当前位置:文档之家› 学习ANSYS的几点认识

学习ANSYS的几点认识

学习ANSYS的几点认识
学习ANSYS的几点认识

一学习ANSYS需要认识到的几点

相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS 分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:

(1)将ANSYS的学习紧密与工程力学专业结合起来

毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。

作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS 时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。

在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。

作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。建模能力的提高,需要掌握好的建模思想和技巧,但这只能治标不能治本,最重要的还是要培养较强看图纸的能力,而看图纸的能力培养一直是我们所忽视的,因此要加强对《现代工程图学》的回忆,最好能同时结合实际的操作。

以上几个方面,只是说明在ANSYS的过程中,不要纯粹的把ANSYS当作一门功课来学,这样是不可能学好ANSYS的,而要针对问题来学,特别是遇到的新问题,首先要看它涉及到那些理论知识,最好能作到有所了解,然后与ANSYS相关设置结合起来,作到心中有数,不至于遇到某些参数设置时,没一点概念,不知道如何下手。工程力学专业更多的偏向于理论,往往觉得学了那么多的力学理论知识没什么用,不知道将来自己能作什么,而学ANSYS实际起到了沟通理论与实践的桥梁作用,使你能够感到所学的知识都能用上,甚至激发出对本专业的热爱。

(2)多问多思考多积累经验

学习ANSYS的过程实际上是一个不断解决问题的过程,问题遇到的越多,解决的越多,实际运用ANNSYS的能力才会越高。对于初学者,必将会遇到许许多多的问题,对遇到的问题最好能记下来,认真思考,逐个解决,积累经验。只有这样才会印象深刻,避免以后犯类似的错误,即使遇到也能很快解决。因此,建议一开始接触ANSYS就要注意以下三点:

第一,要多问,切记不要不懂就问。在使用ANSYS处理具体的问题时,虽然会遇到大量ERROR提示,实际上,其中许多ERROR经过自己的思考是能够解决的简单问题,只是由于缺乏经验才感觉好难。因此,首先一定要自己思考,实在自己解决不了的问题才去问老师,在老师帮你解决的问题的过程中,去享受恍然大悟的感觉。

第二,要有耐心,不要郁闷,多思考。对初学者而言,感觉ANSYS特别费时间,又作不出什么东西,没有成就感,容易产生心理疲劳,缺乏耐心。"苦中作乐"应是学ANSYS的人所必须保持的一种良好心态,往往就是那么一个ERROR要折磨你好几天,使问题没有任何进展,遇到这种情况要能调整自己的心态,坦然面对,要有耐心,针对问题积极思考,发现原因,坚信没有自己解决不了的问题,要能把解决问题当作一种乐趣,时刻让自己保持愉快的心情,真正当你对问题有突破性进展时,迎接的必定是巨大的成就感。

第三,注意经验的积累,不断总结经验。一方面,初学时,要注重自己经验的积累(前面两点说的就是这个问题),即在自己解决的问题中积累经验;另一方面,当灵活运用ANSYS的能力达到一定程度时,要注重积累别人的经验,把别人的经验为自己所用,使自己少走弯路,提高效率,方便自己问题的解决。对于ANSYS越学到后面就越感觉是一个经验问题,因为该懂得的基本都懂了,麻烦的就是一些参数的调试,需要的是用时间去摸索,对同一类型的问题,别人的参数已经调试好了,完全没有必要自己去调试,直接拿来用即可。(3)练习使用ANSYS最好直接找力学专业书后的习题来做

这一点与学习ANSYS的一般方法相背,我开始学ANSYS时也是照着书上现成的例子做,但照着书上的做就是做不出来,实在没有耐心,就干脆从书上(如材力,弹力)直接找些简单的习题来做。尽管简单,但每一步都需要自己思考,只有思考了的东西才能成为自己的东西,慢慢的自己解决的问题多了,运用ANSYS的能力提高相当明显,这可能是我无意中对学ANSYS在方法上的一点创新吧。我觉得直接从书上找习题做有以下好处:

第一,从书上找习题练习是一种更加主动的学习方法,由于整个分析过程都要独立思考,实际上比照着书上练习难度更大。对初学者来说,照着书上练习很难理解为什么要这么做,因此,尽管做出来了,但以后遇到类似问题可能还是不知道。

