当前位置:文档之家› 7.角动量守恒定律

7.角动量守恒定律

7.角动量守恒定律
7.角动量守恒定律

《大学物理》练习题 No 7 角动量守恒定律

班级__________学号 _________ 姓名 _________ 成绩 ________

基本要求: (1) 掌握质点和刚体在定轴转动中的角动量、角动量定理、角动量守恒定律及应用

内容提要:

1. 质点的角动量

a. 质点对点的角动量:v m r p r L ?=?=

b. 对固定轴的角动量:ω J L =

2. 刚体对定轴的角动量:等于刚体对此轴的转动惯量与角速度的乘积 即:ω

z z

J L =

3.刚体的角动量定理: 外力矩对系统的角冲量(冲量矩)等于角动量的增量.

即:00

ωω

J J L d dt M L L t t -==??

若J 可以改变,则:000

ωω

J J L d dt M L L t t -==??

4.角动量守恒定律:当物体所受的合外力矩为零时,物体的角动量保持不变, 即00 ωωω

J J J ==或

常矢量

角动量守恒定律的两种情况:

a. 转动惯量保持不变的单个刚体

00,0ωωωω ===则时,当J J M

b. 转动惯量可变的物体。

.

保持不变就增大,从而减小时,当就减小;

增大时,当ωωω

J J J

一、选择题

1.刚体角动量守恒的充分必要条件是 [ ] (A) 刚体不受外力矩的作用.

(B) 刚体所受合外力矩为零.

(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变

2.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J , 开始时转台以匀角速度ω 0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 [ ] (A) J ω 0/(J +mR 2) .

(B) J ω 0/[(J +m )R 2]. (C) J ω 0/(mR 2) . (D) ω 0.

3.如图7.1所示,一静止的均匀细棒,长为L 、质量为M , 可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动, 转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为

[ ] (A) mv/(ML ) . (B) 3mv/(2ML ). (C) 5mv/(3ML ). (D) 7mv/(4ML ).

二、填空题

1. 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .

2.质量均为70kg 的两滑冰运动员,以6.5s m /等速反向滑行,滑行路线的垂直距离为10m 。当彼此交错时,各抓住10m 长绳子的两端,然后相对旋转。则各自对中心的角动量=L ,当各自收绳到绳长为5m 时,各自速率为=v 。

3.一飞轮以角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω = .

三、计算题

1. 如图7.2所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .

绳系重物m 2后的张力?

v /2

图7.1

图7.2

图7.3

2. 如图7.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.

No. 7 参考答案

一、选择题

1. (B );

2. (A )提示:人在向外运动的过程中,由于所受合外力矩为零,故角动量是

守恒的,由 ωω)(20mR J J +=可得;3. (B ),提示:子弹在与细杆相互作用的过程中,整个系统对细杆转轴的角度量是守恒的,则v L m J mLv 2?+=ω,其中,2

3

1mL J =,得到,棒的角速度为=ω3mv/(2ML ). 二、填空题

1. 2

38m kg ?;2. =L 122275-??s m kg ,

=v s m /13, 提示:质点对轴的角动量p r L

?=,大小为1

2

2275705.65-??=??=s m kg L ,各自收绳时,系统的角动量是守恒的,故可得人的速度为=v s m /13; 3. 3

ωω=,提示:系统作用过程中,合外力矩为零,角动量守恒,ωω1013J J =;

三、计算题

1. 解: 摩擦阻力矩m N gr m M f ?==04.01

系上m 2物体后,

a m T g m 22=-

βJ M Tr f =- N T 5.0≈

βr a = 249.1m kg J ?≈ 2

2t S a =

2. 解:设小球碰撞前速度为v ω?=

-23

1

)(ML a L mv 2/L a = 2

)

(3ML

a L mv -=ω )cos 1(2

312122θω-=?L

Mg ML 解出 3)

cos 1()(θ--=

Lg a L m ML v

化简得到, 3

)

