当前位置:文档之家› 解耦控制在低负荷给水控制系统中的应用

解耦控制在低负荷给水控制系统中的应用

过程控制作业答案

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 23232 3123 ()()()11R R R R H s K G s R R Q s Ts F s R R +=== +++ K=2323 R R R R +, T=23 23R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

300MW火电机组给水控制系统的设计

目录 1选题背景 (2) 引言 (2) 设计目的及要求 (2) 2方案论证 (3) 方案一 (3) 方案二 (4) 3过程论述 (5) ^ 总体设计 (5) 详细设计 (6) 信号的测量部分 (6) 单冲量控制方式 (10) 串级三冲量控制方式 (11) 信号监测 (12) 给水旁路调节阀控制强制切到手动 (12) 电动给水泵强制切到手动 (13) ) 汽动给水泵强制切到手动 (13) 工作方式 (13) 切换与跟踪 (13) 切换 (13) 跟踪 (14) 控制器选型 (14) 4结论 (14) 5课程设计心得体会 (15) } 6参考文献 (15) 《

1选题背景: 引言 - 火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 设计目的及要求 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。 设计要求: (1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。 (2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。

给水全程控制系统设计

《给水全程控制系统》设计 专业:自动化 班级:B120410 学号:B12041014 姓名:陈修鹤

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

摘要............................................................................................................................. I 第一章汽包水位全程控制的介绍 (1) 第二章给水控制对象的动态特性 (2) 2.1 给水流量扰动下水位的动态特性 (2) 2.1.1 给水流量扰动下水位的动态特性 (2) 2.1.2 蒸汽流量扰动下水位的动态特性 (2) 2.1.3 炉膛热负荷扰动下水位的动态特性 (3) 第三章热工测量信号 (5) 3.1 水位信号 (5) 3.2 蒸汽流量信号 (6) 3.3 给水流量信号 (6) 第四章调节阀和调速泵的特性 (7) 4.1调节阀门的静特性 (7) 4.2调速泵的安全特性 (7) 第五章控制过程分析 (9) 5.1水位调节主回路及电动给水泵跟随系统 (9) 5.2汽动给水泵副回路控制系统 (9) 5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统 (10) 5.4流量测量信号 (11) 5.5旁路辅助及保护回路 (12) 5.6汽包水位自动失灵切手动保护 (13) 结论 (15) 参考文献 (16)

智能给水【控制专区】器设计

智能给水控制器设计 引言 随着经济的快速发展和城市高层建筑的不断涌现,人们对供水质量和供水系统可靠性的要求不断提高,加上目前能源紧缺对节能的要求,因此利用先进的电子测控技术和自动化控制技术,设计高性能、高可靠性、低成本、低能耗,以及能适用不同领域的恒压供水系统也就成为必然趋势。随着近年来变频调速技术的飞速进步,变频恒压供水也在其基础上慢慢发展起来,并成为一种新兴的现代化供水技术。 目前,国外的恒压供水工程设计都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,这种方式不但投资成本较高,且功能单一。 为此设计了在变频调速控制系统中加入基于C8051F410的单片机系统,构成了功能更强的复合控制系统,它不但克服了以上缺点,而且具有安装调试方便,功能全面,可靠性高。抗干扰能力强等优点,且可以广泛应用于工业生产、社会生活的各个领域。 1 控制原理 在恒压供水系统中,安装于管网的远传压力表提供水压力信号,并经过光电隔离和电压转换电路,传送给系统的中心控制器,控制器将采集到的压力数据与预设压力进行比较,得出偏差值,再经PID运算之后得出控制参数,D/A模块将控制参数转换为模拟电压输出,调节变频器的输出频率,从而控制水泵的转速,以保证管网压力基本恒定。当用水量增大时,管网压力低于预设值,变频器频率就会升高,水泵转速加快,从而提升管道水压,但若达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵;反之,当用水量减少,则降低水泵运行频率直至设定的下限运行频率,若供水量仍大于用水量,则减泵直至全部泵停止工作,经过一定的延时,控制器重新比较压力,并计算控制输出,从而维持恒压供水。它的系统原理框图如图1所示。

