当前位置:文档之家› 热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立
热力学第二定律的建立

热力学第二定律的建立

1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。

1、热力学第二定律产生的历史背景

18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。

人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可能发生;这就有待于热力学第二定律的发现。

卡诺曾经指出“单只是提供热量,并不足以产生推动力,必须还有冷,没有冷,热将是无用的”。卡诺承认这样的事实,当水与A体接触时,变成了蒸汽,蒸汽与B体接触时又变冷了,但是若要恢复原来的温度,就必须再同A体接触,这就需要动力。这说明在前一过程中损失了动力,它自身要完成这个反向的过程是不可能的。因此,卡诺得出:“使用于提高液体温度的热质再回到A体中,是不可能的”。一般认为,这是卡诺意识到热力学第二定律的思想萌芽。在卡诺之后,克拉贝龙、迈尔、焦耳和亥姆霍兹等基本上都是沿着卡诺的理想热机可逆循环的思路,探讨热功转化和等当关系,而忽视了卡诺提出热从冷体向热体传递的不可能性的启示。究其原因,或者由于这个普遍存在的现象的理论价值不大,或者认为从理论上予以处理在当时是太困难了而回避过去。在卡诺的不可能从冷体向热体传热做功的思想启发下,几位理论物理学家从不同的方向,各自独立地探讨了热功转化过程中吸收的热量大于做功需要的热量,及从冷体向热体自发传热作功的不可能性。他们认为这个领域内热力学第一定律是无能为力的,必须从其内在的本质联系中揭示一个新的基本定律,这就是热力学第二定律。

2、克劳修斯对热力学第二定律的研究

克劳修斯是最早提出了热力学第二定律的。1850年4月12日,克劳修斯发表的《论热

的动力和可由此推导热学本身的定律》论文中,首先肯定了前人在这方面做出的一些尝试。克劳修斯赞同热之唯动说观点,他根据已经发现的很多事实说明:“热并不是一种物质,而是存在于物体的最小粒子的一种运动”。

从热之唯动说出发,克劳修斯批判了卡诺从热质说出发得出的热功转化过程中并未损失热而只是热质在传递过程中总数不变。克劳修斯认为应当从热是一种运动的观点进行论证,只有这样才能得到合理的征明和反驳卡诺从热质观点得出的结论。他声称,人们不应当被这些困难吓倒,也不认为问题会有那么严重,只要从把热质说转变为热之唯动说出发,把通常的思考方式改变一下,就会发现与任何事实并不矛盾。

克劳修斯在他的论文中讲述到,从卡诺的热转化为当量的功时的“热量并不减少”与他的热力学第一定律矛盾出发,认为坚持这个提法,势必把问题搞乱,因而探讨建立热力学第二定律的必要性和可能性。克劳修斯通过一个假想实验,得出与上述卡诺说法相背离的结论,这个假想实验就是设想有两种物质,在一般的热量转化条件下,一种比另一种会产生较多的功;或产生既定数量的功时一种比另一种由A物向B物传递较少的热量。如果交替地应用这两种气体于正向和逆向过程中,使前者将热转化为功,使后者再将功转化为热,在这循环结束后,两种气体都又处于其原来的状态。

由于产生和消耗的功正好抵消,则按热力学第一定律,总热量既未增加也未减少。但是,从B物传给A物的热量,比A物传给B物的热量要多,结果形成总体上从B物传递热量给A物。所以,此种交替使用两种不同气体传递热量的过程反复无限地进行下去,就会在不需任何力消耗或发生其他变化的条件下,可以把任意多的热量从低温物体传递给高温物体。但是,这显然与热传递的性质和无数的经验矛盾,这种经验就是热量传递的普遍趋向是从高温物体传到低温物体并使二者的温差消失。因此,他保留卡诺说法的前一部分,发展成热力学第一定律,再修改其第二部分,变“热量并不减少”为热量只能自发地从高温物体传递到低温物体,而不是自发地从低温物体传递到高温物体,形成热力学第二定律。所以,马赫在《热学原理》一书中,指出这个问题解决的清晰性不是通过实验完成的,而是“通过对不同理论的历史观点的谨慎批评;这种批评和修正,我们应归功于克劳修斯”。热力学第二定律在经过上述基本概念的突破之后,才被克劳修斯、开尔文勋爵从不同的角度提出了各自的说法和论证。

在《论热的动力和可由此推导热学本身的定律》的第二部分中,克劳修斯得出热力学第二定律的表述:“在没有任何力消耗或其他变化的情况下,把任意多的热量从低温物体传递到高温物体是和热的惯常行为矛盾的”。

