙是单独悬吊的,通过机械千斤顶可以调节吊墙距玻璃液面对高度。L形吊墙由耐热钢件和耐火材料构

图1—3 熔化部剖面结构图1—4 L型吊墙结构

1-窑顶(大碹);2-碹脚(碹碴);3-上间隙砖;1-垂直墙区;2-下鼻区;3-吊杆;4-钢壳;5-水

冷门

4-胸墙;5-挂钩砖;6-下间隙砖;7-池壁;8-池底;

9-拉条;10-立柱;11-碹碴角钢;12-上巴掌铁;

13-联杆;14-胸墙托板;15-下巴掌铁;16-池壁顶铁;

17-池壁顶丝;18-柱脚角钢;19-柱脚螺栓;20-扁钢;

21-次梁;22-主梁;23-窑柱

图1-5 普通拱碹结构前脸墙

1-大碹;2-前脸墙;

3-刀把砖;4-水包;5-投料口池壁

成,其结构安全性不会受其宽度的影响,L形吊墙的宽度可与熔化池等宽,这样可满足投料池的等宽或准等宽设计需要。采用L形吊墙的同时加长加料池,不但减少了粉尘,还加强了对配合料的预熔作用。L形吊墙分为直段部分和L形部分,直段耐火材料用优质硅砖,鼻部用烧结莫来石和烧结锆玉材料,吊墙外墙壁采用陶瓷纤维毡进行保温,鼻部前端设有水包,起到冷却后密封的作用。其结构形式如图1-4所示。

(2)胸墙结构

浮法玻璃熔窑由于各个部位受侵蚀情况及热修时间各不相同,为了分开热修损坏最严重的部分,将胸墙、大碹、窑池分成三个单独支撑部分,最后将负荷传到窑底钢结构上,胸墙的承重是由胸墙托板(用铸铁或角钢)及下巴掌铁传到立柱上,最后传到窑底钢结构上。

胸墙的设计需保证在高温下有足够的强度,其中挂钩砖是关键部位,在胸墙的底部设有挂钩砖,挡住窑内火焰,不使其穿出烧坏胸墙托板和巴掌铁。一般熔化区胸墙采用AZS33电熔砖,上间隙砖采用低蠕变耐崩裂的烧结锆英石砖,澄清区胸墙一般采用优质硅砖。

胸墙的高度取决于燃料的种类和质量、熔化率、熔化耗热量、熔窑规模、散热量、气层厚度等因素。

从理论上讲,只要保证胸墙用耐火材料的抗侵蚀能力,胸墙就不会成为影响到熔窑寿命的关键部位,然而在实际使用中,很多熔窑因熔化区胸墙内倾导致熔窑寿命缩短,有的熔窑在后期由于放料不及时,出现了胸墙倒塌事故。究其原因,主要是由于大碹砌筑结束后紧固拉条时导致胸墙托板倾斜(外高内低)使胸墙内倾。另一原因是由于池壁绑砖后,胸墙托板暴露在火焰空间中,使托板变形,导致胸墙内倾,为了减少或避免这一现象的出现,对熔窑胸墙进行了改进的的设计,这种结构的特点是取消了间隙砖,大碹碹脚直接靠紧胸墙,胸墙托板降低,上层胸墙有意内倾,大碹边碹砖采用三层锆英石砖,熔化区挂钩砖取消了挂钩设计,这样可避免因电熔AZS质挂钩砖质量原因,导致挂钩砖断裂而引起胸墙内倾。另外,有些大型熔窑将50mm厚普通碳钢托板改为60mm厚中硅球墨铸铁托板,也收到良好效果。

(3)大碹结构

大碹的作用是与胸墙、前脸墙组成火焰空间,同时,还可以作为火焰向物料和玻璃液辐射传热的媒介,即吸收燃料燃烧时释放的热量,再辐射到玻璃液表面上。

大碹的重量是由钢碹碴通过上巴掌铁并由立柱传到窑底钢结构上。

大碹的高低和特性可通过股跨比来反映。从热工角度考虑,大碹低一些是有益的,能尽可能地将热量辐射给玻璃液。降低大碹高度可通过降低胸墙高度和减少大碹碹股来实现,但是,胸墙高度是受到小炉喷出口和大碹的结构强度等因素的制约;股高越小,推力越大,同时散热亦小。减少碹股会增加大碹的水平推力,碹的不稳定性加大。一般大型浮法玻璃熔窑的大碹股跨比为1:8左右。根据熔化部的长度,大碹可以分为若干节,一般至少在三节以上。砌筑时每节碹之间预留的膨胀缝约为100~120㎜,前、后山墙处的碹顶膨胀缝要留宽些。

大碹一般用优质硅砖砌筑,砖的形状为契形,横缝采用错缝砌筑,灰缝(又称泥缝)的

大小根据所采用砌筑灰浆(又称泥浆)的具体要求来确定,一般为1~2㎜。

浮法玻璃熔窑大碹碹碴大多采用钢碹碴,并要求吹风冷却。两边钢碹碴的斜面延长线需通过大碹碹弧的圆心,其形成的夹角为大碹的中心角。

大碹的寿命决定了整个熔窑的窑龄,大碹在使用中的薄弱环节为测温孔、测压孔等孔洞、大碹砖的横缝(又称顶头缝)、每节碹的碹头以及大碹的边碹部分。窑炉在正常作业时,窑内为正压,碹顶的各种孔洞很容易因穿火被越烧越大,边碹如果与钢碹碴接触不够紧密,很容易被火焰冲刷、烧损,因此,这些地方应采用性能较好的耐火材料,目前使用较多的是烧结锆英石砖。

(4)池壁、池底的结构

窑池由池壁和池底两部分组成,池壁和池底均用大砖砌筑。窑池建筑在由窑下炉柱支撑的钢结构梁上,整个窑池的质量及其盛装的玻璃液的质量均有窑下炉柱支撑的钢结构承担,浮法玻璃熔窑的炉柱一般为混凝土质或钢质立柱。炉柱上面架设沿窑长方向的工字钢或H 型钢主梁,大型浮法玻璃熔窑主梁一般为4根,在主梁上沿主梁垂直方向安装工字钢次梁。以前没有窑底保温时,直接在次梁上铺扁钢,在扁钢上铺粘土大砖,此时次梁应避开粘土大砖的砖缝,每块砖的下面要对应2根扁钢和2根次梁。目前保温技术已经普遍采用,窑底结构也随之发生变化,即在次梁上沿垂直次梁方向铺设槽钢,槽钢内卡砌垛砖,垛砖上铺设池底粘土大砖,铺大砖之前,在槽钢上焊活动钢板支撑架,并在垛砖之间,支撑架之上砌保温层。池深变浅和窑底保温后,底层玻璃液温度升高,,流动性增大,为减少玻璃液对池底砖的腐蚀,在粘土大砖之上铺保护层,即捣打一层厚25㎜的锆英石捣打料或锆刚玉质捣打料,再在其上铺一层厚度为75㎜的电熔锆钢玉或烧结锆钢玉砖。

池壁砌筑在池底粘土大砖上。因熔化部玻璃液表面进行燃料的燃烧和配合料的熔化,玻璃液表面的温度达到1450℃以上,玻璃液的对流也较强,加之液面的上下波动,因此,池

壁的腐蚀比较严重,特别是玻璃液面线附近池壁损坏较快。以前,因投资费用和其他因素的影响,池壁往往采用多层结构,下部用粘土砖,中部采用电熔莫来石砖,上部使用电熔锆钢玉砖,此种结构池壁的受侵蚀情况不均匀,即接近液面线处侵蚀最严重,这种池壁对玻璃液的质量影响较大。