第二,书上现成的例子基本上是非常经典的,是不可能有错的,一旦需要独立解决问题时,由于没有对错误的处理经验,遇到错误还是得要从头摸索,可以说,ANSYS的使用过程就是一个解决ERROR的过程,ERROR实际上提供了问题的解决思路,而自己找问题做,由于水平并不高,必将会遇到大量的ERROR,对这些ERROR的解决,经验的积累就是ANSYS运用能力的提高。

第三,将书上的习题用ANSYS来实现,可以将习题的理论结果和ANSYS计算的数值结果进行对比,验证ANSYS计算结果的正确性,比较两者结果的差异,分析产生差异的原因,加深对理论的理解,这是照着现成的例子练习所作不到的。

当然,并不就说书上的例子毫无用处,多多看下书上的例子可以对ANSYS的整个分析问题的过程有比较清楚的了解,还可以借鉴一些处理问题的方法。

(四)保持带着问题去看ANSYS是怎样处理相关问题的良好习惯

可能平时在看关于ANSYS的参考书籍时,对其中如何处理各种复杂问题的部分,看起来觉得也并不是很难理解,而一旦要自己处理一个复杂的非线性问题时,就有点束手无策,不知道所分析的问题与书上的讲的是怎么相关的。说明要将书上的东西真正用到具体的问题中还不是一件容易的事情。带着问题去看ANSYS是怎样处理相关问题的部分,可能是解决以上问题的一个好方法:当着手分析一个复杂的问题时,首先要分析问题的特征,比如一个二维接触问题,就要分析它是不是轴对称,是直线接触还是曲线接触(三维问题:是平面接触还是曲面接触),接触状态如何等等,然后带着这些问题特征,将ANSYS书上相关的部分有对号入座的看书,一遇到与问题有关的介绍就其与实际问题联系起来重点思考,理解了书上东西的同时问题也就解决了,这才真正将书上的知识变成了自己的东西,比如上个问题,如果是轴对称,就需要设置KEYOPT(3),如果是曲线接触就要设置相应的关键字以消除初始渗透和初始间隙。可能就会有这样的感慨:原来书上已经写得很清楚了,以前看书的时候怎么就没什么印象了。

如果照着这种方法处理的问题多了的话,就会进一步体会到:其实,ANSYS的使用并不难,基本上是照着书上的说明一步一步作,并不需要思考多少问题,学ANSYS真正难得是将一个实际问题转化成一个ANSYS能够解决且容易解决的问题。这才是学习ANSYS所需要解决的一个核心问题,可以说其他一切问题都是围绕它而展开的。对于初学者而言,注重的是ANSYS的实际操作,而提高"将一个实际问题转化成一个ANSYS能够解决且容易解决的问题" 的能力是一直所忽视的,这可能是造成许多人花了很多时间学ANSYS,而实际应用能力却很难提高的一个重要原因。

(五)熟悉GUI操作之后再来使用命令流

ANSYS一个最大的优点是可以使用参数化的命令流,因而,学ANSYS最终应非常熟练的使用命令流,一方面,可以大大提高解决问题的效率;另一方面,只有熟悉命令流之后,才会更方便的与人交流问题。

老师一开始讲授ANSYS时往往把ANSYS吹得天昏地暗,其中一条必定是夸ANSYS的命令流是如何的方便,并且拿GUI与命令流大加对比一番。问题也确实如此,但对那些积极性相当高且有点好高骛远的同学可能就会产生误导:最终是要掌握命令流,学了GUI还去学命令流多麻烦诺,干脆直接学命令流算了,不是可以省很多事吗?如将这种想法付诸于实践的话往往是适得其反,不仅掌握命令流的效率底,而且GUI又不熟悉,结果使用ANSYS处理问题来就有点无所适从,两头用得都不爽。因此,初学者容易一心想着使用命令流,忽视对GUI操作的练习,难以认识到命令流与GUI的联系:没有对GUI的熟练操作要掌握好命令流是很难的,或者代价是很高的。

直接去学命令流之所以难,一个是命令太多,不易知道那些命令是常用的,那些是不常用的,我们只要掌握最常用的就足够了,而如果GUI使用得多的话,就会很清楚那些命令是常用的(实现的目的一样),以后掌握命令流就有了针对性;另一个是一个命令的参数太多,同一个命令,通过参数的变化可以对应不同的GUI操作,事先头脑里没有GUI印象的话,对参数的变化可能就没有很多的体会,难以加深对参数的理解。因此,建议初学者不用管命令,踏踏实实的熟悉GUI操作,当GUI操作达到一定程度后,再去掌握命令流就是一件很