克劳修斯对热力学第二定律的明确表述,即至今所说的克劳修斯表述,是他于1854年在《物理和化学年鉴》上发表的《论机械热理论第二基本定律的一个改变形式》论文中提出的。他对热力学第二定律的表述改变为:“热不可能由低温物体传递到高温物体,如果不因而同时引起其他关系的变化”。在这个表述中,他用“如果不因而同时引起其他关系的变化”,概括并取代了1850年论文中的“在没有任何力消耗或其他变化情况下”,并且以反语序取代正语序。这种用“关系”一词概括了各种力、功和能量等的方法,清楚明确,因而在后来被长期采用并广泛流行。热力学第二定律的这种表述或说法特别强调了从低温物体传递到高温物体传递问题,对热传导的方向具有十分重要的意义。并且,为了运用公式表示这个定律,必须用正负号表示热传递的方向。为此,他规定“内功变为热和由高温转变到低温作为正向变化”,其代数符号为正,反之为负。他进而根据卡诺提出的命题:“热的动力与参与完成工作的介质无关,其数量仅由传递热量的物体之间的温度所决定”,提出了低温物体传递到高温物体之间各种热传导情况都适用的和仅由低温物体传递到高温物体的温度决定的状态函数F(t1,t2),他称之为“二温度的等函数”。为了使不可逆循环中热量和功及温度之间的关系在数学上易于处理,他将过程分为无数小的过程,他称之为“简单的循环过程”。每一小

过程可作为可逆循环处理,其终端和始端的温度变化可认为趋近于0,于是,它们传递的热量和温度之比可以用Q 1/T 1,Q 2/T 2,………Q n /T n 表示。对于整个过程,可用N =∑Q/T 近似地表示,如写成微积分表示式,则为:?

=T dQ N ;他指出,此式对于可逆循环应为0。所以:

?=0T dQ ;这就是在可逆循环情况下,热力学第二定律的表示式。

在这篇论文中,克劳修斯没有给出?T

dQ 的物理概念和名称,只是给出一个新的状态函数的表示式。从上述推导中可以看出,他把可逆循环时的表示式?=0T

dQ ,看作是普遍情况下的N=?T dQ 的特殊情况。 1865年4月,克劳修斯在《关于机械热理论的主要方程的各种应用的方便形式》论文中提出?T dQ 的物理概念是一个与变化途径无关的状态函数,并用T

dQ ds =表示。他认为既然S 和热力学第一定律中的能量概念等当,都是状态函数,它就应表示物体的热转变含量。为了给以定名,他根据S 的物理意义与“能”有相近的亲缘关系,在字形上也应当接近才好。为此,克劳修斯在1865年 4月的论文中把S 命名为“熵”。 在这篇论文中,克劳修斯提出了热力学第二定律的普遍表示式为:?≤0T dQ ;他指出等号适用于可逆循环,不等号适用于不可逆过程。从这个不等式可以看出,热力学第二定律说明熵具有方向性,如果用 S 表示熵,则上式的?T dQ 可按循环的正反过程写成:000≤+??P P P P T dQ T dQ ;根据熵的定义:?=-P P T dQ S S 00,则0S S -≥?P P T dQ 0;如果循环为绝热过程,则Q =0,所以:S —S 0≥0。此式说明,绝热过程中熵增加。它对于平衡态的初终状态是正确的。对于非平衡态的初终状态,在将它们分成无数小部分,并近似地认为每个小部分处于平衡态时,熵增原理仍然是正确的。

1875年他又在《热的动力理论》论文中提出他的热力学第二定律的、更精练的说法:“热不可能自发地从低温物体传递到高温物体”或“热从低温物体传递到高温物体不可能无补偿地发生”。这前一个说法就是至今广泛引用的标准的“克劳修斯表述”,但是严格地说,这个说法似乎不如他在1854年提出的说法更严格而深刻。因为那个说法中“如果不因而同时引起其他关系的变化”比“自发地”更清楚明确。他在文中进而指出,他的1854年论文只考虑了可逆循环情况下的热力学第二定律表示式,因为它是很便于表达的。显然,我们可以看出,当时他对于不可逆循环这种普遍情况的表示式应为一个不等式,还未触及甚至未认识到,因为这种情况在数学上如何解决,一直是像开尔文等这样的理论物理学家感到困难的问题,那时,克劳修斯可能还不具备这样的知识基础。在1875年的论文中提到不可逆过程的数学表示式。他认为?T dQ ≤0的发现,

“完成了第二基本定律的数学表述”,并把这个定律的“补偿”说法改为“无补偿的转变必然是正向的”。

从克劳修斯在25年间所写的重要的热力学奠基性论文中,可以看出他对热力学第二定律的表述方法不断修改,并从不同角度提出几种说法,才终于形成著名的“克劳修斯表述”。他在此定律的数学表示式方面,从可逆循环着手发展到不可逆循环,由特殊情况的等式