cos 1(2θ-=Lg m

M v

角动量守恒定理及其应用

角动量守恒定理及其应用 摘要:角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量;力矩;角动量守恒;矢量;转动;应用 Angular momentum conservation theorems and their application Abstract:Angular momentum to the concept of classical physics there is an important component of angular momentum of research mainly for the rotation, and may extend to the quantum mechanics and physical and in the astrophysical. angular momentum in the categorical system of the present moment, the angular velocity, the concepts of angular acceleration and co-ordination of the particle, the quality of heart, symmetry, and concepts. Key words:Angular momentum;Torque; Conservation of angular momentum; V ector; Turn; application. 引言 在研究物体运动时,人们经常可以遇到质点或质点系绕某一定点或轴线运动的情况。例如太阳系中行星绕太阳的公转、月球绕地球的运转、物体绕某一定轴的转动等,在这类运动中,运动物体速度的大小和方向都在不断变化,因而其动量也在不断变化。在行星绕日运动中,行星受指向太阳的向心力作用,其运动满足角动量守恒。我们很难用动量和动量守恒定律揭示这类运动的规律,但是引入角动量和角动量守恒定律后,则可较为简单地描述这类运动。 角动量可从另一侧面反映物体运动的规律。事实上,角动量不但能描述宏观物体的运动,而且在近代物理理论中,角动量对于表征状态也必不可少。角动量守恒定律在经典物理学、运动生物学、航空航天技术等领域中的应用非常广泛。角动量在20世纪已成为继动量和能量之外的力学中的重要概念之一。

论述角动量守恒定律及应用

论述角动量守恒定律及应用 李曜男,郝三强 (中国地质大学(武汉)工程学院武汉442000) 摘要:简要介绍角动量守恒定律以及其在生活,工程,科学方面的运用。 关键词:角动量守恒定律,应用。 引言:角动量守恒是物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。在现实生活之中,也有许多方面运用到了角动量守恒定律。本文会较少角动量守恒定律在生活,工程,科学研究之中的应用。 正文:1.角动量:角动量也称为动量矩,它常用于描述转动运动。对于指点在有心力场中的运动,例如,天体的运动,原子中电子的运动等,角动量是非常重要的物理量。角动量反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律[1]之一,开普勒第二定律。一个不受 角动量原理图 外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。 2.角动量定理:(angular momentum)也称动量矩定理。 表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间

物理论文角动量守恒及其应用

物理论文角动量守恒及 其应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

物理小论文 ———角动量守恒及其应用 班级:自动化一班姓名:xxxx 学号:xxxxxxxxx 摘要:角动量及其规律是从牛顿定律基础上派生出来的又一重要结果.角动量定理对质点及质点系都成立。在一些体育运动及猫的下落问题、与气象有关的自然现象中都会用到角动量守恒。角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量守恒物理学应用 一、理论基础 二、相关定律公式:M=Jdw/dt=dL/dt L=Jw 若M=0 则L=Lo 对于绕定轴转动刚体的合外力矩M=d/dt(Jw) 上式表明,刚体绕定轴转动时,作用于刚体的合外力矩等于刚体绕此定轴的角动量随时间的变化率。当作用于在质点上的合力矩等于零时,由质点的角动量定理可以导出质点的角动量守恒定律。同样,当作用在绕定轴转动的刚体上的合外力矩等于零时看,由角动量定理可以导出角动量守恒定律。当合外力矩为零时,可得:Jw=恒量

这就是说,如果物体所受的合外力矩等于零,或者不受和外力矩的作用,物体的角动量保持不变,这个结论叫做角动量守恒定律。 三、角动量守恒的判断 当外力对参考点的力矩为零,即∑Mi=0时,质点或质点系对该参考点的角动量守恒。有四种情况可判断角动量守恒: ①质点或质点系不受外力。 ②所有外力通过参考点。 ③每个外力的力矩不为零,但外力矩的矢量和为零。甚至某一方向上的外力矩为零,则在这一方向上满足角动量守恒。 ④内力对参考点的力矩远大于外力对参考点的合力矩,即内力矩对质点系内各质点运动的影响远超过外力矩的影响,角动量近似守恒。 四、联系实际 (1)人体作为一个一个质点系,在运动过程中也应遵循角动量定理。人体脱离地面和运动器械后。仅受重力作用,故人体相对质心角动量守恒。利用人体形状可变的性质,应用角动量守恒定律就可做出千姿百态的动作出来。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量的改变而变,但两者之乘积却保持不变。在花样滑冰中,运动员利用身体的伸缩改变自身的转动惯量,以改变绕自身竖直轴的角速度。 (3)猫在自由下落中的翻身与角动量守恒 让一只猫四脚朝天的下落,它总能在落地前翻身180度,变成四脚着地的安全姿势着陆。猫在自由下落过程中唯一受到的外力便是重力,而重力对猫的质心没有力矩,故

《大学物理》习题册题目及答案第3单元 角动量守恒定律

第3单元 角动量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m (B) R GMm (C) R G Mm (D) R GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置 (D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。 [ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将 绳从小孔缓慢往下拉,则物体 动能不变,动量改变。 动量不变,动能改变。 角动量不变,动量不变。 角动量改变,动量改变。 角动量不变,动能、动量都改变。 [ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。 [ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定 [ A ]6.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 [ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大 (B) 不变 (C) 减小 (D) 不能确定 二 填空题 1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_ 。 2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1 -减到10πrad·s 1 -,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____ 的时间才能停止转动。 3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。 开始杆与水平方向成某一角度θ,处于静止状态,如图所示。释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。 4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2 /5.2s rad 。 5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____