目前,浮法玻璃熔窑池壁采用整块大砖——通常采用刀把砖竖缝干砌,材质一般为AZS33电熔砖,这种池壁没有横缝,材质档次提高,受侵蚀速度较慢,对玻璃液的污染小,使用寿命长,被广泛应用。池壁厚度由300㎜减少到250㎜。

随着人们对窑炉寿命的期望值不断提高,对池壁结构也在不停进行着探索,到2000年以后,刀把形池壁砖在浮法玻璃熔窑上得到应用和推广。材质为AZS33、AZS36电熔砖,也有个别企业使用AZS41电熔砖的。但是,AZS41电熔砖的热稳定性较差,在烤窑时容易发生炸裂。因此池壁厚度越小,冷却风的冷却效果就越好,采用刀把形砖可以绑两次砖,且侵蚀速度慢,因此大大延长了池壁的寿命(可以达到10年以上)。

三卡脖、冷却部

卡脖处于熔化部与冷却部之间,是为了安装冷却水包和搅拌器,隔离熔化部气流对冷却部玻璃成型的影响。

因为熔化好的玻璃液黏度小不适于成型,必须通过冷却使其黏度达到成型所需要的黏度范围要求,因此设置了冷却部。冷却部结构与熔化部结构基本相同,也分上部空间和下部池窑两部分,不同之处就是胸墙的高度低于熔化部,池底深度比熔化部浅。冷却的方式一般采用自然冷却,主要依靠玻璃液面以及池壁池底向外均匀散热来进行缓慢冷却。

1、卡脖、冷却部的结构

(1)卡脖的结构

自从浮法工艺在在国内诞生以来,常采用的卡脖结构主要有矮碹结构和吊墙结构。

①矮墙结构国内浮法玻璃生产线最早使用的矮墙,其熔化部后山墙碹、卡脖碹和冷却部前山墙碹的碹跨和股高是一样的或相差很小,胸墙高度不高,有的卡脖碹碴砖直接搭在池壁上,这样做可尽可能性地减少空间开度,(即业内常讲的不使用搅拌器的卡脖结构)。随着技术的发展以及人们对玻璃质量要求的提高,卡脖处逐渐安装了搅拌器。搅拌器有两种形式:一种是垂直式;另一种是水平式。垂直式搅拌器从卡脖碹顶预留孔插入,这种搅拌器对卡脖胸墙的高度不作要求。水平式搅拌器是从卡脖两边胸墙插入的,成对安装使用,此种形式在碹顶不需留孔,但在卡脖胸墙上需留有高300mm左右及点足够长的孔,以便于搅拌器的插入。因此要求胸墙必须抬高。这种结构也为将大水管从熔化部末端至卡胸处创造了条件。

②吊墙卡胸结构矮碹结构由于考虑到碹的安全性,股跨比不能太小,因此其空间开度比较大,其分隔效果不太好,特别是水平搅拌器的使用,胸墙高度的增加,其使用效果更差,为此出现了带吊墙的卡脖结构。此种结构可将股跨比设计得大一些,增加其安全性,空间分隔靠吊墙实现。这种吊墙目前国内外均可生产,吊墙用耐火材料多为优质硅砖和烧结莫来石砖,砖的形态为工字形或王字形,整面墙靠每块砖咬挂而成,两边用钢板夹紧。

除了以上所述两种卡脖结构外,近年来从国外引进技术的还有U形吊碹、双L形吊碹以及吊平碹等多种形式的卡脖结构,这些卡脖结构形式复杂,且投资较大,在国内一些高档玻璃和圧延玻璃生产线得到应用和推广。

(2)冷却部的结构

冷却部的作用是将已熔化好的玻璃液均匀冷却降温。

冷却部结构与熔化部结构基本相同,也包括大碹、碹碴、胸墙、池壁和池底及相应的钢结构等组成。只不过池深可以和熔化部相同也可以略低一些,大碹跨度比熔化部要小一些,因此结构上略微简单一点,但所用耐火材料根据玻璃质量的要求有所不同。高档玻璃的冷却

部池壁以及池底铺面砖一般采用α-βAl2O3砖,铺面砖下的捣打层用α-βAl2O3质捣打料,这些材料的发泡指数为零,污染指数为零,因此对玻璃液不构成污染。胸墙、大碹采用优质硅砖较好。

四小炉、蓄热室

小炉和蓄热室是熔窑结构的主要组成部分,浮法玻璃熔窑的小炉和蓄热室结构组合形式根据燃料形式的不同有两种形式,即箱形组合和半箱形组合。燃油、天然气的熔窑采用箱形组合,燃发生炉煤气的熔窑采用半箱形组合。浮法玻璃熔窑的小炉和蓄热室设置在池窑的两侧,对称布置,根据熔化量的规模不同,设4~10对小炉。

1、小炉

(1)名称

浮法玻璃熔窑小炉根据使用燃料的不同而有不同的类型。

燃料是发生炉煤气的,其燃烧设备称之为小炉,小炉口称之为喷火口。

燃料是重油或其他液体燃料时,采用的是喷嘴(既燃烧器),小炉口应称之为喷出口。

(2)小炉的作用

小炉是玻璃熔窑的重要组成部分,是使燃料和空气预热、混合,组织燃烧的装置。它应该能保证火焰有一定的长度、亮度、刚度、有足够的覆盖面积,不发飘、不分层,还要满足窑内所需的温度和气氛的要求。

煤气和空气分别由蓄热室预热后经过垂直通道(上升道)和水平通道进入预燃室,在预燃室内进行混合和部分燃烧,并以一定方向和速度喷入窑内继续燃烧,烟气这时则进入对面的小炉,因此,小炉起到一个空气通道和排烟通道的作用。但是,小炉的结构对于窑内的传热情况及玻璃熔化过程都有着重要的作用。

目前,国内生产规模为400t/d以上的浮法玻璃熔窑采用6对小炉的居多,700t/d以上

的有的采用7对小炉,最多达到10对小炉。在小炉的设计时由于燃油、燃煤以及燃气的特性决定了其小炉技术参数的差异性。如:小炉喷出口的总面积与熔化部面积的比值以及小炉斜碹的下倾角度等。

(1)小炉的结构

小炉由顶碹、侧墙和坑底组成。小炉与熔窑连接的碹称为小炉平碹,与蓄热室连接的碹称为后平碹,中间部分碹为斜碹。图1-6为烧油小炉的结构。碹和侧墙、坑底组成小炉空间。浮法玻璃熔窑的平碹采用插入式结构,做成上平下弧形,并与熔窑胸墙匹配,前述防止胸墙内倾的措施是将胸墙设计面内倾式,并且大碹边碹砖直接压在胸墙上,因此小炉平碹也要相应设计成如图1-4所示的结构,这种结构也是目前普遍采用的。

图1-6 烧油小炉的结构

1-蓄热室顶碹;2-小炉后平碹;3-小炉斜碹;4-小炉平碹;5-熔化部;

6-小炉坑底;7-蓄热室内侧墙;8-格子体;9-蓄热室外侧墙

图1-8 小炉平碹

小炉斜碹是组成小炉的重要部位,也是容易被烧损的部位,斜碹的设计要与相应的小炉平碹结构匹配,如图1-8所示(图1-8是与图1-7的平碹相对应的斜碹结构)。

后平碹、侧墙和坑底结构较简单,这里就不一一叙述了。

(2)烧煤气小炉的结构特点

烧煤气小炉在结构上与烧油小炉除了上述不同点外,最主要的不同之处还有小炉舌头。通常小炉舌头伸出长度为400~450㎜,如图1-9所示。

图1-7 小炉斜碹图1-9 烧煤气小炉的结构一般烧煤气小炉口的高度为400~500㎜,拱的股跨比为1:10.