容易的事情,当然也需要大量的练习。实际上,大多数使用者而言,基本上是将GUI操作与命令流结合起来使用,没有人会完全用命令流解决问题的,因为没有必要去记那么多命令,有些操作GUI用起来更加直观方便。一般而言,前处理熟悉使用命令流比较方便,求解控制里面使用GUI比较好。

此外,还有一点初学者也需注意,一开始学ANSYS主要是熟悉ANSYS软件,掌握处理问题的一般方法,不是用它来解决很复杂的问题来体现你的能力有多强,一心只想着找有难度的问题来着,往往容易被问题挂死在一棵树上而失去了整片森林。因此,最好多找些容易点的,涉及到不同类型问题的题来做练习。

二一些ANSYS的使用经验

ANSYS的使用主要是三个方面,前处理--建模与网格划分,加载设置求解,后处理,下面就前两方面谈一下自己的使用经验。

(1)前处理--建模与网格划分

要提高建模能力,需要注意以下几点:

第一,建议不要使用自底向上的建模方法,而要使用自顶向下的建模方法,充分熟悉BLC4,CYLIND等几条直接生成图元的命令,通过这几条命令参数的变化,布尔操作的使用,工作平面的切割及其变换,可以得到所需的绝大部分实体模型,由于涉及的命令少,增加了使用的熟练程度,可以大大加快建模的效率。

第二,对于比较复杂的模型,一开始就要在局部坐标下建立,以方便模型的移动,在分工合作将模型组合起来时,优势特别明显,同时,图纸中有几个定位尺寸,一开始就要定义几个局部坐标,在建模的过程中可避免尺寸的换算。

第三,注重建模思想的总结,好的建模思想往往能起到事半功倍的效果,比如说,一个二维的塑性成型问题,有三个部分,凸模,凹模,胚料,上下模具如何建模比较简单了,一个一个建立吗?完全用不着,只要建出凸凹模具的吻合线,用此线分割某个面积,然后将凹模上移即可。

第四,对于面网格划分,不需要考虑映射条件,直接对整个模型使用以下命令,MSHAPE,0,2D MSHKEY,2 ESIZE,SIZE 控制单元的大小,保证长边上产生单元的大小与短边上产生单元的大小基本相等,绝大部分面都能生成非常规则的四边形网格,对于三维的壳单元,麻烦一点的就是给面赋于实常数,这可以通过充分使用选择命令,将实常数相同的面分别选出来,用AATT,REAL,MAT,赋于属性即可。

第五,对于体网格划分,要得到比较漂亮的网格,需要使用扫掠网格划分,而扫掠需要满足严格的扫掠条件,因此,复杂的三维实体模型划分网格是一件比较艰辛的工作,需要对模型反复的修改,以满足扫掠条件,或者一开始建模就要考虑到后面的网格划分;体单元大小的控制也是一个比较麻烦的事情,一般要对线生成单元的分数进行控制,要提高划分效率,需要对选择命令相当熟悉;值得注意的是,在生成网格时,应依次生成单元,即一个接着一个划分,否则,可能会发现有些体满足扫掠的条件却不能生成扫掠网格。

(2)加载求解

对于有限元模型的加载,相对而言是一件比较简单的工作,但当施加载荷或边界条件的面比较多时,需要使用选择命令将这些面全部选出来,以保证施加的载荷和边界条件的正确性。

在ANSYS求解过程中,有时发现,程序并没有错误提示,但结果并不合理,这就需要有一定的力学理论基础来分析问题,运用一些技巧以加快问题的解决。对于非线性分析,一般都是非常耗时的,特别是当模型比较复杂时,怎样节约机时就显得尤为重要。当一个非线性问题求解开始后,不用让程序求解完后,发现结果不对,修改参数,又重新计算。而应该时刻观察求解的收敛情况,如果程序出现不收敛的情况,应终止程序,查看应力,变形,等结果,以调整相关设置;即使程序收敛,当程序计算到一定程度也要终止程序观看结果,一方面可能模型有问题,另一方面边界条件不对,特别是计算子模型时,数据输入的工作量大,边界位移条件出错的可能性很大,因而要根据变形结果来及时纠正数据,以免浪费机时,如果结果符合预期的话,可通过重启动来从终止的点开始计算。下面举两个例子说明:在做非均匀材料拉伸模拟材料颈缩现象的有限元数值计算时,对一个标准试件,一端固定,另一端加一个X方向的位移,结果发现在施加X方向的位移的一排节点产生了很大的Y方向位移,使得节点依附的单元变形十分扭曲,导致程序不收敛而终止,而中间的单元并没有太多变化。显然,可以分析在实验当中施加X方向的位移的一排节点是不应有Y方向的位移的,为了与实验相符应消除Y方向的位移,可同时施加一个Y方向的零约束,重新计算,结果得到了比较理想的颈缩现象,并可清楚的看到45度剪切带。