开普勒定律的推导及应用

开普勒定律的推导及应用 江苏南京师范大学物科院王勇江苏海安曲塘中学周延怀 随着人类航天技术的飞速发展和我国嫦娥绕月卫星的发射成功,以天体运动为载体的问题将成为今后考查热点。在现行的高中物理教材中主要引用了开普勒三大定律来描述了天体的运动的规律,这三条定律的主要内容如下: (1)所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值。 至于行星绕太阳的轨道为何是椭圆以及中的常量C与那些量相关并无说明。为了更深入的理解天体和人造卫星的运行规律,本文将以椭圆的性质为基础从理论上推导开普勒定律。 一、开普勒第一定律 1.地球运行的特点 (1)由于地球始终绕太阳运动,则太阳对地球的万有引力的力矩始终为零,所以地球在运动过程中角动量守恒。 (2)若把太阳与地球当作一个系统,由于万有引力为保守力且无外力作用在这个系统上,所以系统机械能守恒。 2.地球运行轨迹分析 地球在有心力场中作平面运动且万有引力的作用线始终通过太阳,所以建立如图所示的极坐标系,则P点坐标为(r,θ)。 若太阳质量为M,地球质量为m,极径为r时地球运行的运行速度为v。 当地球的运行速度与极径r垂直时,则地球运行过程中的角动量(1) 若取无穷远处为引力势能的零参考点,则引力势能,地球在运行过程中的机械能(2) (1)式代入(2)式得:(3)

由式(3)得:(4) 由式(4)可知,当地球的运行速度与极径r垂直时,地球运行的极径r有两解,由于初始假设地球的运行速度与极径垂直,所以r为地球处在近日点和远日点距太阳的距离。考 虑到地球的这两个位置在极坐标系中分别相当于和,可把式(4)中的号改写为更普遍的形式极坐标方程。 则地球的运行轨迹方程为(5) (5)式与圆锥曲线的极坐标方程吻合,其中(p为 决定圆锥曲线的开口),(e为偏心率,决定运行轨迹的形状),所以地球的运行轨迹为圆锥曲线。由于地球绕太阳运动时E<0,则圆锥曲线的偏心率,所 以地球绕太阳运行的轨迹为椭圆。 3.人造星体的变轨 由于运载火箭发射能力的局限,人造星体往往不能直接由火箭送入最终运行的空间轨道,若要使人造星体到达预定的轨道,要在地面跟踪测控网的跟踪测控下,选择合适时机向卫星上的发动机发出点火指令使人造星体的速度增加(机械能增加),进而达到改变卫星运行轨 道的目的。如图所示最初人造星体直接由火箭送入近地轨道1,此时,偏 心率e=0,人造星体运行的轨迹为圆;当到达A点时,人造星体发动机点火,此时

角动量守恒及其应用-(2649)

角动量守恒及其应用 李泽林,过程装备与控制工程,10110902。摘 要:掌握角动量守恒定律,并通过习题深入分析其应用和注意事 项。 关键词:刚体,角动量,转动惯量,惯性系。 在研究“质点或质点系绕某一定点或轴线运动”这类问题时, 常常利用“角动量守恒定律”来处理此类问题。但是如何正确应用 角动量定律解题尤为重要。本文通过对角动量守恒定律详细的推导, 加深对定律的理解,以及通过习题来深入分析角动量守恒的正确应 用。 1角动量守恒定律 1. 1 质点对参考点的角动量守恒定律P 如图 1 所示,质点 m的动量为 P,相对于参考α 点 O的角动量为 L,其值L r p sin r ③ m ,其中α 是质 点的动量与质点相对参考点0的位置矢量r O图 1的夹 角。其角动量的变化量L 等于外力的冲量矩M t(M 为外力对参 考点 O的力矩),即dL M dt 。若 M=0,得 L =0,即质点对参 考点 O的角动量守恒。 1. 2 质点系对参考点的角动量守恒定律 由 n 个质点组成的质点系,且处于惯性系中,可以推导出作v 2gh 用于各质点诸力对参考点的外力矩的冲量点系对该参考点的角动量的变化量,即 M i t,仍等于质L M i t 。同样当