蓄热室烧煤气小炉的斜碹形式目前有两种:一种是直通形;另一种是喇叭形。直通形小炉的优点是:煤气呈扁平状出上升道,容易与助燃空气混合,混合气体对小炉侧墙的冲刷小,而且小炉结构简单,施工方便。喇叭形小炉的优点是:喇叭形状强制性地使火焰形成扩散状,可提高火焰的覆盖面,并能改善因煤气上升道间距较小而造成维修环境恶劣的状况。

2、蓄热室

蓄热室实际是一种余热回收装置——属于废气余热利用系统的一部分,蓄热室属于废气余热利用系统的一部分,它是利用耐火材料做蓄热体(称为格子砖),蓄积从窑内排出烟气的部分热量,用来加热进入窑内的空气。当窑内高温废气流经蓄热室格子体时,将格子砖加热,在这一过程中,格子砖的温度逐渐升高。存储在格子体内的热量在火焰转向后,将流经此格子砖的煤气或空气加热,从而保证火焰有足够高的温度,以满足玻璃熔制的需要,在这一过程中,格子砖温度逐步降低,如此循环。所以,蓄热室的作用就是将废气中所含的热量通过格子砖的吸收、蓄热作用,然后传给空气和煤气,将其加热到一定的温度,以达到节约燃料、降低成本的目的。

玻璃熔窑内地废气从窑内排出时的温度为1400~1500℃左右,可将煤气预热到800~

1000℃,空气预热到1000~1200℃,废气排出蓄热室时代温度在600℃左右。

(1)蓄热室的结构

蓄热室由顶碹、内外侧墙、端墙、隔墙、格子体及炉条等组成。浮法玻璃熔窑蓄热室顶碹厚度一般都等于或大于350㎜,用优质硅砖砌筑,中心角为90°~120°,要视具体情况而定。侧墙、端墙、隔墙一般厚度为580mm,一般下部用低气孔黏土砖砌筑,中、上部用碱性耐火材料砌筑,也有上部用硅质材料的。

(2)蓄热室的形式为了提高蓄热室的蓄热性能以及使用寿命,国内外蓄热室有很多形式,但就国内浮法玻璃熔窑而言,最常见的有连通式结构、分隔式结构、半分隔式结构、两小炉连通式结构、两段式结构、全连通式结构等等。

连通式结构是熔窑一侧小炉下面的空气蓄热室为连通的一个室,煤气蓄热室也为连通的一个室。这种形式由于气流发布不均,容易形成局部过热使格子砖很快烧坏,目前已很少使用。

分隔式结构是将蓄热室以各个炉为分隔单元,各个室的气体不能串通,气体分配各个室的分支烟道上的闸板来调节。这种结构形式的优点是,气体分配调节比较便利,热修格子体比较方便,但由于隔墙较多,减少了格子体的体积,格子体的热交换面积较小,热效率不高。

半分隔式结构是指将蓄热室炉条以上的烟道以每个小炉分隔,蓄热室本身不分隔,气体分配调节闸板仍然在分支烟道上。

两小炉连通式结构是将每两个小炉分隔成一个室,而一个小炉一个分支烟道,来调节每个小炉的气体分配,这种结构较分隔式结构,减少了隔墙数量,增加了格子体的热交换面积,提高了热效率。但由于减少了隔墙数量,侧墙稳定性会差一些。另外,由于两两连通,给热修格子体带来了一定的困难,必须两个小炉一起修,会严重影响生产。这种形式的蓄热室目前在大型浮法玻璃熔窑上应用较多。

两段式结构是指将一个单一的蓄热室分成两个蓄热室,其间用隔墙分开,用一个垂直通道连接,即将蓄热室分成高温区和低温区的两部分。采用这种结构主要是防止硫酸钠的气、液、固态转化对格子砖的侵蚀,使这个转化在连接通道内进行,以延长格子砖的使用期限。由于这种形式的结构复杂,目前已很少使用。

全连通式结构形式是指将熔窑一侧的整个蓄热室连通为一个室,而分支烟道又按每个小炉一个来调节各个小炉的气体分配。这种结构的蓄热室最大限度地增加了格子体的热交换面积,热效率较高。但由于没有隔墙,侧墙的稳定性较差,如果局部格子砖倒塌、堵塞,将无法进行热修。目前,这种结构形式的蓄热室在大型浮法玻璃熔窑上也有使用。

(3)炉条炉条是承受格子体质量的耐火材料结构,实际上它也是一个拱碹结构,只不过是由单一的碹砖砌成的一条一条拱碹,条与条之间留有空隙以便通气,所以称之为炉条碹。

由于炉条碹是承受格子体重量的拱碹(上面码放格子砖),因此拱碹上面必须找平。找平的方法与两种,一是在拱碹的弧形上面用爬碴砖砌平,另一种是直接用上面平直而下面成弧形的碹砖砌筑。

炉条碹的宽度高高度,要根据炉条所承受的格子体质量计算来确定,一般宽度不小150mm,高度不小于300mm,每条炉条间距不小于150mm。为了使意单一的炉条稳定性增加、整体性增强,通常在炉条碹上加两道加强筋碹砖。炉条部位耐火材料一般用低气孔黏土砖砌筑。

(4)格子体格子体是蓄热室的传热部分,是蓄热室结构中最重要的组成部分。格子体的结构是否合理,不仅影响蓄热室的使用寿命,而且直接影响蓄热室的蓄热效能,进而影响整个熔窑的热效率。因此要求组成格子体的耐火材料能耐高温、耐侵蚀、蓄积热量多、传热快、热振稳定性好,并要求整个格子体具有很好的结构稳定性。

五烟道

(1)烟道的作用及分类

烟道是气体的通道,这就是烟道的作用。燃料在窑内燃烧后的废气从小炉下行到蓄热室,再经烟道和烟囱排入大气。烟道除了用于排烟供气以外,还可以通过设置闸板调节气体流量和窑内压力;烟道的作用是利用它的高度产生一定的抽力,来克服窑炉系统,包括烟囱本身的阻力,使空气能以一定的速度喷入窑内,并可将燃烧后的产物排出窑外。

烟道系统中包括空气烟道、煤气烟道、空气支烟道、煤气支烟道、中间烟道、总烟道及通向余热锅炉的烟道。

(2)烟道的结构形式

烟道上面是拱碹结构,碹的中心角一般为90°,碹厚为230㎜下面为矩形断面,一般高度要稍微大于或等于宽度。烟道的结构形式如图1-13所示,由于经过烟道的废气温度较高(500~600℃),内墙用耐火粘土砖砌筑,外墙用红砖砌筑,底部用混凝土做基础。为了避免混凝土温度过高,一般铺设硅藻土保温砖。地上烟道或室外烟道碹顶和侧墙一般加有保温层,以防止温降过大。

(3)烟道的布置

①烧重油或天然气烧重油或天然气的浮法玻璃熔窑烟道布置比较简单,烟道布置在蓄热室内侧即窑池下方,其基本布置形式如图1-14所示,由总烟道、支烟道和分支烟道组成。在分支烟道上设有烟气闸板和助燃风进口,在支烟道上设有空(烟)气交换机闸板(俗称大闸板或换向闸板),在总烟道上设有转动闸板以调节窑压。在烟囱根设有一道闸板以调节抽力。

图1-13 烟道横剖面示意图图1-14 燃油浮法玻璃熔窑烟道布置

1-废热锅炉闸板;2-蓄热室炉条下部;3-支烟道;4-

空(烟)气交换机闸板;5-助燃风支管;6-分支烟道闸板;