在做金属拉拔的塑性成型有限元模拟时,简化为一个二维的轴对称问题,相对于三维的接触问题而言是比较简单的了,建模,划网格都很顺利,求解时发现程序不收敛,就调参数和求解设置,基本上作到了该做的设置,该调的参数都试过了,程序照样不收敛,几乎到了快放弃的地步,没办法只好重新开始考虑,发现刚体只倒了一个角,而另一个倒角开始时认为没有必要倒,因此,试着重新倒角再计算,问题一下子迎刃而解,程序收敛相当快,有限元计算结果相当漂亮。

ANSYS新手入门学习心得

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

ANSYS学习心得

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

ANSYS常见警告信息相关解释

ANSYS常见警告信息相关解释 NO.0001、ESYS is not valid for line element. 原因:是因为我使用LATT的时候,把“--”的那个不小心填成了“1”。经过ANSYS的命令手册里说那是没有用的项目,但是根据我的理解,这些所谓的没有用的项目实际上都是ANSYS在为后续的版本留接口。对于LATT,实际上那个项目可能就是单元坐标系的设置。当我发现原因后,把1改成0——即使用全局直角坐标系,就没有WARNING了。当然,直接空白也没有问题。 NO.0002、使用*TREAD的时候,有的时候明明看文件好好的,可是却出现*TREAD end-of-file in data read.后来仔细检查,发现我TXT的数据文件里,分隔是采用TAB键分隔的。但是在最后一列后面,如果把鼠标点上去,发现数据后面还有一个空格键。于是,我把每个列最后多的空格键删除,,然后发现上面的信息就没有了。 NO.0003、Coefficient ratio exceeds1.0e8-Check results. 这个大概是跟收敛有关,但是我找不到具体的原因。我建立的一个桥梁分析模型,尽管我分析的结果完全符合我的力学概念判断,规律完全符合基本规律,数据也基本符合实际观测,但是却还是不断出现这个警告信息。有人知道这个信息是什么意思,怎么调试能消除吗? NO.0004、*TREAD end-of-file in data read txt中的表格数据不完整! NO.0005、No*CREATE for*END.The*END command is ignored 忘了写*END了吧。 NO.0006、Keypoint1is referenced by only one line.Improperly connected line set for AL command 两条线不共点,尝试nummrg命令 NO.0007、L1is not a recognized PREP7command,abbreviation,or macro.This command will be ignored 还没有进入prep7,先:/prep7 NO.0008、Keypoint2belongs to line4and cannot be moved 同一位置点2已经存在了,尝试对同位置的生成新点换个编号,比如1002 NO.0009、Shape testing revealed that32of the640new or modified elements violate shape warning limits.To review test results,please see the output file or issue the CHECK command. 单元形状奇异,在我的模型中6面体单元的三个边长差距较大,可忽略该错误。 NO.0010、用命令流建模的时候遇到的

ansys心得

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

ansys错误汇总大全-史上最全

ANSYS分析出现问题 NSYS error message 错误信息汇总 2011-10-19 12:57:12| 分类:ANSYS | 标签:ansys 错误error |举报|字号订阅以前很多的心得全丢了,现在把新遇到的error message及解决方法逐一添加如下: 1\ Too many expressions. 表达式太长,ansys要求一个表达式不要超过6个分段,比如以下不对 A22=y1*z2-y1*z3-y2*z1+y2*z3+y3*z1-y3*z2 有7个段 改为 A22=y1*z2-y1*z3-y2*z1+y2*z3+y3*z1 A22=A22-y3*z2 就行了 2\ No *DO trips needed, enter *ENDDO . 循环执行次数为0,说明下标的变化范围越界,就是形如下面的循环 *do,i,0,-1 .....