M i 0 时(即质点系的和外力矩为零),质点系对该参考点的角动 量守恒。 1. 3 角动量守恒的判断 当外力对参考点的力矩为零, 即M i 0 时,质点或质点系对该参 考点的角动量守恒。有四种情况可 判断角动量守恒:①质点或质点系不受外力。②所有外力通过参考 点。③每个外力的力矩不为零,但外力矩的矢量和为零。④内力对 参考点的力矩远大于外力对参考点的合力矩,即内力矩对质点系内 各质点运动的影响远超过外力矩的影响,角动量近似守恒。 2角动量守恒定律的应用 2.1开普勒第二定律,即行星对太阳的矢径在相等的时间间隔 内扫过相等大小的面积 如图,设行星的质量为 m,它相对太阳的位矢为 r ,速度为 v,走过的路程为 s。行星受到太阳对它的万有引力,方向沿着它和太

角动量守恒定律

第四节 角动量守恒定律 一、角动量 1. 质点对定点的角动量 (1)v m r p r L ?=?= (力矩:F r M ?=) (2)说明:r 指质点相对于固定点O 的位置矢量;指质点的动量;v 指质点的速度 (3)大小:=L αsin rmv , (4)方向:(右手法则)v r ?向 (5)单位:12-s kgm (6)量纲:12-T ML 2. 刚体对定轴的角动量 (将刚体分解为质点组)∑∑=???==????=???=ωI w r m L L w r m v r m L i i i oz i i i i i i 22 ω I L = 此式对质点也适用 3. 角动量定理: (1) 公式:dt dL dt I d dt d I I M ====)(ωωβ 或dL dt M =? (2)文字表述:刚体对某一给定转轴或点的角动量对时间的变化率等于刚体所受到的对同一转轴或点的和外力矩的大小。 (3)说明:dt M ?称冲量矩,表示力矩的时间积累效果,单位:牛·米·秒 若何外力矩M=0,则L=IW=恒量 4. 转动定律的普遍形式 dt dI dt d I dt L d M ωω +== 二、角动量守恒 1、角动量守恒的条件:质点所受相对于参考点的力矩的矢量和等于零;在有心 力作用下,质点相对于力心的角动量守恒。 2、应用:

例1:花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快;再如:跳水运动员的“团身--展体”动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水。 3、习题: 1.质点做直线运动时,其角动量( )(填一定或不一定)为零。 答案: 不一定 2.一质点做直线运动,在直线外任选一点O为参考点,若该质点做匀速直线运动,则它相对于点O的角动量( )常量;若该质点做匀加速直线运动,则它相对于点O的角动量( )常量,角动量的变化率( )常量。(三空均填是或不是)答案: 是; 不是; 是。 3.一质点做匀速圆周运动,在运动过程中,质点的动量( ),质点相对于圆心的角动量( )。(两空均填守恒或不守恒) 答案:不守恒;守恒。 4.一颗人造地球卫星的近地点高度为h 1 ,速率为υ 1 ,远地点高度为h 2, 已知地 球半径为R.求卫星在远地点时的速率υ 2.. 解:因为卫星所受地球引力的作用线通过地球中心,所以卫星对地球中心的角动量守恒。 根据角动量守恒定律得 r 1 mυ 1 = r 2 mυ 2 且r 1=R+ h 1 r 2 =R+ h 2 解得υ 2 =(R+ h 1 /R+ h 2 )υ 1

角动量守恒定律在物理竞赛中应用

“角动量及角动量守恒定律的应用 角动量(angular momentum) 在物理学中是与物体到原点的位移和动量相关 的物理量。 概念:转动物体的转动惯量 (rotational inertia) 和角速度 (angular velocity) 的乘积叫做它的角动量。 L = Iω I 是转动惯量,ω(欧米伽)是角速度。 角动量在经典力学中表示为到原点的位移和动量的叉乘,通常写做L 。角动量是矢量。 L= r×p 其中,r表示质点到旋转中心(轴心)的距离(可以理解为半径),L表示角动量。p 表示动量。 角动量的方向:角动量是r(参考点到质点的距离矢量)叉乘动量,是两个矢量的叉乘,在右手坐标系里遵循右手螺旋法,即右手四指指向r的方向,转过一个小于180度的平面角后四指指向动量的方向,则大拇指所指的方向就是角动量的方向。 在不受外力矩作用时,体系的角动量是守恒的。 角动量在量子力学中与角度是一对共轭物理量。 角动量是一种特殊的动量,它的大小取决于转动的速率和转动物体的质量分布。

角动量守恒定律(conservation of angular momentum,law of) 物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。 反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。 角动量定理和角动量守恒定律: ⑴质点角动量:若质点绕某固定点(轴)0作圆 周运动对0点