(S=?=0T dQ )发展为普遍性的不等式(S=?T dQ ≤0),并把T

dQ 作为状态函数提出来,定名为熵。熵概念的出现,在热力学甚至整个自然科学的发展上,具有很重要的意义。

3、热力学第二定律的开尔文表述

对于热力学第二定律的发现做出另一个重要贡献的,是开尔文勋爵提出的“开尔文表述”。开尔文勋爵用焦耳的热功当量实验和雷诺对蒸汽性质的观察,重新审查了卡诺定理后,在他的《论热的动力学理论》手稿修改过程中,采用了焦耳提出热是一种粒子的运动而不是物质的思想时形成的。他在1856年发表的《论动力的起源和转变》论文中,谈到他提出热力学第二定律的“开尔文表述”的出发点和想法时,曾经明确说明:“……应该注意,热体给出的热量并不象它得到的热量那样多(卡诺指出,如果热是物质,这物质将会是一样多),而却像焦耳主张的,给出的与机械功相当的热量,少于它得到的热量。以此去修改卡诺理论,使它适应这个暗示的真理。并且,它们的最大差异是它只能导致所说的可逆和不可逆的动力转变”。他后来的这种追述,说明他在从热质说向热之唯动说转变后,才认识到热与功相互转化过程中,实际上不是卡诺所说的可逆循环,而是一种不可逆循环。这个观念上的突破,使他得出一种新的永动机概念,和这种永动机是不可能制成的。因此,他提出克劳修斯的证明赖以成立的基础定理:“不借助外部动因将热从一低温物体传递到另一高温物体,制成一个自动机是不可能的”。开尔文所说的“自动机”(Self -actins machine )就是后来所说的永动机或“第二类永动机”(第一类永动机是不需要能量就可对外作功,违背热力学第一定律的机器)。

开尔文勋爵在1851年发表的这篇论文中根据卡诺定理及克劳修斯的说法,提出了他的命题:“如果一台发动机是这样的,它运动的每一部分的物理的和机械的作用全是可逆的,则它能用同一温度的热源和同一温度的冷凝器,以既定的热量产生像任何热机能产生的、同样多的机械效应”。他认为这个命题的证明,是建立在下面的定理的基础上:“不可能由非生命物的作用,将物质冷却到比周围最冷的东西还要低的温度的方法,使物质的任何部分产生机械效应”。接着他注释说:“如果这个定理被在一切温度条件下否定,则必须承认一台永动机可以开始工作,并且可以用冷却海洋和大地的方法产生机械效应。但是,从大地和海洋,或实际上从整个物质世界产生的总热量损失是无限的”.从开尔文勋爵提出的这个定理和注释可以看出,他用公认的事实否定了第二类永动机的空想,提出了他对热力学第二定律的新表述(即开尔文表述)。我们知道,今天各种热力学教科书中介绍的热力学第二定律的“开尔文表述”是:“不可能从单一热源取热使之完会变为有用的功,而不产生其他影响。”关于这个说法的来源,我们至今还没有从开尔文勋爵的后来著作中查到。但可以想见,这是从他提出的这个定律中演化而来的。开尔文勋爵提出的“开尔文表述”,被评价为19世纪最重要的突破之一。

4“热寂”困境

开尔文勋爵和克劳修斯进一步发挥了他们自己的思想,并把这个定律推广到整个宇宙。既然任何自发的过程,它的熵都要增加;最终达到最大值,使整个系统实现热平衡。那么全宇宙的熵是否也在不断地增加。从而最终达到最大值,使整个宇宙实现热平衡呢?

1852年,开尔文勋爵从他所提出的原理得出结论:“在自然界中占统治地位的趋向是其他能量转变为热,并使处处温度趋于平衡,最终导致所有物体的工作能力减小到零”。1867年,克劳修斯再次指出:“宇宙越接近于其熵为一最大值的极限状态,它继续发生变化的机会就越减少,而如果最后完全达到了这个状态,那末也就去会再出现进一步的变化,宇宙就将处于一个死寂的永远状态。”这就是“宇宙热寂说。”根据这一思想,他把热的动力理论的

两个基本定律概括为:“宇宙的能量恒定不变,宇宙的熵趋于一个极大值。”

热力学第二定律预言:人类社会连同整个宇宙都不能免于“热寂”;宇宙将进入了一个热死状态。不再有热流动,不再有变化,不再有时间,万物之末日也就降临。这几乎是立之有据地从科学的角度对上帝提出了最后的审判。这一观念在一百多年前的欧洲引起了巨大的震动。因此,热力学第二定律被视为人类坠落的“渊薮”。正是这一观念带来了一种宇宙热死亡的忧郁幽灵。英国诗人史文朋(1837~1909)曾这样描述过热寂:不论是星星还是太阳将不再升起,到处是一片黑暗;没有溪流的潺潺声,没有声音,没有景色,既没有春天的嫩芽,没有白天,也没有劳动的欢乐;在那永恒的黑夜里,只有没有尽头的梦境。

5、对“熵增原理”的挑剔

“热寂说”引起了一些物理学家的异议,热力学第二定律所预言的不可逆转的发展和演化,使宇宙万物发展的总趋势经历着从复杂到简单,从有序到无序,从非平衡到热平衡的过程。而当时正处达尔文(C.R.Darwin,1809~1882)进化论风行于世,从生物进化的角度来讲,不论是生物、人类、还是人类社会,都在经历着从简单到复杂的趋向进化;这一截然相反的结论,促使科学家们纷纷绞尽脑汁去挑剔热力学第二定律的破绽,麦克斯韦妖的假设即是一个最著名的例证。