7-烟囱大闸板;8-转动闸板;9-总烟道;10-大烟囱;11-

分支烟道

②烧煤气烧煤气的浮法玻璃熔窑由于有空气和煤气两条烟道,并且有煤气换向跳罩,其烟道布置就较复杂,目前采用的基本布置方式如图1-15所示。

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从2012 年 6 月 4 日起到2012 年 6 月17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕: 设计计算说明书一套,窑炉图纸两张。

浮法玻璃熔窑天然气和重油燃烧系统的比较

浮法玻璃熔窑天然气和重油燃烧系统的比较 诸葛勤美王曙华王伟峰(中国新型建材设计研究院杭州市310003) 摘要 从天然气和重油的组成与性能,两种燃烧系统的燃料用量及成本,工艺及设备材料费和烟气等方面对天然气和重油燃烧系统进行比较,从而得出天然气燃烧系统比重油燃烧系统更优越。 关键词天然气重油燃烧浮法玻璃熔窑 中图分类号:TQ171 文献标识码:A 文章编号:1003-1987(2013)07-0003-03 Comparison of Natural Gas with Heavy Oil for Float Glass Furnace Zhuge Qinmei, Wang Shuhua, Wang Weifeng (China New Building Materials Design and Research Institute, Hangzhou, 310003)Abstract: This article compared the natural gas and heavy oil from the compositions and properties of natural gas and heavy oil, fuel consumption and cost of the two kinds combustion system, technology and equipment material fee, as well as flue gas and other aspects, and concluded that the natural gas combustion system is more superior than heavy oil combustion system. Key Words: natural gas combustion system,heavy oil combustion system 0 引言浮法玻璃生产所用的燃料主要有重油、柴油、煤焦油、天然气、焦炉煤气、发生炉煤气和石油焦等,综合考虑熔窑寿命、环境保护、生产规模、生产成本、产品品质等各方面因素,应首选天然气或者重油。 1 燃料的组成与性能比较 1.1 天然气的组成与性能天然气是指通过生物化学作用与地质变质作用,在不同的地质条件下生存迁移,并于一定压力下储集在地质构造中的可燃气体。通常根据形成条件不同,分为油田伴生气、气田气及凝析气田气。天然气是一种混合气体,其组成随气田和产气层不同而异。根据天然气公司提供的资料,西气东输的天然气组分见表1。 表1 西气东输的天然气组分/% 组分 C1 C2 C3 C4 C5 C6+ CO2 N2 100 96.1 1.74 0.58 0.28 0.03 0.09 0.62 0.56 西气东输的天然气低位热值约34.81 MJ/Nm 3 (8 320 kcal/ Nm 3 ),高位热值约38.62 MJ/Nm 3 (9 230 kcal/ Nm 3 )。天然气热值稍低于重油,但比焦炉煤气、发生炉煤气高很多,属高热值燃料。天然气燃烧后几乎不含硫、粉尘和其它有害物质,是一种洁净环保的优质能源。天然气也是较为安全的燃气之一,比空气轻,一旦泄漏,会立即向上扩散,不易积聚形成爆炸性气体,安全性较高。 1.2 重油的组成与性能重油又称渣油,是原油提取汽油、柴油等后的剩余重质油,其特点是分子量大、黏度高,密度一般在0.82~0.95 g/cm 。重油的发热量很高,一般为40~42 MJ/kg(9 560~10 038 kcal/kg)。重油的燃烧温度高,火焰的辐射能力强,是玻璃、钢铁等生产的优质燃料。重油的化学组成比较复杂,但一般都是碳链在16 以上的烷属烃、环烷烃(如环己烷、环戊烷的衍生物)及芳香烃(如苯、甲苯)。重油中的可燃成分较多,含碳86%~89%,含氢10%~12%,同时含有少量的氮、氧、硫等。重油中的硫虽然含量不大,但危害甚大,作为燃料用时,必须严格控制。重油中的水分是在运输和贮存过程中混进去的。重油含水多时,不仅降低了重油的发热量和燃烧温度,而且还容易由于水分的汽化影响供油设备的正常运行,甚至影响火焰的稳定。水分太多应设法去掉,目前一般都是在贮油罐中用自然沉淀的方法使油水分离。 3.1 工艺比较 (1)天然气燃烧系统工艺流程 天然气管:安全放散天然气调压站分成7 根支管过滤安全切断调压总管计量天然气喷枪支管换向流量调节支管计量 2 燃料用量及成本的比较冷却气:以600 t/d 浮法玻璃熔窑为例,重油和天然气用量计算如表2。空压站总管换向天然气喷枪 (2)重油燃烧系统工艺流程重油管:表2 重油和天然气用量泄压回油稳压回油油站初级加热粗过

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

浮法玻璃炉设计与运行控制

浮法玻璃炉设计与运行控制 摘要 文章从浮法玻璃窑炉的热量体系分析入手,总结了玻璃窑炉节能设计中所采取的一些技术措施以及需要注意的一些问题,简单介绍了窑炉运行控制时需要注意的关键步骤和注意事项。 关键词设计节能运行控制浮法玻璃 由于世界能源短缺,导致能源价格逐步上涨,燃料成本在玻璃生产成本中所占比例随之越来越大。玻璃工厂中绝大部分燃料消耗在窑炉中,以用于玻璃液的熔化,因此,降低玻璃窑炉热耗,对降低生产成本,缓解能源短缺具有重大意义。本文根据笔者的经验以及对玻璃窑炉的理解,着重探讨浮法玻璃窑炉设计方面的节能措施,简单介绍了窑炉运行控制时需要注意的关键步骤和注意事项。 1 浮法玻璃窑炉的热平衡体 我们知道,玻璃窑炉可以作为一个热平衡体系,体系中包括相互平衡的输入体系的热量和输出体系的热量。根据能量守恒定律,两者之间是相互平衡的。为准确分析浮法玻璃窑炉的热能利用情况,可以将窑炉本体、小炉及蓄热室纳入体系之中。在玻璃窑炉热平衡体系中,输入体系的热量包括:通过喷嘴入口带入的燃料潜热和助燃物(空气、氧气)显热以及电能输入热(电极处);输出体系的热量包括:窑体表面散热,燃烧废气排出热,冷却风、水带走热,窑体孔口、缝隙带走热以及玻璃液离开窑炉带走热。 输入体系的热量根据功能分为两部分:一部分用于满足玻璃液的熔化、澄清、均化、冷却直至成型所必须的热量,可称之为有用热量;另一部分是理论上不需要,而实际中又必须发生的热量,可称之为无效热量,它们体现在输出体系的热量中,包括:窑体表面散热,燃烧废气排出热和窑体孔口、缝隙带走热。 2 浮法玻璃窑炉的节能设 通过上述热量体系的分析,降低窑炉热耗的基本途径有2个:一是尽可能提高输入体系的热量的使用效率;一是在满足工艺要求的前提下尽可能降低无效热量的输出。玻璃窑炉的节能设计只有紧紧围绕着这两个方面,采取科学合理的技术措施,才能达到节能降耗的目的。同时,必须牢牢记住,节能设计在窑炉设计中永远是以满足生产的工艺要求为前提的,节能设计不能以降低玻璃质量作为代价,这样的节能设计是得不偿失的。下面具体分析浮法玻璃窑炉节能设计中可以采取的一些技术措施。 2.1 尽可能提高输入体系的热量的使用效率 1)提高燃料燃烧热的使用效率 提高燃料燃烧热的使用效率包括2个方面:提高燃料的燃烧效率;提高燃烧火焰与玻璃液间的传热效率。 2)提高燃料的燃烧效率和火焰的传热效率的技术措施: (1)根据不同的燃料种类,采用先进高效的燃烧装置,提高燃料燃烧效率。 对于燃烧重油的窑炉,设计时选用雾化效果好、火焰调节方便的喷嘴,提高重