《角动量守恒定律》微课教学设计

龙源期刊网 https://www.doczj.com/doc/5618065583.html, 《角动量守恒定律》微课教学设计 作者:魏樱 来源:《知音励志·社科版》2016年第11期 摘要本文从教学背景、教学目标、教学重点、难点和关键点、教学方法、教具的选用、 教学过程等几个方面对《角动量守恒定律》微课的教学内容进行了分析和设计。 【关键词】微课教学设计;角动量守恒定律 1 教学背景 选用教材《物理学》是由徐建中主编的,由化学工业出版社出版的教育部高职高专公共课教材。“角动量守恒定律”是“刚体定轴转动”这一章的重点、难点内容。角动量和动量、能量一样是力学中最重要的概念之一。角动量守恒定律是自然界中的普遍规律之一,它在现代技术中有许多重要的应用。学好这部分知识对培养学生的分析问题能力,探索求真精神,以及对学生进行实践教育都有重要意义。本次微课利用视频、动画等现代化教学手段,对角动量守恒定律做专项讲授,希望通过本节内容的学习,会应用角动量守恒定律分析实际问题,不再觉得其抽象。 2 教学目标 掌握角动量守恒定律,明确守恒条件;能用角动量守恒定律解释相关的实际应用;培养学生类比学习的能力和观察、分析解决问题的能力;通过情景模拟和讨论增强了学生进行实践探索规律的意识;通过一些体育运动、航天技术与物理的结合教学,激发学生的爱国主义情操和努力学习的奋斗意识。 3 教学重点、难点和关键点 教学重点:角动量守恒定律和应用;教学难点:运用角动量守恒定律解决实际问题;教学关键点:能够在实际问题中判断角动量守恒定律是否适用,如果适用怎样分析解决实际问题。 4 教学方法 讲授法、讨论法、多媒体教学法、设疑法、实验法、情景法、类比法等。 (1)由于本节知识点较抽象,按常规方法很易让学生失去兴趣并难以理解。所以采用多媒体教学,这不仅可以提高课堂容量,更可以展示一些动画,更好去分析角动量守恒定律,来提升学生学习兴趣和学习主动性。

物理论文角动量守恒及其应用

物理小论文 ———角动量守恒及其应用 班级:自动化一班姓名:xxxx 学号:xxxxxxxxx 摘要:角动量及其规律是从牛顿定律基础上派生出来的又一重要结果.角动量定理对质点及质点系都成立。在一些体育运动及猫的下落问题、与气象有关的自然现象中都会用到角动量守恒。角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量守恒物理学应用 一、理论基础 二、相关定律公式:M=Jdw/dt=dL/dt L=Jw 若M=0 则L=Lo 对于绕定轴转动刚体的合外力矩M=d/dt(Jw) 上式表明,刚体绕定轴转动时,作用于刚体的合外力矩等于刚体绕此定轴的角动量随时间的变化率。当作用于在质点上的合力矩等于零时,由质点的角动量定理可以导出质点的角动量守恒定律。同样,当作用在绕定轴转动的刚体上的合外力矩等于零时看,由角动量定理可以导出角动量守恒定律。当合外力矩为零时,可得:Jw=恒量 这就是说,如果物体所受的合外力矩等于零,或者不受和外力矩的作用,物体的角动量保持不变,这个结论叫做角动量守恒定律。 三、角动量守恒的判断 当外力对参考点的力矩为零,即∑Mi=0时,质点或质点系对该参考点的角动量守恒。有四种情况可判断角动量守恒: ①质点或质点系不受外力。 ②所有外力通过参考点。 ③每个外力的力矩不为零,但外力矩的矢量和为零。甚至某一方向上的外力矩为

零,则在这一方向上满足角动量守恒。 ④内力对参考点的力矩远大于外力对参考点的合力矩,即内力矩对质点系内各质点运动的影响远超过外力矩的影响,角动量近似守恒。 四、联系实际 (1)人体作为一个一个质点系,在运动过程中也应遵循角动量定理。人体脱离地面和运动器械后。仅受重力作用,故人体相对质心角动量守恒。利用人体形状可变的性质,应用角动量守恒定律就可做出千姿百态的动作出来。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量的改变而变,但两者之乘积却保持不变。在花样滑冰中,运动员利用身体的伸缩改变自身的转动惯量,以改变绕自身竖直轴的角速度。 (3)猫在自由下落中的翻身与角动量守恒 让一只猫四脚朝天的下落,它总能在落地前翻身180度,变成四脚着地的安全姿势着陆。猫在自由下落过程中唯一受到的外力便是重力,而重力对猫的质心没有力矩,故猫在下落的过程中和外力矩为零。那么它如何获得这180度的角位移?人们很早就意识到猫此时不能当作一个刚体来其后又出现了双轴转动解释,意为猫先躬身,使前半身和后半身几乎成90角,然后其前半身与后半身分别旋转,但前后身旋转方向相反。猫身体前后两部分角动量大小可以相同,但符号相反。故其和角动量仍能和猫开始下降时一样,都为0。这样,对于猫整体而言,其角动量仍能保持不变。后来有人对猫的下落进行高速摄影,发现了双轴转动现象,此解释宣告成功。 (4)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。