系统解耦控制

实验二、 系统解耦控制 一、实验目的 1、 掌握解耦控制的基本原理和实现方法。 2、 学习利用模拟电路实现解耦控制及实验分析。 二、实验仪器 1、 TDN —AC/ACS 型自动控制系统实验箱一台 2、 示波器 3、 万用表 三、实验原理与内容 一般多输入多输出系统的矩阵不是对角阵,每一个输入量将影响所有输出量,而每一个输出量同样受到所有输入量的影响,这种系统称为耦合系统。系统中引入适当的校正环节使传递矩阵对角化,实现某一输出量仅受某一输入量的控制,这种控制方式为解耦控制,其相应的系统称为解耦系统。解耦系统输入量与输出量的维数必相同,传递矩阵为对角阵且非奇异。 1、 串联控制器()c G s 实现解耦。 图2-1用串联控制器实现解耦 耦合系统引入控制器后的闭环传递矩阵为 1 ()[()()()]()()p c p c s I G s G s H s G s G s -Φ=+ 左乘[()()()]p c I G s G s H s +,整理得 1()()()[()()]p c G s G s s I H s s -=Φ-Φ 式中()s Φ为所希望的对角阵,阵中各元素与性能指标要求有关, 在()H s 为对角阵的条件下,1 [()()]I H s s --Φ仍为对角阵, 1 1 ()()()[()()]c p G s G s s I H s s --=Φ-Φ

设计串联控制器()c G s 可使系统解耦。 2、 用前馈补偿器实现解耦。 解耦系统如图2-2, 图2-2 用前馈控制器实现解耦 解耦控制器的作用是对输入进行适当变换实现解耦。解耦系统的闭环传递函数 1()[()]()()p p d s I G s G s G s -Φ=+ 式中()s Φ为所希望的闭环对角阵,经变换得前馈控制器传递矩阵 1()()[()]()d p p G s G s I G s s -=+Φ 3、 实验题目 双输入双输出单位反馈耦合系统结构图如图。 图2-3 系统结构图 设计解耦控制器对原系统进行解耦,使系统的闭环传递矩阵为 10 (1) ()10(51)s s s ????+? ?Φ=? ???+? ? 通过原系统输出量(1,2y y )与偏差量(1,2e e )之间的关系

300MW火电机组给水控制系统的设计

目录 1选题背景 (2) 1.1引言 (2) 1.2设计目的及要求 (2) 2方案论证 (3) 2.1方案一 (3) 2.2方案二 (4) 3过程论述 (5) 3.1总体设计 (5) 3.2详细设计 (6) 3.2.1信号的测量部分 (6) 3.2.2单冲量控制方式 (10) 3.2.3串级三冲量控制方式 (11) 3.3信号监测 (12) 3.3.1给水旁路调节阀控制强制切到手动 (12) 3.3.2电动给水泵强制切到手动 (13) 3.3.3汽动给水泵强制切到手动 (13) 3.4工作方式 (13) 3.5切换与跟踪 (13) 3.5.1切换 (13) 3.5.2跟踪 (14) 3.6控制器选型 (14) 4结论 (14) 5课程设计心得体会 (15) 6参考文献 (15)

1选题背景: 1.1引言 火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 1.2设计目的及要求 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。 设计要求: (1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。 (2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。 (3)参考输出参数: A、B汽动泵转速、电动给水泵转速、给水旁路调节阀开度。 (4)信号准确性:考虑汽包水位、给水流量和蒸汽流量等信号的修正。 (5)信号监测与报警:重要信号需要监测与报警,同时注意信号的可靠性,

给水全程控制系统设计

300MW机组给水全程控制系统设计 摘要 本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

沈阳工程学院课程设计论文 Abstract Based on the discussion of the feed water regulating system controlled object dynamic characteristic, thermal measurement signals, adjusting mechanism on the basis of analysis of the characteristics, structure and working principle of the three element feed-water control system, is proposed to realize the unit water supply problems should be considered in system and control scheme of the whole control. With the large capacity, high parameter boiler towards development, water supply systems using automatic control system is essential way, it can reduce the labor intensity of the operation personnel, to ensure the safe operation of the boiler. For the large capacity and high parameters of the boiler, the water supply system is very complex and perfect. In view of the present situation of water supply system of power plant and its existing problems, combined with the configuration of 300MW power plant, the whole feed water regulating system for 300MW unit of power plant construction principle and control function, analysis of the overall structure, working principle, control process, the system switching mode, control logic, debugging and tuning principle. Key Words feed water, feed water control, control system, drum water level, automatic regulation