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

浮法玻璃熔制技术

浮法玻璃熔制技术 1、浮法玻璃熔制技术工艺流程 浮法玻璃的熔制过程是将合格的配合料经过高温加热形成均匀、纯净、透明并符合成型要求的玻璃液的过程,是浮法玻璃制造过程中的主要过程之一。熔制速度和熔制的合理性对玻璃的产量、质量、合格率、生产成本、燃料消耗和池窑寿命等影响很大。 浮法玻璃熔制技术工艺流程示意图: 2、玻璃熔制工艺原理 浮法玻璃的熔制过程是一个很复杂的过程,包括一系列的物理、化学、物理化学反应,而这些反应的进行与玻璃的产量和质量有密切关系。各种不同配合料在熔制过程中发生的反应见下表: 各种不同配合料在熔制过程中发生的反应

根据熔制过程中的不同特点,从加热配合料到最终成为符合成型要求玻璃液的过程,可分为五个阶段,即硅酸盐形成阶段、玻璃液形成阶段、玻璃液澄清阶段、玻璃液均化阶段和玻璃液冷却阶段。直观地,也可分为配合料堆的反应烧结阶段;硅酸盐形成及其熔化物熔化阶段,主要是残余石英砂溶解于已形成的硅酸盐中;澄清消除气泡阶段,主要是降低各种气体在玻璃液中的过饱和程度;逐渐冷却至成型温度阶段。 (1)硅酸盐形成阶段配合料入窑后,在800~1000℃温度范围发生一系列物理的、化学的和物理-化学的反应,如粉料受热、水分蒸发、盐类分解、多晶转变、组分熔化以及石英砂与其他组分之间进行的固相反应。这个阶段结束时,大部分气态产物从配合料中逸出,配合料最后变成由硅酸盐和二氧化硅组成的不透明烧结物。硅酸盐形成速度取决于配合料性质和加料方式。 (2)玻璃形成阶段当温度升到1200℃时,烧结物中的低共熔物开始熔化,出现了一些熔融体,同时硅酸盐与未反应的石英砂粒

反应,相互熔解。伴随着温度的继续升高,硅酸盐和石英砂粒完全熔解于熔融体中,成为含大量可见气泡、条纹、在温度上和化学成分上不够均匀的透明的玻璃液。 在浮法玻璃生产过程中,硅酸盐形成阶段与玻璃形成阶段之间没有明显的界限,即在硅酸盐阶段尚未结束时,玻璃液形成阶段已经开始,并且硅酸盐形成进行得极为迅速,而玻璃液形成却很缓慢。这是由于在实际生产中,配合料被直接投入到1300℃左右的投料池中,硅酸盐形成极快(约3~5min ),而玻璃液的形成必须等待石英砂粒的完全熔解。因此要划分这两个阶段很困难,所以生产上把这两个阶段视作一个阶段,称为配合料熔化阶段。 (3)玻璃液澄清阶段随着温度继续升高,达到1400~1500℃时,玻璃液的粘度约为10Pa·s ,玻璃液在形成阶段存在的可见气泡和溶解气体,由于温度升高,体积增大,玻璃液粘度降低而大量逸出,直到气泡全部排出。 (4)玻璃液均化阶段当玻璃液长时间处于高温下,由于对流、扩散、溶解等作用,玻璃液中的条纹逐渐消除,化学组成和温度逐渐趋向均一。此阶段结束时的温度略低于澄清温度。 玻璃液的均化过程早在玻璃液形成阶段时已开始,然而主要的还是在澄清后期进行。它与澄清过程混在一起,没有明显的界限,可以看作一面澄清,一面均化,且澄清加速了均化的进程,均化的结束在澄清之后,并一直延续到冷却阶段。此外,搅拌是提高均匀性的一个很好的方法。

关于浮法玻璃熔窑改进的几项措施

关于浮法玻璃熔窑改进的几项措施 3唐春桥1,孙兴银2,袁建平2,戴玖凤2 (1.深圳南玻浮法玻璃有限公司,广东 深圳 518067; 2.江苏华尔润集团有限公司,江苏 张家港 215600) 摘要:目前,我国的浮法玻璃熔窑结构设计技术有了较大的发展,使熔窑的熔化能力和熔制质量不断提高,熔窑寿命不断延长,熔窑能耗不断降低。但随着新技术的不断涌现,熔窑的结构设计仍有值得改进和完善的地方。本文就浮法玻璃熔窑改进的几项措施进行探讨,以供同仁参考。 关键词:浮法玻璃熔窑;结构;改进措施 中图分类号:T Q171.6+23.1 文献标识码:B 文章编号:1000-2871(2005)05-0023-02 So m e Acti on s Taken for I m prove m en t of Floa t Gl a ssM elti n g Furnace TAN G Chun -qiao,SUN X ing -y in,YUAN J ian -ping,DA I J iu -feng 1 概述 20世纪90年代初期,随着托利多熔窑技术的引进,国内平板玻璃熔窑在设计水平、熔化能力、窑炉寿命、能耗热效、玻璃熔制质量等方面均取得了跨越式的发展,走出了一条引进、消化、创新的路子。如今,国内设计的浮法熔窑,熔化能力从400t/d,向500t/d 、600t/d 、900t/d 稳步发展;窑龄也从5年向8年和10年迈进;熔制缺陷如气泡、结石等的大量减少,使玻璃质量从普通建筑级提高到汽车级和制镜级。 目前,国内针对浮法玻璃熔窑又进行了多方面的设计创新,如采用全等宽投料池、加长1# 小炉到前脸的间距、加长澄清带长度、大碹保温采用复合保温结构、全连通蓄热室改为“全分隔式”或“分组式”蓄热室、集中式烟道布置、采用水平搅拌和垂直搅拌混合的卡脖结构等等。但是浮法熔窑结构设计仍有改进和完善的空间,下面就浮法玻璃熔窑改进的几项措施进行探讨。2 浮法玻璃熔窑改进措施探讨 2.1 设置辅助电助熔装置 目前,在浮法玻璃熔窑上采用辅助电熔装置熔制玻璃的企业为数不多,主要集中在少数合资或外资企业和极少数国内的浮法玻璃企业中,其好处是:⑴在配合料料区采用电助熔,可大幅度提高料层下面的玻璃液温度,使料层获得更多的热量,提高料层的熔化能力,这样可大幅度增加浮法玻璃产量。而在热点区域采用电助熔,可强化热点、突出热点,从而提高玻璃液质量。⑵生产着色玻璃时,开启电加热可提高熔窑的池底温度,加强池底玻璃液对流,减少不动层厚度,同时,玻璃液可获得更多的热量,通过对流传递到配合料层,从而加快配合料的熔化,在一定程度上补偿空间热量的投入,降低熔窑的火焰空间热负荷,延长窑炉寿命。 第33卷第5期2005年10月玻璃与搪瓷G LASS &E NAMEL Vol .33No .5Oct .2005 3收稿日期:2004-10-10

日产 400 吨浮法玻璃熔窑熔池玻璃液的数值分析

西安电子科技大学 毕业设计(论文)任务书 材料科学与工程学院无机非金属材料工程专业093 班级学生: 题目:日产400吨浮法玻璃熔窑熔池玻璃液的数值分析 毕业设计(论文)从2014 年 2 月25 日起到 2014 年 6 月 10 日 学生:签名:_________ 指导老师:签名:_________ 课题的意义及培养目标: 本课题以一座日产600吨浮法全氧燃烧玻璃熔窑作为分析对象在理论研究基础上,利用计算机F L U E NT流体分析软件对玻璃熔窑玻璃液的温度场和速度场进行数值分析,以便建立数学模型,改进玻璃熔窑的设计。锻炼学生利用计算流体力学的原理分析玻璃工业热工设备的能力,提高学生工程实际应用水平。 设计(论文)所需收集的原始数据与资料: 1国内外有关全氧燃烧玻璃熔窑的书籍、期刊与文献; 2F L U E NT流体软件建立数值分析的方法; 课题的主要任务(需附有技术指标分析): 1、查阅有关采用全氧燃烧玻璃熔窑方面的中外文献资料15篇以上,其中外文2篇以上;根据论文题目写出开题报告,翻译一篇有3000汉字的相关课题外文资料; 2、利用F L U E NT软件对日产600吨浮法全氧燃烧玻璃熔窑玻璃液的温度场和速度场进行数值分析; 3、按学校论文写作要求撰写毕业论文。