角动量守恒定理及其应用

角动量守恒定理及其应用

角动量守恒定理及其应用 摘要:角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量;力矩;角动量守恒;矢量;转动;应用 Angular momentum conservation theorems and their application Abstract:Angular momentum to the concept of classical physics there is an important component of angular momentum of research mainly for the rotation, and may extend to the quantum mechanics and physical and in the astrophysical. angular momentum in the categorical system of the present moment, the angular velocity, the concepts of angular acceleration and co-ordination of the particle, the quality of heart, symmetry, and concepts. Key words:Angular momentum;Torque; Conservation of angular momentum; Vector; Turn; application. 引言 在研究物体运动时,人们经常可以遇到质点或质点系绕某一定点或轴线运动的 情况。例如太阳系中行星绕太阳的公转、月球绕地球的运转、物体绕某一定轴的转动等,在这类运动中,运动物体速度的大小和方向都在不断变化,因而其动量也在不 断变化。在行星绕日运动中,行星受指向太阳的向心力作用,其运动满足角动量守恒。我们很难用动量和动量守恒定律揭示这类运动的规律,但是引入角动量和角动量守 恒定律后,则可较为简单地描述这类运动。 角动量可从另一侧面反映物体运动的规律。事实上,角动量不但能描述宏观物体的运动,而且在近代物理理论中,角动量对于表征状态也必不可少。角动量守恒定律在经典物理学、运动生物学、航空航天技术等领域中的应用非常广泛。角动量在20

角动量守恒定律

《大学物理》作业 No.4 角动量守恒定律 一、选择题 1.已知地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ ](A) (B) (C) (D) 2.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? [ ](A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大。 3. 两个均质圆盘A和B密度分别为和,若>,但两圆盘质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为和,则 [ ](A) > (B) > (C) = (D) 、哪个大,不能确定 4.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: [ ](A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。 (2) 作用力和反作用力对同一轴的力矩之和必为零。 (3) 质量相等、形状和大小不同的两个物体,在相同力矩的作用下,它 们的角加速度一定相等。 在上述说法中,

角动量不守恒的证明

大统一(243) 理论探索 质点系动量不守恒、角动量不守恒的证明 质点系动量不守恒、角动量不守恒的证明(2) 质点系动量不守恒、角动量不守恒的证明 原创作者 马天平(地址 新郑市) (2015-03-07) 假设质量m2的人,伸开一只手拿着质量m1的铁球静止在自由空间(或者惯性系S),当人横向推铁球,人和铁球组成的系统,会遵守角动量守恒定律和动量守恒定律吗? 如图1(人推铁球)。(其中人的图片来源于网络上的截图)。 分析: 1、 在惯性系S系中,系统的初始角动量为零、初始动量为零。 M初=0 合外力=0 2、 如图1(人推铁球),在惯性系S系中(或者以惯性系S原点为参照),假设手给铁球(的质心)推力F1,则手受到反作用力F2=-F1, 根据平行轴定理,把手受到的力F2平移到人的两肩中点c2为F3,则F3﹤-F2, 然后再次把F2平移到人的质心c3为F4,则F4﹤F3 所以,F4﹤-F1、F4≠ -F1 根据平行轴定理,把手受到的力F2,平移到人的质心c3为力F4,则