自动控制原理第六章课后习题答案(免费)

自动控制原理第六章课后习题答案(免费) 线性定常系统的综合 6-1 已知系统状态方程为: ()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????= 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3. 解: 由()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????=可得: (1) 加入状态反馈阵()0 12K k k k =,闭环系统特征多项式为: 32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+- (2) 根据给定的极点值,得期望特征多项式: *32()(1)(2)(3)6116f λλλλλλλ=+++=+++ (3) 比较()f λ和*()f λ各对应项系数,可得:0124,0,8;k k k === 即:()408K =

6-2 有系统: ()2100111,0x x u y x ? -????=+ ? ?-????= (1) 画出模拟结构图。 (2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。 解(1) 模拟结构图如下: ∫ ∫-1 -2 1 u ++y (2) 判断系统的能控性; 0111c U ?? =?? -?? 满秩,系统完全能控,可以任意配置极点。 (3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为: ()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式: *2()(3)(3)69f λλλλλ=++=++ 比较()f λ和*()f λ各对应项系数,可解得:011,3k k == 即:[1,3]K =

300MW火电机组给水控制系统设计

300MW火电机组给水控制系统设计 1选题背景 锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和比较完善的。大型电站锅炉将是国家未来的发展方向,给水系统是其中的重要环节。随着火电机组容量的提高及参数的增加,机组在启停过程中需要监视的参数及控制的项目越来越多,大型电站锅炉给水控制系统是机组控制系统中的重点和难点。近些年来,研究大型电站锅炉给水的文献相应增多,火电机组越大,其设备结构就越复杂,自动化程度也要求越高。在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。所谓自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。目前已广泛应用于工农业生产、交通运输和国防建设。生产过程自动化是保证生产稳定、降低成本、改善劳动条件、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是21世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。 2本文研究的主要内容 大型电站汽包锅炉给水控制系统的任务是通过调节进入汽包的给水流量,在保证汽包水位在一定范围内相对稳定的同时,产生汽轮发电机组所需的蒸汽流量,使机组输出的电功率与电网负荷变化相适应。给水控制系统对保证汽包锅炉运行过程的安全性和稳定性具有重要意义。 2.1给水系统的概况 汽包锅炉给水控制系统的作用是产生用户所要求的蒸汽流量,同时保证汽包水位在一定范围内变化。由于设计有汽包,使锅炉的蒸发段与过热段明确分开,锅炉的蒸发量主要取决于燃烧率(燃料量与相应的空气量)。所以汽包锅炉由燃烧率调节负荷,实现燃料热量与蒸汽热量之间的能量平衡。汽包锅炉的给水控制

解耦控制设计与仿真

解耦控制系统设计与仿真 姓名: 专业: 学号:

第一章解耦控制系统概述 1.1背景及概念 在现代化的工业生产中,不断出现一些较复杂的设备或装置,这些设备或装置的本身所要求的被控制参数往往较多,因此,必须设置多个控制回路对该种设备进行控制。由于控制回路的增加,往往会在它们之间造成相互影响的耦合作用,也即系统中每一个控制回路的输入信号对所有回路的输出都会有影响,而每一个回路的输出又会受到所有输入的作用。要想一个输入只去控制一个输出几乎不可能,这就构成了“耦合”系统。由于耦合关系,往往使系统难于控制、性能很差。 所谓解耦控制系统,就是采用某种结构,寻找合适的控制规律来消除系统中各控制回路之间的相互耦合关系,使每一个输入只控制相应的一个输出,每一个输出又只受到一个控制的作用。解耦控制是一个既古老又极富生命力的话题,不确定性是工程实际中普遍存在的棘手现象。解耦控制是多变量系统控制的有效手段。 1.2主要分类 三种解耦理论分别是:基于Morgan问题的解耦控制,基于特征结构配置的解耦控制和基于H_∞的解耦控制理论。 在过去的几十年中,有两大系列的解耦方法占据了主导地位。其一是围绕Morgan问题的一系列状态空间方法,这种方法属于全解耦方法。这种基于精确对消的解耦方法,遇到被控对象的任何一点摄动,都会导致解耦性的破坏,这是上述方法的主要缺陷。其二是以Rosenbrock为代表的现代频域法,其设计目标是被控对象的对角优势化而非对角化,从而可以在很大程度上避免全解耦方法的缺陷,这是一种近似解耦方法。