I 日产400 吨浮法玻璃熔窑熔池玻璃液的数值分析 摘要 在玻璃熔制过程中利用纯氧代替空气与燃料进行燃烧称之为玻璃熔窑的全氧燃烧技术。全氧燃烧不但使燃料充分燃烧,而且减少了烟气排放和N O X生成,实现了玻璃行业的节能减排。本文介绍了全氧燃烧玻璃熔窑玻璃熔化及玻璃液的流动所常用的数学模型阐述了国内国内外玻璃熔窑用数学模拟方法研究的发展概括。 本课题的研究对象为日产400t 的天然气全氧玻璃熔窑,结合全氧燃烧玻璃熔窑理论以及国内外对全氧燃烧玻璃熔窑数值分析研究的基础上,对玻璃液的流动建立的新的模型。所选用的模型包括玻璃液的层流流动,辐射传热DO 模型,重力影响因素。对于玻璃液的流动,进行了一系列的假设和简化,以方便问题的处理。 模型的具体处理,是通过G a m b i t软件建立几何模型并进行结构网格的划分。采用 F l u e n t软件的数值计算程序进行定义和后处理,并利用相应的图像处理软件直观的显示出所模拟的玻璃液的温度场和速度场分布的结果图像。玻璃液的模型设置中,玻璃液表面设置成传热固壁,根据经验对其编写的UDF 函数导入到模型中,同时考虑重力对玻璃液的影响。熔窑中玻璃液的各种物性参数变化(密度,温度,粘度,导热系数的变化),是根据经验公式编写熔化温度经验数据编写;密度变化、粘度变化、热导热率变化均是根据经验公式编写,是关于温度的线性函数。 结果表明,本文中对于玻璃液三维数值分析所选用的模型能够比较准确的反应出全氧燃烧玻璃熔窑中玻璃液的流动情况,并直观地表示出数值分析的结果。在对玻璃液流动的模拟中,将熔窑的形状、结构尺寸和进口温度作为定解条件,通过计算机求解控制方程组,得到熔窑内部玻璃液的速度场、温度场的分布及变化情况,以分析熔窑内部的玻璃液流动,达到优化窑炉设计的目的。另外,根据所求量的不同,可以用流体的速度矢量图、压力等值线图、等温线图等图形和动画,更直接地反应窑炉内部的变化。 关键字:全氧燃烧,玻璃熔窑,数值分析,玻璃液流动

浮法玻璃熔窑设计的改进

浮法玻璃熔窑设计的改进 宋 庆 余 (蚌埠玻璃工业设计研究院 蚌埠市 233018) 近些年来,我国浮法玻璃熔窑的设计技术取得了长足的发展,20年前中国只有一座浮法玻璃熔窑,当时的熔化能力只有230t/d,窑炉的寿命只有3年,熔化率为1.13t/m2?d,热耗11675kJ/kg玻璃液,玻璃质量仅能达到当时厂标的二、三等品,总成品率为65%。现在我国已有浮法窑61座,我国自己设计的最大吨位为600t/d的窑已投产2年,与20年前相比,熔化能力增加了2.6倍,熔化率达到2.26t/m2?d,提高了近一倍,热耗为6688kJ/ kg玻璃液,降低了43%,产品质量大幅度提高,制镜级和加工级玻璃达到90%,总成品率大于80%。以上的浮法玻璃熔窑技术指标,我国只有少数生产线可以达到,多数浮法玻璃熔窑达不到。这少数的浮法玻璃熔窑与国外先进的相比还有不小的差距。本文主要讨论目前我国浮法玻璃熔窑应如何改进。1 投料池设计的改进 投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的位置、泡界线的稳定,最终会影响到产品的质量和产量。 1.1 应设计与熔化部等宽的投料池 投料池越宽,配合料的覆盖面积就越大,配合料的吸热是与覆盖面积大小成正比的。因此采用与熔化部等宽或接近等宽的投料池,有利于提高热效率,有利于节能,有利于提高熔化率。 1.2 采用无水包的45度“L”型吊墙 传统的“L”型吊墙都有水包,由于水包的寿命短、易损坏、漏水,造成吊墙砖的炸裂,吊墙砖实际上在热工作状态下无法更换,这样就影响窑炉的寿命。所谓无水包吊墙,就是水包被一排吊砖所代替,这就解决了因水包漏水所造成的吊墙砖炸裂问题,同时也解决了更换损坏水包对生产的影响。1.3 投料口采用全密封结构 投料池内的压力一般是正压,所以由窑内向外部的溢流和辐射热损失较大。采用全密封结构,构成预熔池,将减少这部分热损失,使配合料进入熔化池之前能吸收一定的热量,将其中的水分蒸发并进行预熔,这样料堆进入熔化池后很快就会熔化摊平,因此加速了熔化过程。同时,由于料堆表面被预熔,就减少了粉料被烟气带入蓄热室的量,也减轻了飞料对熔窑上部结构的化学侵蚀。投料池采用全密封结构,可以防止外界的干扰,保证窑内压力制度、温度制度的稳定,保证泡界线的稳定。特别是保证玻璃对流的稳定,有利于减少生料对池壁砖的侵蚀,延长窑炉寿命,是一条宝贵的经验。 2 熔化部设计的改进 2.1 加长1#小炉至前脸墙的距离 加长1#小炉至前脸墙的距离,可开大1#小炉,提高熔化效率和热效率。从辐射传热公式可以清楚地看出这个问题。 Q=C? T1 100 4 - T2 100 4 ?F 式中:Q——配合料吸收的热量,kJ; T1——火焰的温度,K; T2——配合料的温度,K;

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构 浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。 一投料池 投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。 1.投料池的尺寸 图1-1 浮法玻璃熔窑平面图 1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室 图1-2 浮法玻璃熔窑立面图 1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。 (1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。 (2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使

浮法玻璃基础知识

浮法玻璃基础知识汇总 浮法玻璃是我国上世纪70年代末,由洛阳玻璃厂率先引进英国皇家浮法玻璃生产线。 它是在锡槽里,玻璃浮在锡液的表面上出来的。因此,这种玻璃首先是平度好,没有水波纹。用于制镜、汽车玻璃。不发脸,不走形,这是它的一大优点。其次是浮法玻璃选用的矿石石英砂,原料好。生产出来的玻璃纯净、透明度好。明亮、无色。没有玻璃疔,气泡之类。第三是结构紧密、重,手感平滑,同样厚度每平方米比平板比重大,好切割,不易破损。全国30多条生产线都严格按照国家标准生产,这种玻璃是民用建筑的最好玻璃。它的价格,同等厚度相比,仅比平板玻璃每平方米高4元左右。 生产工艺: 浮法玻璃生产的成型过程是在通入保护气体(N2及H2)的锡槽中完成的。熔融玻璃从池窑中连续流入并漂浮在相对密度大的锡液表面上,在重力和表面张力的作用下,玻璃液在锡液面上铺开、摊平、形成上下表面平整、硬化、冷却后被引上过渡辊台。辊台的辊子转动,把玻璃带拉出锡槽进入退火窑,经退火、切裁,就得到平板玻璃产品。浮法与其他成型方法比较,其优点是:适合于高效率制造优质平板玻璃,如没有波筋、厚度均匀、上下表面平整、互相平行;生产线的规模不受成形方法的限制,单位产品的能耗低;成品利用率高;易于科学化管理和实现全线机械化、自动化,劳动生产率高;连续作业周期可长达几年,有利于稳定地生产;可为在线生产一些新品种提供适合条件,如电浮法反射玻璃、退火时喷涂膜玻璃、冷端表面处理等。 普通平板玻璃与浮法玻璃有什么不同 A:普通平板玻璃与浮法玻璃都是平板玻璃。只是生产工艺、品质上不同。 普通平板玻璃是用石英砂岩粉、硅砂、钾化石、纯碱、芒硝等原料,按一定比例配制,经熔窑高温熔融,通过垂直引上法或平拉法、压延法生产出来的透明五色的平板玻璃。普通平板