..... *enddo 3\ *** NOTE *** CP = 227.688 TIME= 12:30:54 One or more elements have become highly distorted. Excessive distortion of elements is usually a symptom indicating the need for corrective action elsewhere. Try incrementing the load more slowly (increase the number of substeps or decrease the time step size). You may need to improve your mesh to obtain elements with better aspect ratios. Also consider the behavior of materials, contact pairs, and/or constraint equations. If this message appears in the first iteration of first substep, be sure to perform element shape checking. 为什么上面的错误信息用深色底纹标出呢?原因很简单,上面的错误出现在非线性计算中意味着致命错误,说明计算无法收敛,遇到这个错误是非常头疼的,下面重点讨论这个问题的由来和解决办法。 1、错误信息的内容。这段英文的意思是:一个或多个单元出现严重扭曲。单元的过度扭曲通常意味着需要一些改进措施,比如:减缓载荷的施加速度(增加子步数或者减少时间步长),改进网格质量,同时考虑材料、接触和/或约束方程。

Ansys学习总结

5、ANSYS输出mnf文件 模型单位要统一,最好都适用国际单位米制的,那么弹性模量、密度也要统一单位。然后进行单元添加:solid45、beam4、mass21给beam4设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变) 给mass21设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变) 添加材料设置:包括两种材料,一种是实体需要的材料,即为应该模型材料。 一种就是需要刚度大但是质量轻的材料,一般用的是密度为1e-12,弹性模量比模型实体的高出5个数量级(这个数值对能否导成功有直接影响,可以进行试算,用高5个数量级保证了稳定输出)。 在attachpoint铰链位置添加两个keypoint,然后用mass21去划分网格。可以得到node 1、node2,然后对模型整体用solid45划分。现在要把这两个孔刚化,就需要用到刚性梁单元。 用beam4单元连接孔上每一个节点与孔中心节点(需要成为attachpoint的点)。 6、ansys中的add、glue、overlap的区别及联系 1、相加(add):相加是指对所有图元进行叠加,包含原是个图元的所有部分,生成一个新图元,各个原始图元的公共边界将被清除,形成一个单一的整体。在ansys的面相加中只能对共面的图元进行操作.

对两个已经存在的面进行相加操作 命令:aadd,na1,na2,na3,na4,na5,na6,na7,na8,na9 2)对两个已经存在的体进行相加操作命令: vadd,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9 3)对两条已经存在的线进行操作 命令:lcomb,nl1,nl2,keep keep表示保留进行相加操作的图元,deleted表示进行相加操作后删除原始图元。 2、搭接(overlap):搭接食指将分离的同阶图元转变为一个连续体,其中图元的所有重叠区域将独立成为一个图元。搭接与相加操作类似,但相加操作是由几个图元生成一个图元整体,而搭接则是由几个图元生成更多的图元,相交的部分则被分离出来。 1)、线和线之间进行搭接操作 命令:lovlap,nl1,nl2,nl3,nl4,nl5,nl6,nl7,nl8,nl9 2)、面和面之间进行搭接操作 命令:aovlap,na1,na2,na3,na4,na5,na6,na7,na8,na9 3)、体和体之间进行搭接操作 命令:vovlap,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9 3、粘结(glue)粘结操作是将多个图元组合成一个连续体,图元之间仅在公共边界处相连,其公共边界的维数低于原始图元一维。粘结操作与加操作类似,但不同的是这些图元之间仍然相互独立,只是在边界上连接。粘结操作通常还与搭接操作配合使用。

学习ansys的一些心得

学习ansys的一些心得 学习ansys的一些心得(送给初学者和没有盟币的兄弟) 1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot 2 标点的输入是在英文状态下,―,‖。 3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps 4 还不会环形阵列。 5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。 6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。 7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。 8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。 9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。 10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines. 11 Ansys中没有Undo命令.需及时保存数据库文件. Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界. 13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.

14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。 15 Ansys的模态分析是线型分析。任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。 16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain) 17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:7800 18 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options. 19 弹簧阻尼器单元:Combination-Spring damper 14. 20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。 21 1 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。 2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格,并且允许有较大的变形和相对滑动。典型实例:模拟插头插入插座里。 3 面-面接触:刚性面作为目标面,柔性面作为接触面。 22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps.