1.3相关解法 选择适当的控制规律将一个多变量系统化为多个独立的单变量系统的控制问题。在解耦控制问题中,基本目标是设计一个控制装置,使构成的多变量控制系统的每个输出变量仅由一个输入变量完全控制,且不同的输出由不同的输入控制。在实现解耦以后,一个多输入多输出控制系统就解除了输入、输出变量间的交叉耦合,从而实现自治控制,即互不影响的控制。互不影响的控制方式,已经应用在发动机控制、锅炉调节等工业控制系统中。多变量系统的解耦控制问题,早在30年代末就已提出,但直到1969年才由E.G.吉尔伯特比较深入和系统地加以解决。 1.3.1完全解耦控制 对于输出和输入变量个数相同的系统,如果引入适当的控制规律,使控制系统的传递函数矩阵为非奇异对角矩阵,就称系统实现了完全解耦。使多变量系统实现完全解耦的控制器,既可采用状态反馈结合输入变换的形式,也可采用输出反馈结合补偿装置的形式。给定n维多输入多输出线性定常系统(A,B,C)(见线性系统理论),将输出矩阵C表示为 为C的第j个行向量,j=1,2,…,m,m为输出向量的维数。再规定一组结构指 数di(i=1,2,…,m):当B=0,AB=0…,AB=0时,取di=n-1;否则,di取为使CiAB≠0的最小正整数N,N=0,1,2,…,n-1。利用结构指数可组成解耦性判别矩阵: 已证明,系统可用状态反馈和输入变换,即通过引入控制规律u=-Kx+Lv,实现完全解耦的充分必要条件是矩阵E为非奇异。这里,u为输入向量,x为状

【精品】给水控制系统

1引言 随着发电机组容量的增大和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适用范围更宽,功能更为完备的自动控制系统,这就产生了全程控制系统。而给水控制系统在电厂运行中有着非常重要的作用。在全程给谁控制系统中,汽包水位是汽包锅炉运行中一个重要的监控参数,它反应锅炉蒸汽负荷与给水量之间的平衡关系。维持其包水位在一定范围内是保证锅炉和汽轮机安全运行的必要条件。给谁全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持其包水位在规定的范围内。 2设计内容 2。1设计方案 2.1。1方案一

给系统设计如图一。在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。高压加热器出口分别取给水压力信号送入小值选择器。当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。

给水控制系统

1 引言 随着发电机组容量的增大和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适用范围更宽,功能更为完备的自动控制系统,这就产生了全程控制系统。而给水控制系统在电厂运行中有着非常重要的作用。在全程给谁控制系统中,汽包水位是汽包锅炉运行中一个重要的监控参数,它反应锅炉蒸汽负荷与给水量之间的平衡关系。维持其包水位在一定范围内是保证锅炉和汽轮机安全运行的必要条件。给谁全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持其包水位在规定的范围内。 2设计内容 2.1设计方案 2.1.1 方案一 给系统设计如图一。在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。高压加热器出口分别取给水压力信号送入小值选择器。当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。

自动控制及计算机控制(LABVIEW)

自动控制概述 (2) 自动控制理论部分 (5) 实验一典型环节的电路模拟与软件仿真研究 (5) 实验二典型系统动态性能和稳定性分析 (13) 实验三典型环节(或系统)的频率特性测量 (17) 实验四线性系统串联校正 (23) 实验五典型非线性环节的静态特性 (27) 实验六非线性系统相平面法 (32) 实验七非线性系统描述函数法 (38) 实验八极点配置全状态反馈控制 (43) 实验九采样控制系统动态性能和稳定性分析的混合仿真研究 (49) 实验十采样控制系统串联校正的混合仿真研究 (53) 自动控制理论软件说明 (57) 第一章概述 (57) 第二章安装指南及系统要求 (61) 第三章功能使用说明 (62) 第四章使用实例 (70) 计算机控制技术部分 (71) 实验一 A/D与D/A 转换 (73) 实验二数字滤波 (77) 实验三 D(s)离散化方法的研究 (79) 实验四数字PID控制算法的研究 (82) 实验五串级控制算法的研究 (85) 实验六解耦控制算法的研究 (89) 实验七最少拍控制算法的研究 (93) 实验八具有纯滞后系统的大林控制 (98) 实验九线性离散系统的全状态反馈控制 (99) 计算机控制软件说明 (109) 第一章概述 (109) 第二章安装指南及系统要求 (114) 第三章 LabVIEW编程及功能介绍 (115)