马蹄焰池窑设计

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从2012 年6 月4 日起到2012 年6 月17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕:

t浮法玻璃熔窑熔制制度的确定

玻 璃 熔 制 组别:第二组 组长:黄忠伦 组员:孙印持、黄忠伦、张彬、何洋、赖世飞、朱子寒

“玻璃熔制”课程任务 一、任务目的: 400t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-黏度曲线; 2、确定玻璃熔制的各种熔制制度; 3、分析熔制制度对玻璃质量的影响; 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组织生产; 2、熔制制度参数选择合理、先进; 3、熟悉玻璃熔制制度对玻璃质量的影响; 4、提交一份打印的任务说明书及电子文档; 5、提交本小组各成员的成绩表(100分制);

(一)黏度与温度的关系 1.由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变化趋势有显著的差别。晶体在高于熔点时,黏度变化很小,当到达凝固点时,由于熔融态转变晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 (1)应变点:应力能在几小时内消除的温度,大致相当于粘度为1013.6Pa·s时的温度,也称退火下限温度。(2)转变点(Tg):相当于粘度为1012.4Pa·s时的温度。高于此点脆性消失,并开始出现塑性变形,物理性能开始迅速变化。 (3)退火点:应力能几分钟内消除的温度,大致相当于粘度为1012Pa·S时的温度,也称退火上限温度。(4)变形点:相当于粘度为1010-1011Pa·S时的温度范围。(5)、软化温度(Ts):它与玻璃的密度和表面张力有关,相当于黏度为3×106~1.5×107Pa·s的温度范围。对于密度约等于2.5的玻璃它相当于粘度为106.6Pa·S时的温度。(6)操作范围:相当于成型玻璃表面的温度范围。T上限指准备成型的温度,相当于粘度为102-103Pa·S时的温度;T下限相当于成型时能保持制品形状的温度,相当于粘度>105Pa·S时的温度。操作范围的粘度一般为103-106.6Pa·S

玻璃马池焰窑炉课程设计说明书

目录 1.绪论 (1) 2. 计算内容 (4) 2.2 熔化率的选取 (4) 2.3熔窑基本结构尺寸的确定 (4) 2.4 窑体主要部位所用材料的选择和厚度的确定 (6) 2.5 燃料燃烧计算 (7) 2.6燃料消耗量的计算 (8) 2.7 小炉结构的确定与计算 (10) 2.8蓄热室的设计 (11) 2.9 窑体主要部位所用材料的选择和厚度的确定 (12) 3.主要技术经济指标 (12) 4.对本人设计的评述 (14) 参考文献 (14)

1.绪论 课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识解决实际问题,进一步提高设计运算,使用专业资料等能力。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力,创新能力和综合能力,逐步掌握窑炉及其他热工设备设计的基础知识和技能,并对所学窑炉热工设备理论知识进行验证和深化,为将来从事生产、设计、研究及教学奠定良好的基础,同时为毕业论文打下坚实的基础。 1.1设计依据 设计内容:年产12000吨高白料酒瓶燃油蓄热式马蹄焰池窑 (1)原始数据: a)产品规格:青白酒瓶容量500mL, 重量400g/只 b)行列机年工作时间及机时利用率:313 天,95% c)机速:QD6行列机青白酒瓶38只/分钟 d)产品合格率:90% e)玻璃熔化温度1430℃ f)玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g)重油组成(质量分数%),见表1﹣1 1.2 述玻璃窑炉的发展历史及今后的发展动向 玻璃窑炉是熔制玻璃的热工设备,利用燃料的化学能、电能或其它能源产生热量,造成可控的高温环境,使玻璃配合料在其中经传热、传质和动量传递过程,完成物理和化学变化,经过熔化、澄清、均化和冷却等阶段,为生产提供一定数量和质量的玻璃液。 我国的玻璃窑炉古已有之,其经历了一个漫长的发展史,通过燃料和技术的发展提高,玻璃窑炉现在已经有了较大的进步。我国的玻璃窑炉基本上都为火焰池窑,其基本结构为:玻璃熔制、热源供给、余热回收、排烟供气四部分。目前我国玻璃窑炉的主体要燃料有煤、重油、发生炉煤气、天然气,其中最普遍采用的是煤和重油,为节能降耗减少污染,也有许多窑炉采用发生炉煤气和天然气,如下表1-2介绍了我国玻璃窑炉的发展史:

浮法玻璃池窑毕业设计(理工类)

第1章绪论 1.1 本设计的意义、目的及设计任务 浮法玻璃池窑是浮法玻璃生产的重要热工设备,设计合理与否直接关系到浮法玻璃的质量等级。我国许多的池窑工作者积累了大量的宝贵经验并且吸取国外一些先进的设计理念将之应用到池窑设计当中,取得了很大的进步,但在浮法玻璃池窑的寿命、玻璃质量能耗等技术指标方面与先进的浮法玻璃池窑仍然还有一定的差距。因此,本设计可以让学生很好的了解浮法玻璃池窑的结构及各部分工作原理,使学生对浮法玻璃池窑生产工艺流程有一个全面的了解。同时,可以培养学生严谨的工作作风和求真务实的科学态度,弄清浮法玻璃池窑工艺制度的设计方法,进一步培养学生独立思考、综合运用已学理论知识及其它途径分析和解决实际问题的工作能力、锻炼学生理论结合实际的能力、制图和看图的能力、设计和科研的能力。 本设计要求设计日产600吨平板玻璃工厂浮法玻璃池窑结构。需要依次进行玻璃成分设计,配料计算、浮法总工艺计算;玻璃工厂储库、堆场及堆棚设计计算;玻璃池窑结构设计计算;绘制池窑结构图及耐火材料排布图;绘制全厂总平面布置图。 1.2 目前国内外浮法玻璃发展状况 1、国外浮法玻璃发展状况 自1959年2月,英国Pilkington玻璃兄弟有限公司宣布浮法工艺成功以来,浮法玻璃技术得到了迅速推广。截止2001年末,世界各地区已建成投产的浮法玻璃生产线约280条,其中亚洲约130条,欧洲79条,北美洲56条,南美洲10条,非洲和大洋洲5条,280条浮法线日熔化总能力约为13万吨,年生产能力可达3600万吨以上[1]。其中,西欧占27%,约894万吨;东欧占5%,约165万吨;北美占23%,约761万吨;中国占30.8%,约1020万吨(2.04亿重量箱);日本占11%,约364万吨;非洲及中东地区占3%,约99万吨[2]。截至2003年底,全世界已有36个国家和地区(不包括中国内地)建成了140多条浮法玻璃生产线,总产量达到3亿吨左右,并占到平板玻璃总量的80%以上。截至2010年,世界浮法玻璃生产利用效率已经高达94%,库存约小于6%,其中市场消耗优质浮法玻璃已经超过了10亿重量箱以上。目前,国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5~25mm之间各种厚度不等的浮法玻璃,其玻璃