ANSYS错误提示及其含义

1 在Ansys中出现“Shape testing revealed that 450 of the 1500 new or modified elements violate shape warning limits.”,是什么原因造成的呢? 单元网格质量不够好,尽量用规则化网格,或者再较为细密一点。 2 在Ansys中,用Area Fillet对两空间曲面进行倒角时出现以下错误:Area 6 offset could not fully converge to offset distance 10. Maximum error between the two surfaces is 1% of offset distance.请问这是什么错误?怎么解决?其中一个是圆柱接管表面,一个是碟形封头表面。ansys的布尔操作能力比较弱。如果一定要在ansys里面做的话,那么你试试看先对线进行倒角,然后由倒角后的线形成倒角的面。建议最好用UG、PRO/E这类软件生成实体模型然后导入到ansys。 3在Ansys中,出现错误“There are 21 small equation solver pivot t erms。”,是否是在建立接触contact时出现的错误? 不是建立接触对的错误,一般是单元形状质量太差(例如有接近零度的锐角或者接近180度的钝角)造成small equation solver pivot terms 4在Ansys中,出现警告“SOLID45 wedges are recommended only in regions of relatively low stress gradients.”,是什么意思? "这只是一个警告,它告诉你:推荐SOLID45单元只用在应力梯度较低的区域。 它只是告诉你注意这个问题,如果应力梯度较高,则可能计算结果不可信。" 5ansys向adams导的过程中,出现如下问题“There is not enough memory for the Sparse Matrix Solver to proceed.Please shut down other applications that may be running or increase the virtual memory on your system and return ANSYS.Memory currently allocated for the Sparse Matrix Solver=50MB.Memory currently required for the Sparse Matrix Solver to continue=25MB”,是什么原因造成的? 不清楚你ansys导入adams过程中怎么还需要使用Sparse Matrix Solver(稀疏矩阵求解器)。估计是scrachmemery太低了,从ansys product launcher 进入设置内存,total workspace和dataspace的差就是scrachmemery。如:total workspace 1150MB,dataspace200MB,scrachmemery就是1150-200=950MB。 6在Ansys中,出现错误“error:element type 1 is PLANE42,which can't be used with the VMES command, meshing of volume 3 aborted.”,是什么意思? 意思是:单元类型1是PLANE42,不能使用划分体网格的命令VMES,划分体3中止。 改进办法:1修改单元类型为适合体网格的单元类型。如solid,或shell。2不使用VMES 命令,使用AMESH。 7在Ansys中,出现错误“error: key point 10 is referenced by only one line. Improperly connected line set for AL command.”,是什么意思?该怎么解决? 意思是:关键点10只在一条线上。不适合使用AL命令连接线。 AL命令是用线来定义面,而选择两条线可能只有两个关键点,因为关键点10不在线上,而定义面至少有三个点。 改进办法:再选一条线

ansys通用后处理器详解

第5章通用后处理器(POST1) 静力分析 5.1概述 使用POST1通用后处理器可观察整个模型或模型的一部分在某一时间点(或频率)上针对指定载荷组合时的结果。POST1有许多功能,包括从简单的图象显示到针对更为复杂数据操作的列表,如载荷工况的组合。 要进入ANSYS通用后处理器,输入/POST1命令(Main Menu>General Postproc). 5.2将数据结果读入数据库 POST1中第一步是将数据从结果文件读入数据库。要这样做,数据库中首先要有模型数据(节点,单元等)。若数据库中没有模型数据,输入RESUME命令(Utility Menu>File>Resume Jobname.db)读入数据文件Jobname.db。数据库包含的模型数据应该与计算模型相同,包括单元类型、节点、单元、单元实常数、材料特性和节点座标系。 注:数据库中被选来进行计算的节点和单元组应和模型中的节点和单元组属于相同组,否则会出现数据不匹配。有关数据不匹配的详细资料见5.2.2.3章。 一旦模型数据存在数据库中,输入SET,SUBSET或APPEND命令均可从结果文件中读入结果数据。 5.2.1 读入结果数据 输入SET命令(Main Menu>General PostProc>datatype),可在一特定的载荷条件下将整个模型的结果数据从结果文件中读入数据库,覆盖掉数据库中以前存在的数据。边界条件信息(约束和集中力)也被读入,但这仅在存在单元节点载荷或反作用力的情况下,详情请见OUTRES命令。若它们不存在,则不列出或显示边界条件,但约束和集中载荷可被处理器读入,而且表面载荷和体积载荷并不更新,并保持它们最后指定的值。如果表面载荷和体积载荷是使用表格指定的,则它们将依据当前的处理结果集,表格中相应的数据被读入。加载条件靠载荷步和子步或靠时间(或频率)来识别。命令或路径方式指定的变元可以识别读入数据库的数据。例如:SET,2,5读入结果,表示载荷步为2,子步为5。同理,SET,,,,,3.89表示时间为3.89时的结果(或频率为3.89,取决于所进行分析的类型)。若指定了尚无结果的时刻,程序将使用线性插值计算出该时刻的结果。 结果文件(Jobname.RST)中缺省的最大子步数为1000,超出该界限时,需要输入SET,Lstep,LAST引入第1000个载荷步,使用/CONFIG增加界限。 注:对于非线性分析,在时间点间进行插值常常会降低精度。因此,要使解答可用,务必在可求时间值处进行后处理。