一.实验系统功能特点 1.系统可以按教学需要组合,满足“自动控制原理”课程初级与高级实验的需要。只配备ACCT-I 实验箱,则实验时另需配备示波器,且只能完成部分基本实验。要完成与软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及USB2.0通讯线。 2.ACCT-I实验箱内含有实验必要的电源、信号发生器以及非线性与高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节与系统。此外,ACCT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。 3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。系统提供界面友好、功能丰富的上位机软件。PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。 4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。除了指导书所提供的10个实验外,还可自行设计实验。 二.系统构成 实验系统由上位PC微机(含实验系统上位机软件)、ACCT-I实验箱、USB2.0通讯线等组成。ACCT-I 实验箱内装有以C8051F060芯片(含数据处理系统软件)为核心构成的数据处理卡,通过USB口与PC微机连接。 1.实验箱ACCT-I简介 ACCT-I控制理论实验箱主要由电源部分U1单元、与PC机进行通讯的数据处理U3单元、元器件单元U2、非线性单元U5~U7以及模拟电路单元U9~U16等共14个单元组成,详见附图。 (1)电源单元U1 包括电源开关、保险丝、+5V、-5V、+15V、-15V、0V以及1.3V~15V可调电压的输出,它们提供了实验箱所需的所有工作电源。 (2)信号、数据处理单元U3 内含以C8051F060为核心组成的数据处理卡(含软件),通过USB口与上位PC进行通讯。内部包含八路A/D采集输入通道和两路D/A输出通道。与上位机一起使用时,可同时使用其中两个输入和两个输出通道。可以产生频率与幅值可调的周期方波信号、周期斜坡信号、周期抛物线信号以及正弦信号,并提供与周期阶跃、斜坡、抛物线信号相配合的周期锁零信号。结合上位机软件,用以实现虚拟示波器、测试信号发生器以及数字控制器功能。 (3)元器件单元U2 单元提供了实验所需的电容、电阻与电位器,另提供插接电路供放置自己选定大小的元器件。 (4)非线性环节单元U5、U6和U7

MW火电机组给水控制系统的设计精编

课 程设计说明书指导教师:张利辉、王秋平职称:教授 2011年 12月22日 目录 1设计背景 ................................................................. 错误!未指定书签。 2主要参数及设计思想 ............................................. 错误!未指定书签。 2.1主要参数 ........................................................... 错误!未指定书签。 2.2设计思想 ........................................................... 错误!未指定书签。 2.3三冲量控制系统 ............................................... 错误!未指定书签。 2.4给水流量的调节的实现方法 ........................... 错误!未指定书签。 2.5运行方式 ........................................................... 错误!未指定书签。 3过程论证 ................................................................. 错误!未指定书签。 3.1三冲量与单冲量之间的无扰切换 ................... 错误!未指定书签。 3.2阀门与泵的运行及切换 ................................... 错误!未指定书签。 3.3电动泵与汽动泵间的切换 ............................... 错误!未指定书签。 3.4执行机构的手、自动切换 ............................... 错误!未指定书签。 学生姓名: 学号: 0 学院: 自动化工程学院 班级: 题目: 300MW 火电机组给水控制系统的设计

自动控制系统及应用复习资料

复习 一、填空题 1、如图,埸效应管VT5的作用是零速封锁即在给定为零且反馈为零使调节器输出为零,以防止由于PI中由于积分作用输出不为零,使得移相控制角可能处于最小,出现全压启动导致过电流故障。电位器RP1可调整输出正限幅值,RP2可调整输出负限幅。C11是积分电容,C5和R9接入速度反馈构成微分调节器。C6、C7是输入滤波电容。 2、电流断续时KZ—D系统的机械特性变软,相当于电枢回路的电阻值增大。 3、脉宽调速系统中,开关频率越高,电流脉动越小,转速波动越小,动态开关损耗越大。 4、采用转速—电流双闭环系统能使电动机按允许的最大加速度起动,缩短起动时间。 5、典型I型系统的超调量比典型II型系统小,抗扰动性能比典型II型系统差。 6、下图为单闭环转速控制系统。 (1)图中V是; (2)图中Ld是,它的作用是; (3)图中采用的是调节器,它的主要作用是; (4)此系统主电路由相交流电供电; (5)此系统具有负反馈环节; (6)改变转速,应调节___________电位器; (7)整定额定转速1500转/分,对应8V,应调节___________电位器; (8)系统的输出量(或被控制量)是___________。 解: (1)图中V是晶闸管整流器; (2)图中Ld是平波电抗器,它的作用是抑制电流脉动和保证最小续流电流;