浮法玻璃成型技术

浮法玻璃成型技术 1、浮法玻璃成型的定义 浮法玻璃成型工艺过程为熔化、澄清、冷却的优质玻璃液在调节闸板的控制下经流道平稳连续地流入锡槽,在锡槽中漂浮在熔融锡液表面,在自身重力的作用下摊平、在表面张力作用下抛光、在主传动拉引力作用下向前漂浮,通过挡边轮控制玻璃带的中心偏移,在拉边机的作用下实现玻璃带的展薄或积厚并冷却、固型等过程,成为优于磨光玻璃的高质量的平板玻璃。 玻璃液在前进的过程中经历了在锡液面上的摊开、达到平衡厚度、自然抛光以及拉薄或积厚四个过程。 浮法玻璃的成型设备因为是盛满熔融锡液的槽形容器而被称作 锡槽,它是浮法玻璃成型工艺的核心,被看作为浮法玻璃生产过程的三大热工设备之一。 2、浮法玻璃成型工艺过程 池窑中熔化好的玻璃液,在1100℃左右的温度下,沿流道流入 锡槽,由于玻璃的密度只有锡液密度的1/ 3 左右,因而漂浮在锡液面上,完成玻璃的平整化过程,然后逐渐降温,在外力的作用下冷却成板。玻璃带冷却到600~620℃时,被过渡辊台抬起,在输送辊道牵引力作用下,离开锡槽,进入退火窑,消除应力,再经质量检测,纵横切割,装箱入库。为了防止锡液在高温下的氧化,通常通入弱还原性的保护气体,以提高玻璃质量。 玻璃带成型时的作用力有两种,即表面张力和自身重力,前者阻

止玻璃液无限摊开,对玻璃表面的光洁度影响极大;后者则促使玻璃液摊开。当表面张力与自身重力平衡时,漂浮在锡液面上的玻璃带就获得自然厚度。 3、浮法玻璃成型工艺因素 对浮法玻璃成型起决定作用的因素有玻璃的粘度、表面张力和自身的重力。在这3 个因素中,粘度主要起定型的作用,表面张力主要起抛光的作用,重力则主要起摊平作用。但是三者对摊平、抛光和展薄都有一定作用,这三者结合才能很好的进行浮法玻璃的生产。 玻璃液刚流入锡槽时,处于自身重力和液-液-气三相系统表面张力的作用下。随着玻璃液的不断流入,在自身重力影响下,玻璃液沿锡液表面摊开,并在锡液面上形成了玻璃液的流体静压,作为玻璃带成型的源流。在1025℃左右的温度范围内,在自身重力和表面张力的作用下,玻璃液以自然厚度(7mm 左右)向四周流动摊开,此过程称为玻璃的摊平过程。 在玻璃的摊平过程中,主要涉及玻璃液的平整化,亦即摊得平不平,这是生产优质浮法玻璃之关键。生产实践证明,欲得到平整的玻璃带,必须具备下述条件。 (1)适于平整化的均匀的温度场。玻璃液在锡液面上摊平必须有适于平整化的温度范围。适于浮法玻璃自身摊平的温度范围为1065~996℃。只有在此范围内,才能使玻璃带摊得厚度均匀、表面平整。 (2)足够的摊平时间。玻璃的平整化除必须有一定的温度范围,以达到一定的表面张力外,还必须具备足够的摊平时间,以保证表面

浮法玻璃熔窑卡脖深层水包的使用

浮法玻璃熔窑卡脖深层水包的使用 浮法玻璃熔窑卡脖水包深浅的使用与玻璃熔窑设计有关,深层水 包一般使用在平底、浅池、小冷却部窑炉,使用不同深度的水包,会改变玻璃液对流,对流的改变,玻璃质量和能耗也会发生相应 的改变,控制好深层水包的深度对玻璃生产有着重大的意义。 卡脖水包是玻璃液分隔设备,在我国浮法熔窑上应用极其广泛。其作用:一 是阻挡熔化部未熔化好的粉料浮渣或者不能熔化的难熔物进入冷却部,参与成型,提高玻璃的产质量;二是调节玻璃液进入冷却部的流量和降低玻璃液的温度。 一、池窑内玻璃液流的对流 1、由于窑体的散热,造成池窑内玻璃液产生温度差,而玻璃液的密度与温 度成反比,温度差必然造成密度差,窑池内各部位存在不同密度玻璃液的情况下,形成表层玻璃液由高温向低温侧流动,低温玻璃液由深层向高温侧流动现象,玻璃液的温度梯度越大,其对流越激烈。 2、投料推力,配合料在投入玻璃熔窑以后,靠投料机的推力把配合料由投 料口向熔窑中部推,自然配合料会带动料层下的表层玻璃液向前移动。 3、玻璃液出口,成型拉引造成的液面低洼,产生的表面流动。 玻璃液在窑内的流动图 由热点到投料口的对流我们称为环流一。 热点到卡脖的对流我们称为环流二。 热点到冷却部、流道的对流我们称为环流三。 卡脖水包的深浅直接控制者进入冷却部的供回流玻璃液量,水包插入越深,进入冷却部的供回流玻璃液越少,冷却部降温速度越快。

卡脖水包对熔化的影响,应考虑以下两点,一是熔化能耗。二是玻璃的熔化、澄清。 二、卡脖开度对玻璃熔化能耗、澄清、均化的影响 1、能耗:卡脖水包加深后,减少冷却部的供回流量,冷却部回流量减少, 熔化所需要加热的低温玻璃液减少,熔化池玻璃液整体温度升高,熔化速度加快,玻璃液澄清温度升高,能耗降低。但另一方面讲,进入冷却部的热玻璃液 量少了,降温速度加快,而流道的温度是一定,必须满足成型的要求,这就需 要提高末对小炉温度,来满足成型需要,增加能耗。一个窑炉上采用不同深度 的水包,水包插入深度由浅逐渐加深,其能耗变化是从能耗高逐渐降低,到达 最低点后又逐渐升高,它是一个抛物线形式的变化曲线。 2、玻璃液的澄清: 玻璃的澄清,在卡脖开度减少的情况下,成型流玻璃液进入冷却部的玻璃 液量减少,冷却部回流量减少,熔化部玻璃液整体温度上升,玻璃液在高温时 澄清排泡能力增加,有利于玻璃液的高温澄清。而玻璃液澄清过程应分为两部分,一是玻璃液的高温排泡澄清;二是玻璃液在冷却过程中的残余气泡吸收,冷却微泡吸收澄清。 减少卡脖开度,玻璃液高温澄清效果明显转好,但卡脖开度的改变,势必 改变了玻璃液的冷却温度曲线,冷却曲线的改变对微泡的吸收有着较大的影响,总的澄清效果应进行多方面的测试,试验得出良好的澄清效果。 正常的玻璃液冷却温度曲线应均匀稳定,无突变的曲线,如下图: 如果温度缩小卡脖开度,即增加卡脖插入深度,其玻璃液温度曲线会在卡 脖处产生一个温度剧变点,如下图,从而改变玻璃液冷却过程中的微泡吸收的 热历史,使微泡难以被玻璃液吸收,存在于成品中影响玻璃质量。 玻璃液在卡脖处产生一个剧烈降温段,在此处,玻璃液中气体微泡中的二 氧化硫气体会与玻璃中的钠离子重新结合,以液态形式附着在气泡内壁上,阻 止微泡被玻璃液吸收。

相关主题
文本预览
相关文档 最新文档