F4﹤-F1 所以, F4+F1 ≠0 因此,在惯性系S系中,人推铁球,使系统的内力矢量和不等于零,说明质点系的运动定理不成立。 3、 由于动量守恒定律来源于牛顿第三定律,所以,根据,F4﹤-F1、F4+F1 ≠0,说明系统违反动量守恒定律。系统违反动量守恒定律,说明质点系的运动定理不成立。 4、 如图1(人推铁球),以惯性系S原点为参照,铁球的质心(或者m1)受到推力F1,人的质心(或者m2)受受到力F4,假设作用时间为t, 由于F4≠ -F1,所以, F4×t ≠ -F1×t 所以 F4×t + F1×t ≠ 0 F4×t + F1×t ≠ M初 因此,系统违反动量守恒定律。 5、 在惯性系S系中,以惯性系S原点为参照点,如图1(人推铁球),显然,矢径r4的大小小于矢径 r1的大小。 由于F4﹤-F1 ,r4的大小小于 r1的大小。 所以, F4×r4 ≠-F1×r1 因此,人的质心受到的力矩,与铁球质心受到的力矩,矢量和不为零。 所以,系统受到的力矩矢量和不为零,违反质点系的角动量守恒定律、违反反质点系的角动量定理。 结论: 内力力矩可以改变系统的角动量和动量。 质点系的角动量守恒定律存在例外、质点系的动量守恒定律存在例外、质点系的角动量定理存在例外、质点系的动量定理存在例外、质点系的动量矩守恒定律存在例外、质点系的运动定理存在例外。 00000000000000000========= 质点系动量不守恒、角动量不守恒的证明(2) 原创作者 马天平(地址 新郑市) (2015-03-07) (根据2015-02-20的文章“证明角动量不守恒”改编) 假设质量分别为m1=m2 的A和B两个人静止在自由空间,A的一只手抓着B的肩部,A 和B组成系统,系统质心的初始位置为C(作为参考点C),从某时刻开始,A横向的推B、或

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

直升机演示角动量守恒实验

直升飞机演示角动量守恒 【实验目的】用直升飞机模型,演示角动量守恒和角动量原理。 【操作步骤】 1.打开位于电源箱后方的电源开关; 2.调节螺旋桨控制旋钮,观察到机身和螺旋桨沿着相反的方向旋转起来;加大(或减小) 螺旋桨转速,机身的转速也将随之加大(或减小); 3.再调节尾翼控制旋钮,(注意开关的方向与机身螺旋桨控制方向一致),尾翼螺旋桨旋转 起来,机身转速缓慢;适当调整尾翼转速,使机身停止转动。 4.关闭尾翼螺旋桨,改变机身螺旋桨控制开关的方向,使之反转,机身旋转的方向也随之 反向; 5.再次调节尾翼螺旋桨控制按钮,(注意其开关的方向也反向),调整唯一螺旋桨转速,直 至机身不再旋转; 6.实验结束,速度调节逆时针至最小,关掉电源。 【注意事项】

1.两个螺旋桨控制开关的方向一定要一致,否则不但不能使机身平衡,反而会使机身越转 越快; 2.机身螺旋桨的速度不要过大,否则尾翼的力矩将不能平衡机身的转动; 3.开机时间不宜过长,以免烧坏设备; 4.实验过程中切勿触碰飞机模型,以免损坏。 【原理展示】 直升机是一个由主螺旋桨与机身组成的二体系统。系统没有受到对转轴的合外力矩,该系统对于竖直轴的角动量应保持不变。飞机静止时,系统重的角动量为零。主螺旋浆转动,产生一个对轴的角动量,遵循角动量守恒定律,系统的角动量必须保持为零,因此机身一定要沿相反的方向转动。为了制止机身转动,就要开动尾翼螺旋桨,尾翼螺旋桨推动空气,产生一个力矩,由角动量原理,该力矩可以组织机身的转动。由于直升机尾巴较长,力臂较大,因此尾翼螺旋桨只需要较小的功率即可平衡机身的转动。 【实验拓展】 1.有的直升飞机装有双螺旋浆,请对它的作用和原理做出解释; 2.举出不少于3个日常生活中角动量守恒的应用实例。 回答:1:后背上有两个螺旋桨的它转动的方向不同,如果只有一个螺旋桨那么由于力的相互作用机身会不停的向螺旋桨旋转的反方向旋转,于是为了维持机身的稳定性用另一个螺旋桨抵消那个螺旋桨给机身的力(尾巴带螺旋桨的同样是这个道理).

角动量守恒定律演示教学

第四章 角动量守恒定律 4-1 质量为1.0 kg 的质点沿着由 ()34323r t i t t j =+-r r r 决定的曲线运动,其中t 是时间,单位为s ,r r 的单位为m 。求此质点在 t = 1.0 s 时所受的相对坐标原点O 的力矩。 解:()34323t i t t j γ=+-r r r Q ()232649d r v t i t t j dt ∴==+-r r r r ()()34323223649l mv t i t t j m t i t t j γ????=?=+-?+-????r r r r r r r ()()34234324963m t t t k t t t k ??=---??r r () 666862m t t k t mk =-=r r 551212dl M t mk t k dt ===r u u r r r ()0.1m kg = 1.012.0t s M N m ==u u r g 当时: 方向沿z 轴方向 12.0kN m =r r g 或: M 4-2 质量为1.0 kg 的质点在力()()2332F t i t j =-+-u r r r 的作用下运动,其中t 是时间,单位为s ,F 的 单位是N ,质点在t = 0 时位于坐标原点,且速度等于零。求此质点在 t = 2.0 s 时所受的相对坐标原点O 的力矩。 解:由牛顿第二定律: dv F m dt =r u r ()()000112332v t t dv F dt t i t j dt m m ??∴=?=-+-?????r u r r r 解得:()223322mv t t i t t j ??=-+- ??? r r r 而:d r v dt =r r ()()32320111312332322t r t i t j dt t t i t t j m m ????????∴=-+-=-+- ? ??????????? ?r r r r r