(完整word版)ANSYS使用心得体会

ANSYS使用心得体会 本次结构力学课程设计是学习使用ANSYS软件对框架结构内力进行计算,在未学习该软件前,对于此类问题,通常会采用力矩分配法来进行计算,计算过程繁复,计算量大。导致过程缓慢。 通过对ANSYS软件的学习和了解,知道了它的一些明显的优点。 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对我们提出了很高的要求,一方面,需要我们有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要我们不断摸索出软件的使用经验不断总结以提高解决问题的效率。 刚开始接触ANSYS时,没有限元,单元,节点,形函数等的基本概念没有清楚的了解话,会感觉还没入门,只是在僵硬的模仿,即使已经了解了,必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 ANSYS在对结构力学的静力学分析非常方便,用来求解外载荷引起的位移、应力和力。静力分析很适合求解惯性和对结构的影响并不显著的问题。ANSYS 程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、膨胀、大变形、大应变及接触分析。 但是学习的过程是充满烦恼和惊喜的,因为总是会碰到许多的新问题,需要较好的耐心去解决这些问题,这是在学习过程中遇到的最大的难题。然而,在解决问题之后,就会有恍然大悟的喜悦,可以说是痛苦和快乐并存的。所以对于初学者,缺乏经验是非常难的。必须保持良好的心态,对于不断出现的ERROR提示要坚定自己的信心,坚信自己可以解决这些问题。所有困难都会迎刃而解。 本次的学习让我认识到了提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。建模能力的提高,需要掌握好的建模思想和技巧。 ANSYS软件是一款在建模等方面非常实用的软件,本次的学习我其实并没有完全熟练地掌握它的应用,以后还要加强对它的学习,相信在以后的学习和工作中会带来巨大的便利。

ANSYS命令流及注释详解

ANSYS最常用命令流+中文注释 VSBV, NV1, NV2, SEPO, KEEP1, KEEP2 —Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo的时候,表示相减后,2个体有各自的独立边界。keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。如vsbv,1,2,,keep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。同理,将v换成a 及l是对面和线进行减操作! mp,lab, mat, co, c1,…….c4 定义材料号及特性 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) co: 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数 定义DP材料: 首先要定义EX和泊松比:MP,EX,MA T,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MA T 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8 MP,NUXY,1,0.3 TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP Type,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用 Item, Comp 是选取的原则以及下面的子项 如volu 就是根据实体编号选择, loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标! 其余还有材料类型、实常数等 MIN, VMAX, VINC,这个就不必说了吧! ,例:vsel,s,volu,,14 vsel,a,volu,,17,23,2 上面的命令选中了实体编号为14,17,19,21,23的五个实体 VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体 nv1:初始体号 nv2:最终的体号 ninc:体号之间的间隔 kswp=0:只删除体 kswp=1:删除体及组成关键点,线面 如果nv1=all,则nv2,ninc不起作用 其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦! Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备 Type: S: 选择一组新节点(缺省) R: 在当前组中再选择 A: 再选一组附加于当前组 U: 在当前组中不选一部分 All: 恢复为选中所有 None: 全不选 Inve: 反向选择 Stat: 显示当前选择状态 Item: loc: 坐标 node: 节点号