(3)图中采用的是PI 即比例积分调节器,它的主要作用是 保证动静态性能满足系统要求; (4)此系统主电路由 三 相交流电供电; (5)此系统具有 转速(速度) 负反馈环节; (6)改变转速,应调节___RP1__电位器; (7)整定额定转速1500转/分,对应8V ,应调节_RP2_电位器; (8)系统的输出量(或被控制量)是_转速_。 7、下图为异步电动机矢量控制原理结构图,A ,B ,C ,D 分别为坐标变换模块,请指出A 是 矢量旋转逆变换 1 -VR , B 是二相静止坐标变成三相静止坐标变换, C 是三相静止坐标系变成二相静止坐标变换, D 矢量旋转变换,上述等效变换的原则是旋转磁场等效或磁动势等效。 8、下图为异步电动机矢量变换与电流解耦数学模型,A ,B 分别为坐标变换模块,请指出A 是三相静止坐标系变成二相静止坐标变换,B 是矢量旋转变换,其等效变换的原则是旋转磁场等效或磁动势等效。 9、采用光电式旋转编码器的数字测速方法中,M 法适用于测高速,T 法适用于测低速。 10、只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。 11、可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。 12、α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段。 13、电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。 14、永磁同步电动机自控变频调速中,需增设位置检测装置保证转子转速与供电频率同步。 15、SVPWM 以圆形旋转磁场为控制目标,而SPWM 以正弦电压为控制目标。 二、选择题 1、关于变压与弱磁配合控制的直流调速系统中,下面说法正确的是(A )。 A 当电动机转速低于额定转速时,变压调速,属于恒转矩性质调速。 B 当电动机转速高于额定转速时,变压调速,属于恒功率性质调速。 C 当电动机转速高于额定转速时,弱磁调速,属于恒转矩性质调速。 D 当电动机转速低于额定转速时,弱磁调速,属于恒功率性质调速。

自动化控制设计的主要内容及在化工中的应用

自动化控制设计的主要内容及在化工中的应 用 摘要自动化技术是当今举世瞩目的高技术之一,也是中国今后重点发展的一个高科技领域。而我们化工生产则是离不开自动化控制系统,自动化系统大大推动了化工生产的发展。关键词自动化控制系统化工生产 正文 自动化控制系统现在广泛的运用在我们的生活和工业生产中,它的出现以及发展大大促进了科技和社会的发展,在促进产业革命中起着十分重要的作用。特别是在石油、化工、冶金、轻工业等部门由于采用了自动化仪表和集中控制装置,促进了连续生产过程的发展,大大的提高了劳动生产率,给企业以及社会带来巨大的经济效益和方便。 自动控制系统包括检测、运算和执行三个部分,相当于人的眼、脑和手,换句话说,自动化系统就是代替了人的工作,同时自动化系统的检测、运算以及执行比人要更准确更迅速从而提高了生产效率。这三个部分一般有三个装置:测量原件与变送器、自动控制器和执行器,这三个装置也就是自动化系统三个部分的“工人”。 随着我国经济和社会的快速发展,自动化仪表正在朝着智能化的方向发展,并且已经取得了较大的进步,智能化仪表实现了数字化、小型化、轻量化,但是,发展转变最大的就是实现了信号传递,也就是说化工自动化使用了现场总线技术,这样一来,将传统的模拟量信号转变为具有编码功能的数字量。化工自动化控制技术涉及到很多的现代技术,例如:控制理论技术、仪表技术、计算机技术等,从而对化工生产实现检测、控制、管理等目的,最终增加化工产量、减少消耗、生产高质量的产品的技术。化工自动化控制技术主要有三大系统组成,即化工自动化软件、硬件、应用系统。现如今,化工自动化控制成为制造行业中的最重要的技术,通过此技术可以有效的解决化工生产中出现的问题。现如今,当前我国化工自动化控制发展大部分都是从国外引进先进的设备,在投入使用一段时间后,根据企业的特点进行再次开发与利用。 在化工中,广泛运用化工仪表,而自动化控制在化工仪表起到了什么作用呢?其主要采用先进的微电脑芯片及技术,减小了仪表的体积,并提高了仪表的可靠性及抗干扰性能。实现真正的以逸待劳以及待人的目的。主要作用体现在以下几个方面:

异步电机电流内模解耦控制系统分析与仿真_蒋卫宏

异步电机电流内模解耦控制系统分析与仿真 蒋卫宏 (连云港职业技术学院机电工程学院,连云港222006) 摘要:在同步速d-q坐标系下异步感应电机动态模型和解耦控制原理的基础上引入了内模控制方法,详细设计了基于转子磁链定向和内模控制的定子电流调节器。为了计及实际系统中异步感应电机磁场会随着电机负载(转矩)变化而呈不同程度的饱和以致电机参数的非线性,分析了电流内模控制器对这种非线性参数的鲁棒性,建立了整个异步感应电机矢量控制仿真系统,并分别对忽略磁路饱和和考虑磁路饱和两种情况下的系统进行了仿真分析。结果表明电流内模控制调节器在模型匹配和失配下均能提供良好的转矩动和静态解耦效果。 关键词:矢量变换;解耦控制;磁场定向;电流内模控制 中图分类号:T M341 文献标识码:A 文章编号:1003-8930(2007)05-0079-05 Analysis and Simulation of Decoupled Control System of Asynchronous Motor Using Internal Model Current Control JIANG Wei-hong (Department of Electro mechanic,Liany ungang Technical Co llege, Liany ungang222006,China) Abstract:T he internal model contr ol method is intro duced based on t he dy namic mo del of asynchr o no us mo tor in d-q refer ence fr ame.And the desig n of stat or cur rent co ntr o ller is pr oposed in deta il based on r oto r flux or iented v ector co ntro l.In or der t o take pa rameter nonliner ar ity into account which is caused by lo ad v ariatio n in real system,ro bustness of t he cur rent int ernal model co ntro ller to such nonlinea rit y is ana ly zed, and the vecto r cno nt ro l simulation system is established.Simula tio n result s under flux saturat ion co nsider ed and not co nsider ed show that the cur rent inter nal model co nt ro ller can pr ov ide go od per for mance w ith matched model and unmat ched model. Key words:vecto r t ransfor mation;decoupled co ntro l;field-or ientation;internal model cur rent contr ol 1 前言 交流异步电机是一个多变量、强耦合、非线性、时变系统,其瞬时转矩控制困难,难以获得如同直流电机一样的高动态调速性能。矢量变换控制技术[1,2],无论是转子磁场定向[2]、气隙磁场定向[3]还是定子磁链定向[4]、定子电压定向[5],其基本思想均是通过旋转坐标变换将定子电流分解为相互垂直的直流量励磁(无功)电流i d和转矩(有功)电流i q,且分别对两者进行独立的闭环调节以实现对交流异步电机的解耦控制。 现有的电流控制方法有电流滞环控制、定子坐标系下的PI调节和同步速坐标系下的PI调节控制。其中,同步速坐标系下的电流PI调节控制尤能取得良好的稳态性能,然而该方法由于坐标变换引入的d、q之间的耦合将直接解耦的动态效果,此外d、q轴PI控制器的参数调节传统上通过试验的方法调试得到。对此,文献[6,7]将工业过程控制中的内模控制(internal model contro l,IM C)引入到交流电机的电流控制中,并仅以永磁同步电机为例给出了电流环控制参数设计过程和相应的仿真和实验结果。但是对电流内模控制方法在电机由于负载变化引起的参数非线性条件下其解耦效果和鲁棒性能研究在现有的文献中鲜见分析。 第19卷第5期2007年10月 电力系统及其自动化学报 Pr oceedings o f the CSU-EPSA Vo l.19N o.5 O ct. 2007 收稿日期:2006-11-16;修回日期:2007-03-09

相关主题
文本预览
相关文档 最新文档