角动量守恒定律教学文案

角动量守恒定律

第四章 角动量守恒定律 4-1 质量为1.0 kg 的质点沿着由 ()34323r t i t t j =+-r r r 决定的曲线运动,其中t 是时间,单位为s ,r r 的单位为m 。求此质点在 t = 1.0 s 时所受的相对坐标原点O 的力矩。 解:()34323t i t t j γ=+-r r r Q ()232649d r v t i t t j dt ∴==+-r r r r ()()34323223649l mv t i t t j m t i t t j γ????=?=+-?+-????r r r r r r r ()()34234324963m t t t k t t t k ??=---??r r () 666862m t t k t mk =-=r r 551212dl M t mk t k dt ===r u u r r r ()0.1m kg = 1.012.0t s M N m ==u u r g 当时: 方向沿z 轴方向 12.0kN m =r r g 或: M 4-2 质量为1.0 kg 的质点在力()()2332F t i t j =-+-u r r r 的作用下运动,其中t 是时间,单位为s ,F 的单位是N ,质点在t = 0 时位于坐标原点,且速度等于零。求此质点在 t = 2.0 s 时所受的相对坐标原点O 的力矩。 解:由牛顿第二定律: dv F m dt =r u r ()()000112332v t t dv F dt t i t j dt m m ??∴=?=-+-?????r u r r r 解得:()223322mv t t i t t j ??=-+- ??? r r r 而:d r v dt =r r ()()32320111312332322t r t i t j dt t t i t t j m m ????????∴=-+-=-+- ? ??????????? ?r r r r r

角动量守恒在日常生活中的应用论文

角动量守恒在日常生活中的应用 大家也许小时候都有过一个疑问:人们走路的时候为什么要甩手呢?为什么如果走顺拐了会感觉特别别扭呢?一个常见的解释是,为了保持身体平衡。这种解释了和没解释没什么区别的答案是永远正确的,问题是甩手到底是怎么保持身体平衡的? 原来这一切都是我们大学生所熟知的角动量以及动量守恒的原因,很神奇的是原来用动量守恒可以解决很复杂的问题,但是却用了最简单的方法。下面就让我们来具体了解一下什么是角动量以及什么是角动量守恒,相信我们大家都会爱益匪浅的。 什么是角动量呢?对于一个质量为 m 质点,以任意一条直线作为参考轴,设被研究的质点到这条轴的距离为 r ,如果质点垂直于r 的方向的速度为 v , 那么这个质点(相对于这条参考轴)的角动量则为 v m r L ?= 。如果被研究的 物体不是质点,例如是一个人,那么他整个的角动量就是他身上所有质点的角动量之和。就是角动量,可以看出角动量也是一个矢量,却也两个矢量的积,这便是我们常说的矢积。 知道了什么是角动量之后,我们就可以通过简单的推导立刻得出角动量定理,但前提是大家得对这部分知识有一定程度上的理解,这样才可以。物体的角动量变化率等于它所受的外力矩(大家应该记得力矩是什么吧,就是 r 乘以垂直于 r 方向的力)。因此,倘若系统没有外力矩作用,那么角动量守恒,这就是我们常说的角动量守恒,推导很简单,但我想它的使用并不一定简单,需要我们的细心掌握。这种情况是十分多见的,例如一个旋转着的陀螺,为什么它不会很容易倒下呢?选取陀螺的转轴为参考轴,可以看到,它是不受外力矩的,因此它的角动量守恒,在理想情况下它将一直转下去,但是我们也知道这是不可能发生的。略微学过物理的人都知道动量可以写成 v m p = ,所以角动量p r L ?=。 这些便是角动量以及动量守恒,我们在大学的物理课上这是我们必须掌握的,所以做为一名理科学生我们应该知道它的重要性,我们也需要用它来解决很多的问题,比如我们一开始便提出的问题,人在行走的时候为什么要摆手,这样

相关主题
文本预览
相关文档 最新文档