ANSYS错误集锦 李

ansys分析出现问题 NO.0052 some contact elements overlap with the other contact element which can cause over constraint.这是由于在同一实体上,即有绑定接触(MPC)的定义,又有刚性区或远场载荷(MPC)的定义,操作中注意在定义刚性区或远场载荷时 避免选择不必要的DOF自由度,以消除过约束 NO.0053 Shape testing revealed that 450 of the 1500 new or modified elements violate shape warning limits. 是什么原因造成的呢? 单元网格质量不够好 尽量,用规则化网格,或者再较为细密一点 NO.0054在用Area Fillet对两空间曲面进行倒角时出现以下错误:Area 6 offset could not fully converge to offset distance 10. Maximum error between the two surfaces is 1% of offset distance.请问这是什么错误?怎么解决?其 中一个是圆柱接管表面,一个是碟形封头表面。 ansys的布尔操作能力比较弱。如果一定要在ansys里面做的话,那么你试试看先对线进行倒角,然 后由倒角后的线形成倒角的面。 建议最好用UG、PRO/E这类软件生成实体模型然后导入到ansys

NO.0055 There are 21 small equation solver pivot terms.; SOLID45 wedges are recommended only in regions of relatively low stress gradients.第一个问题我自己觉得是在建立contact时出现的错误,但自己还没有 改正过来;第二个也不知道是什么原因。 还有一个:initial penetration 4.44089×10E-6 was detacted between contact element 53928 and target element 53616;也是建立接触是出现 的,也还没有接近。 第一个问题:There are 21 small equation solver pivot terms.;不是建立接触对的错误,一般是单元形状质量太差(例如有i接近零度的锐角或者接近180度的钝角)造成small equation solver pivot terms 第二个问题:SOLID45 wedges are recommended only in regions of relatively low stress gradients.这只是一个警告,它告诉你:推荐SOLID45单元只用在应力梯度较低 的区域。它只是告诉你注意这个问题,如果应力梯度较高,则可能计算结果不 可信。 NO.0056 ansys向adams导的过程中,出现如下问题There is not enough memory for the Sparse Matrix Solver to

ANSYS命令 详解~ 部分~

FX MX UX ROTX VX AX ACLX OMGX TEMP RBFX RBMX RBUX RBRX RBVX RBOX PRESS DCURVE DCURVE Option,LCID,Par1,Par2 Option----ADD,DELE, LIST, PLOT LCID---- Par1,Par2---[ *DIM *DIM Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3 ! Par--- Type--- ARRAY IMAX,JMAX,KMAX--- *SET *SET Par,V ALUE! Par--- V ALUE--- EDLOAD ~ EDLOAD Option, Lab, KEY, Cname, Par1,Par2,PHASE,LCID,SCALE,BTIME,DTIME Option---ADD,DELE,LIST Lab--- FX UY PRSSURE KEY--- PRESSURE KEY ID EDLCS CID Cname--- Par1,Par2--- PHASE--- 0= =1 =2 LCID--- SCALE--- BTIME DTIME--- GUI Preprofessor>LS-DYNA Options>Loading Options>Specify Loads Solution>Loading Options>specify Loads EDFPLOT EDFPLOT KEY KEY--- ON 1 OFF 0 GUI Main Menu>Preprofessor>LS-DYNA Options>Loading Options>Show Forces EDVEL

封装 ANSYS软件的使用及实验及感想

集成电路芯片与封装 ANSYS 软件使用准备步骤 1、右键打开“我的电脑”的属性,选择“高级”->“环境变量”,在“系统变量”中“新建”一个新的变量,变量名为“ANSYSLMD_LICENSE_FILE”,变量值为“1055@你的计算机名”,确定即可。(点选安装引导框最后一行“Display the license server hosted”后得到的第一行“HOSTNAME:”后的就是你的计算机名,自动安装文件为D:/ansys10.0安装/ansys10/AutoExec.exe) 如:ANSYSLMD_LICENSE_FILE 1055@3d9f56ca900a403 (一定是你自己计算机的名称) 2、点“开始->所有程序->ANSYS FLEXlm License Manager->FLEXlm LMTOOLS Utility 然后选中Config Services,如下: 设置lmgrd.exe文件路径为C:\Program Files\Ansys Inc\Shared Files\Licensing\intel\lmgrd.exe (如没有lmgrd.exe此文件需安装install ANSYS FLEXLm Licensing ,出现选择时按顺序为是否是最后可能提示不成功但此时lmgrd.exe文件已经存在) 设置license文件路径为C:\Program Files\Ansys Inc\Shared Files\Licensing\license.dat 设置debug log文件路径为C:\Program Files\Ansys Inc\Shared

2019年ANSYS学习总结范文

2019年ANSYS学习总结范文 1学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的 效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议: 1.1将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模 量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准

确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进 行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。

相关主题
文本预览
相关文档 最新文档