1871年,英国著物理学家麦克斯韦(J.C.Maxwell,1831~1879),在他的《热的理论》一书中提出了一种可能破坏热力学第二定律的假想的“精灵”;

热力学第二定律,在不消耗功的情况下,要产生任何温度或压强的不

均等都是不可能的。但是,如果有一种能辨别分子速度大小的妖精,

它能在容器内设置的把系统分隔为两部分的壁上操纵一个“阀门”,

只允许速度快的分子从A部跑到B部,允许慢的分子从B部跑到A

部,这就最终可能在不消耗功的条件下使B部的温度高于A部,从而

热量有可能自动地从低温物体传到高温物体;这就是著名的“麦克斯

韦妖”。

“麦克斯韦妖”能否存在?为回答这个问题,我们先分析一下这个“小妖”应具有哪些特性,然后再逐一讨论这种特性存在的可能性。开尔文曾评论说:“妖的含义,根据麦克斯韦对这个词的用法,是一个有理智的存在物。它具有自由意志和非常灵敏的触觉,以及感知的机构,使它能去观察和影响物质的各个分子……。麦克斯韦妖与真实动物之间的不同,只在于它是极其小和极灵敏的。……”在开尔文看来,这种装置必须具有以下性质:是生命体,具有智力和原子大小。

我们考察“智力”这一性质。对于“麦克斯韦妖”来说,要求它具有的最简单的智力是必须能感知它的对象,或者说能够“看”到分子的运动。“小妖”所在的容器在光学上说来是一个黑体,而黑体内的辐射是均匀而无方向性的。在这个黑体里的观察者,要感知分子需要利用一盏灯,它可发出黑体辐射中所没有包含的波长的光照亮分子。此光线从分子上反射回来才能被“小妖”接受而产生视觉。但是,无论这种有特定波长的光子被分子所吸收或被观察者所吸收,都要引起熵增加。计算证明,这种熵的增加超过了“小妖”做出筛选所产生的熵减少。所以整个系统(包括分子、“小妖”和灯)的总熵还是增加了,热力学第二定律没有被破坏。

这个问题的讨论引起了物理学家对热力学第二定律进行了更详尽的考察,最终把热、有序性和熵,信息的概念联系了起来。直到本世纪六十年代才由法国物理学家布里渊(L.Brillouin)证明了上述假想的过程是不可能发生的,因为识别控制分子所需要提供的

信息量,大于分子定向选择所产生的负熵值。最终麦克斯韦妖不得不在熵增面前败下阵来。

这一事实也以反面证明了热力学第二定律的正确性;后来,玻尔兹曼(L.Boltzmann,1844~1906)和薛定谔(E.Schrodinger,1887~1961)均承认:任何有机体都是从环境中不断吸取低熵增物质,排弃高熵增物质,才能维持本身的生存。物理学家爱丁顿(A.S.Eddington,1882~1944)称“熵增原理”为“宇宙中至尚无上的哲学规律”;爱因斯坦(A.Einstein,1879~1955)亦称之为“一切科学的根本法则。”

热力学第二定律练习题及答案

热力学第二定律练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( ) 2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞 开系统。 ( ) 3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。 ( ) 4、隔离系统的熵是守恒的。( ) 5、一定量理想气体的熵只是温度的函数。( ) 6、一个系统从始态到终态,只有进行可逆过程才有熵变。( ) 7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。 ( ) 8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>G 和G <0,则此状态变化一定能发生。( ) 9、绝热不可逆膨胀过程中S >0,则其相反的过程即绝热不可逆压缩过程中S <0。( ) 10、克-克方程适用于纯物质的任何两相平衡。 ( ) 11、如果一个化学反应的r H 不随温度变化,则其r S 也不随温度变化, ( ) 12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。 ( ) 13、在10℃, kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。 ( ) 14、理想气体的熵变公式 只适用于可逆过程。 ( ) 15、系统经绝热不可逆循环过程中S = 0,。 ( ) 二、选择题 1 、对于只做膨胀功的封闭系统的(A /T )V 值是:( ) (1)大于零 (2) 小于零 (3)等于零 (4)不确定 2、 从热力学四个基本过程可导出V U S ??? ????=( ) (1) (2) (3) (4) T p S p A H U G V S V T ???????????? ? ? ? ????????????? 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。在下列结论中何者正确( )

第二章 热力学第二定律

第二章热力学第二定律 一、单选题 1) 理想气体绝热向真空膨胀,则() A. ?S = 0,?W = 0 B. ?H = 0,?U = 0 C. ?G = 0,?H = 0 D. ?U =0,?G =0 2) 对于孤立体系中发生的实际过程,下式中不正确的是() A. W = 0 B. Q = 0 C. ?S > 0 D. ?H = 0 3) 理想气体经可逆与不可逆两种绝热过程,则() A. 可以从同一始态出发达到同一终态。 B. 不可以达到同一终态。 C. 不能确定以上A、B中哪一种正确。 D. 可以达到同一终态,视绝热膨胀还是绝热压缩而定。 4) 1mol,100℃及p?下的水向真空蒸发为p?,373K的水蒸汽,过程的△A为( )K J A. 0 B. 0.109 C.-3.101 D.40.67 5) 对于封闭体系的热力学,下列各组状态函数之间的关系中正确的是:() (A) A > U; (B) A < U; (C) G < U; (D) H < A。 6) 将氧气分装在同一气缸的两个气室内,其中左气室内氧气状态为p1=101.3kPa,V1=1dm3,T1=273.2K;右气室内状态为p2=101.3kPa,V2=1dm3,T2=273.2K;现将气室中间的隔板抽掉,使两部分气体充分混合。此过程中氧气的熵变为: ( ) A. ?S >0 B. ?S <0 C. ?S =0 D. 都不一定 7)1mol理想气体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤立体系的熵变分别为( )J·K-1 A. 19.14, -19.14, 0 B. -19.14, 19.14, 0 C. 19.14, 0, 19.14 D. 0 , 0 , 0 8) 1 mol,373 K,p?下的水经下列两个不同过程变成373 K,p?下的水蒸汽,(1) 等温等压可逆蒸发,(2) 真空蒸发,这两个过程中功和热的关系为:( ) (A) W1> W2Q1> Q2(B) W1< W2Q1> Q2 (C) W1= W2Q1= Q2(D) W1> W2Q1< Q2 9)封闭系统中, W'= 0,恒温恒压下的化学反应可用( )计算系统的熵变. A. ΔS=Q/T; B. ΔS=ΔH/T; C. ΔS=(ΔH-ΔG)/T D. ΔS=nRln( V2/V1) 10) 理想气体经历等温可逆过程,其熵变的计算公式是:( ) A. ?S =nRT ln(p1/p2) B. ?S =nRT ln(V2/V1) C. ?S =nR ln(p2/p1) D. ?S =nR ln(V2/V1) 11) 固体碘化银(AgI)有α和β两种晶型,这两种晶型的平衡转化温度为419.7K,由α型转化为β型时,转化热等于6462J·mol-1,由α型转化为β型时的熵变?S 应为:( ) J·K-1 A. 44.1 B. 15.4 C. -44.1 D. -15.4 12) dA= -SdT-PdV适用的过程是()。 A.理想气体向真空膨胀B.-10℃,100KPa下水凝固为冰 C.N2(g)+3H2(g) = 2NH3(g)未达平衡D.电解水制取氧 13) 封闭系统中发生等温等压过程时,系统的吉布斯函数改变量△G等于() A.系统对外所做的最大体积功, B. 可逆条件下系统对外所做的最大非体积功, C.系统对外所做的最大总功, D. 可逆条件下系统对外做的最大总功. 14) 在p?下,373K的水变为同温下的水蒸汽。对于该变化过程,下列各式中哪个正确:( ) A.?S体+?S环> 0 B. ?S体+?S环 < 0 C.?S体+?S环 = 0 D. ?S体+?S环的值无法确定 15) 某体系等压过程A→B的焓变?H与温度 T无关,则该过程的:() (A) ?U与温度无关 (B) ?S与温度无关 (C) ?A与温度无关;(D) ?G与温度无关。 16) 1mol理想气体从p1,V1,T1分别经:(1) 绝热可逆膨胀到p2,V2,T2;(2) 绝热恒外压下膨胀到p2′,V2′,T2′,若p2 = p2′ 则:( ) A.T2′= T2, V2′= V2, S2′= S2 B.T2′> T2, V2′< V2, S2′< S2 C.T2′> T2, V2′> V2, S2′> S2 D.T2′< T2, V2′< V2, S2′< S2

热力学第二定律习题解答

第八章热力学第二定律 一选择题 1. 下列说法中,哪些是正确的( ) (1)可逆过程一定是平衡过程; (2)平衡过程一定是可逆的; (3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。 A. (1)、(4) B. (2)、(3) C. (1)、(3) D. (1)、(2)、(3)、(4) 解:答案选A。 2. 关于可逆过程和不可逆过程的判断,正确的是( ) (1) 可逆热力学过程一定是准静态过程; (2) 准静态过程一定是可逆过程; (3) 不可逆过程就是不能向相反方向进行的过程;

(4) 凡是有摩擦的过程一定是不可逆的。 A. (1)、(2) 、(3) B. (1)、(2)、(4) C. (1)、(4) D. (2)、(4) 解:答案选C。 3. 根据热力学第二定律,下列哪种说法是正确的( ) A.功可以全部转换为热,但热不能全部 转换为功; B.热可以从高温物体传到低温物体,但 不能从低温物体传到高温物体; C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运 动的能量,但无规则运动的能量不能 变成有规则运动的能量。 解:答案选C。 4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:

( ) A. 温度不变,熵增加; B. 温度升高,熵增加; C. 温度降低,熵增加; D. 温度不变,熵不变。 解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。因过程是不可逆的,所以熵增加。 故答案选A 。 5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( ) (1) 两种不同气体在等温下互相混合; (2) 理想气体在等体下降温; (3) 液体在等温下汽化; (4) 理想气体在等温下压缩; (5) 理想气体绝热自由膨胀。 A. (1)、(2)、(3) B. (2)、(3)、(4) C. (3)、(4)、(5) D. (1)、(3)、(5) 解:答案选D。

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

热力学第二定律的建立及意义

1引言 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。19蒸汽机的发明,使提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺从理论上研究了热机的效率问题. 卡诺的理论已经深含了热力学第二定律的基本思想,但由于受到热质说的束缚,使他当时未能完全探究到问题的底蕴。这时,有人设计这样一种机械——它可以从一个热源无限地取热从而做功,这被称为第二类永动机。1850 年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,1851年开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的“开尔文表述”。在提出第二定律的同时,克劳修斯还提出了熵的概念,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。热力学第二定律的各种表述以不同的角度共同阐述了热力学第二定律的概念,完整的表达出热力学第二定律的建立条件并且引出了热力学第二定律在其他方面的于应用及意义。 2热力学第二定律的建立及意义 2.1热力学第二定律的建立 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。但是它的科学价值并不仅仅限于解决热机效率问题。热力学第二定律对涉及热现象的过程, 特别是过程进行的方向问题具有深刻的指导意义它在本质上是一条统计规律。与热力学第一定律一起, 构成了热力学的主要理论基础。 18世纪法国人巴本发明了第一部蒸汽机,后来瓦特改进的蒸汽机在19 世纪得到广泛地应用, 因此提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺(S.Carnot, 1796~ 1832) 从理论上研究了热机的效率问题。

物理化学第二章 热力学第一定律

第二章 热力学第一定律 一.基本要求 1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系 统性质、功、热、状态函数、可逆过程、过程和途径等。 2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中 的, , Q W U ?和H ?的值。 3.了解为什么要定义焓,记住公式, V p U Q H Q ?=?=的适用条件。 4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学 第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中, , , , U H W Q ??的计算。 二.把握学习要点的建议 学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒 定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一 些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做 习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。 例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这 个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变 化的过程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云, 降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说, “雨”是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的 名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递 的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外, 其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之 间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种 形式变为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热) 的。例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、 燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所 以0, 0, 0Q W U ==?=。这个变化只是在系统内部,热力学能从一种形式变为

热力学第二定律习题

热力学第二定律习题 选择题 .ΔG=0 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程(B) 等温等压且非体积功为零的过程(C) 等温等容且非体积功为零的过程(D) 可逆绝热过程答案:A .在一定温度下,发生变化的孤立体系,其总熵 (A)不变(B)可能增大或减小(C)总是减小(D)总是增大 答案:D。因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。 .对任一过程,与反应途径无关的是 (A) 体系的内能变化(B) 体系对外作的功(C) 体系得到的功(D) 体系吸收的热 答案:A。只有内能为状态函数与途径无关,仅取决于始态和终态。 .氮气进行绝热可逆膨胀 ΔU=0(B) ΔS=0(C) ΔA=0(D) ΔG=0 答案:B。绝热系统的可逆过程熵变为零。

.关于吉布斯函数G, 下面的说法中不正确的是 (A)ΔG≤W'在做非体积功的各种热力学过程中都成立 (B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小 (C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生 (D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A。因只有在恒温恒压过程中ΔG≤W'才成立。 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动机是造不成的 (D热不可能全部转化为功 答案:D。正确的说法应该是,热不可能全部转化为功而不引起其它变化 .关于克劳修斯-克拉佩龙方程下列说法错误的是 (A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D) 该方程假定与固相或液相平衡的气体为理想气体

热力学第二定律概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

热力学第二定律有两种常用表述

读热学第二定律的建立及其意义有感 热力学第二定律有两种常用表述: (1)克劳修斯在1850年在研究热机的工作原理的基础上提出了热力学第二定律的一种表述:不可能使热量从低温物体传递到高温物体,而不引起其他变化。这里的“不引起其他的变化”和“自发地”是等价的。 (2)开尔文在1851年提出了热力学第二定律的另一种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。它也可以表述为第二类永动机是不可能制成的。由于自然界的自发过程都是有联系的,是相互依存的。描述自发过程方向性的第二定律也是等价的。 热力学第二定律揭示了有大量分子参与的宏观过程的方向性,对于我们认识自然、利用自然有重要的指导意义。 两种表述等价的证明: 如果假设热量由高温传向低温的不可逆性消失了,即热量能自动地经过某种假想装置从低温传向高温。这是我们可以设计一部热机,使它在一次循环中由高温热库(热源)吸热,对外做功,向低温热库放热(),这种热机能自动进行动作,然后利用那个假想装置使热量自动地传给高温热库,而使低温热库恢复原来状态。当我们把该假想装置与此热机看成一个整体时,它们就能从热库吸出热量而全部转变为对外做的功,而不引起其他任何变化。这就是说,功变热的不可逆性也消失了。 同理,反之也成立。 热力学第二定律是独立于热力学第一定律的另一实验定律,它指出系统变化进行的可能方向和达到平衡的必要条件,是自然界最基本、最普遍的规律之一。 引入熵,热力学第二定律可表述为: 在孤立系内,任何变化不可能导致熵的总值减少,即 ΔS ≥0 (孤立系) “=”号---绝热可逆等熵过程 “>”号---绝热不可逆熵增加过程

02-热力学第二定律Word版

二、热力学第二定律(601题) 一、选择题 ( 共152题 ) 1. 1 分 (0624) 理想气体绝热向真空膨胀,则: ( ) (A) ΔS = 0,W = 0 (B) ΔH = 0,ΔU = 0 (C) ΔG = 0,ΔH = 0 (D) ΔU = 0,ΔG = 0 2. 1 分 (0671) 熵变S是: (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是:( ) (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 2 分 (0675) 理想气体在等温条件下反抗恒定外压膨胀,该变化过程中体系的熵变?S 体 及环境的熵 变?S 环 应为:() (A) ?S 体>0,?S 环 =0 (B)?S 体 <0,?S 环 =0 (C) ?S 体>0,?S 环 <0 (D)?S 体 <0,?S 环 >0 4. 2 分 (0693) 下列四种表述: (1) 等温等压下的可逆相变过程中,体系的熵变ΔS =ΔH相变/T相变 (2) 体系经历一自发过程总有 d S > 0 (3) 自发过程的方向就是混乱度增加的方向 (4) 在绝热可逆过程中,体系的熵变为零 两者都不正确者为: ( ) (A) (1),(2) (B) (3),(4) (C) (2),(3) (D) (1),(4) 5. 2 分 (0694) 有三个大热源,其温度T3>T2>T1,现有一热机在下面两种不同情况下工作: (1) 从T3热源吸取Q热量循环一周对外作功W1,放给T1热源热量为(Q-W1) (2) T3热源先将Q热量传给T2热源,热机从T2热源吸取Q热量循环一周, 对外作功 W2,放给T1热源 (Q-W2) 的热量 则上述两过程中功的大小为: ( ) (A) W1> W2 (B) W1= W2 (C) W1< W2 (D) W1≥W2 6. 1 分 (0695) 求任一不可逆绝热过程的熵变ΔS时,可以通过以下哪个途径求得? ( ) (A) 始终态相同的可逆绝热过程 (B) 始终态相同的可逆恒温过程 (C) 始终态相同的可逆非绝热过程 (D) (B) 和 (C) 均可 7. 2 分 (0696)

热力学的第二定律的认识和思考

仲恺农业工程学院 论文题目:热力学的第二定律的认识和思考 论文作者:钟家业 作者学号: 所在院系:机电工程学院 专业班级: 指导老师:

摘要热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。广义生命演化意义上的熵,体现了生命系统衰落的过程。 关键词热力学第二定律,第二类永动机,熵,时间,生活 1. 热力学第二定律及发展 1.1、热力学第二定律建立的历史过程 19世纪初,人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。1848年,开尔文爵士(威廉·汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。这些为热力学第二定律的建立准备了条件。 1850年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。[1] 1.2、热力学第二定律的表述 1.2.1、热力学第二定律的开尔文表述

热力学第二定律的发展与应用

浅论热力学第二定律的发展与应用

————————————————————————————————作者:————————————————————————————————日期:

热工学课程论文 题目浅论热力学第二定律的发展与应用 学院工程技术学院 专业机械设计制造及其自动化 年级2012级 学号 姓名 指导教师 成绩 2014年12 月

目录 摘要 (5) 1 前言 (5) 2 热力学第二定律的建立及其发展 (5) 2.1 热力学第二定律建立的历史过程 (5) 2.2 热力学第二定律的实质 (6) 2.2.1可逆过程与不可逆过程 (6) 2.2.2开氏与克氏的两种表述 (6) 2.3 热力学第二定律的含义 (7) 3 热力学第二定律的应用 (7) 3.1 通过熵增原理,理解能源危机 (7) 3.2 理解时间的流逝 (8) 3.3 黑洞温度的发现 (8) 3.4 形成宇宙的耗散结构理论 (9) 4 总结 (9) 参考文献: (9)

浅论热力学第二定律的发展与应用 xxx xxx 西南大学工程技术学院 2012级机械设计制造及其自动化1班 摘要:热力学第二定律是热力学的基本定律之一,是指热不可能自发地、不付代价地从低温物体传到高温物体或者说不可能制造出只从一个热源取得热量,使之完全变成机械能而不引起其他变化的循环发动机。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。本文综述了该定律的提出、演变历程、并介绍了它在工农业生产和生活中的应用。 关键词:热力学第二定律演变历程应用 1 前言 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 2 热力学第二定律的建立及其发展 2.1 热力学第二定律建立的历史过程 19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步

高中物理-热力学第二定律练习题

高中物理-热力学第二定律练习题 1.热力学定律表明自然界中与热现象有关的宏观过程( ) A.有的只遵守热力学第一定律 B.有的只遵守热力学第二定律 C.有的既不遵守热力学第一定律,也不遵守热力学第二定律 D.所有的都遵守热力学第一、第二定律 2.如图为电冰箱的工作原理示意图。压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环。在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外,下列说法中正确的是( ) A.热量可以自发地从冰箱内传到冰箱外 B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能 C.电冰箱的工作原理不违反热力学第一定律 D.电冰箱的工作原理违反热力学第一定律 3.(·大连高二检测)下列说法正确的是( ) A.机械能和内能的转化具有方向性 B.电能不可能全部转化为内能 C.第二类永动机虽然不违反能量守恒定律,但它是制造不出来的 D.在火力发电机中燃气的内能不可能全部转化成电能 4.下列宏观过程能用热力学第二定律解释的是( )

A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开 B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开 C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来 D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100% 5.(·课标全国理综)关于热力学定律,下列说法正确的是( ) A.为了增加物体的内能,必须对物体做功或向它传递热量 B.对某物体做功,必定会使该物体的内能增加 C.可以从单一热源吸收热量,使之完全变为功 D.不可能使热量从低温物体传向高温物体 E.功转变为热的实际宏观过程是不可逆过程 6. 用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象。关于这一现象的正确说法是( ) A.这一实验过程不违反热力学第二定律 B.在实验过程中,热水一定降温,冷水一定升温 C.在实验过程中,热水的内能全部转化成电能,电能则部分转化成冷水的内能 D.在实验过程中,热水的内能只有部分转化成电能,电能则全

(完整word版)热力学第二定律复习题

热力学第二定律 (r δ/0Q T =∑)→熵函数引出 0< (不可能发生的过程) 0= (可逆过程) 0>(自发、不可逆过程) S ?环) I R ηη≤ 不等式:) 0A B i A B S →→?≥ 函数G 和Helmholtz 函数A 的目的 A U TS ≡-,G H TS ≡- d d d d d d d d T S p V T S V p S T p V S T V p -+---+ W ' =0,组成恒定封闭系统的 可逆和不可逆过程。但积分时 要用可逆途径的V ~p 或T ~S 间 的函数关系。 应用条件: V )S =-(?p /?S )V , (?T /?p )S =(?V /?S )p V )T =(?p /?T )V , (?S /?p )T =-(?V /?T )p 应用:用易于测量的量表示不 能直接测量的量,常用于热力 学关系式的推导和证明 <0 (自发过程) =0 (平衡(可逆)过程) 判据△A T ,V ,W ’=0 判据△G T ,p ,W ’=0 <0 (自发过程) =0 (平衡(可逆)过程)

基本计算公式 /()/ r S Q T dU W T δδ ?==- ??, △S环=-Q体/T环△A=△U-△(TS) ,d A=-S d T-p d V △G=△H-△(TS) ,d G=-S d T-V d p 不同变化过程△S、△A、△G 的计算简单pVT 变化(常压 下) 凝聚相及 实际气体 恒温:△S =-Q r/T;△A T≈0 ,△G T≈V△p≈0(仅对凝聚相) △A=△U-△(TS),△G=△H-△(TS); △A≈△G 恒压变温 2 1 , (/) T p m T S nC T dT ?=?nC p,m ln(T2/T1) C p,m=常数 恒容变温 2 1 , (/) T V m T S nC T dT ?=?nC V,m ln(T2/T1) C V,m=常数 △A=△U-△(TS),△G=△H-△(TS); △A≈△G 理想气体 △A、△G 的计算 恒温:△A T=△G T=nRT ln(p2/p1)=- nRT ln(V2/V1) 变温:△A=△U-△(TS),△G=△H-△(TS) 计算△S△S=nC V,m ln(T2/T1)+nR ln(V2/V1) = nC p,m ln(T2/T1)-nR ln(p2/p1) = nC V,m ln(p2/p1)+ nC p,m ln(V2/V1) 纯物质两 相平衡时 T~p关系g?l或s两相 平衡时T~p关系 任意两相平衡T~p关系: m m d/d/ p T T V H ββ αα =??(Clapeyron方程) 微分式:vap m 2 d ln d H p T RT ? =(C-C方程) 定积分式:ln(p2/p1)=-△vap H m/R(1/T2-1/T1) 不定积分式:ln p=-△vap H m/RT+C 恒压相变化 不可逆:设计始、末态相同的可逆过程计 S=△H/T;△G=0;△A ≈0(凝聚态间相变) =-△n(g)RT (g?l或s) 化学 变化 标准摩尔生成Gibbs函数 r m,B G ?定义 r m B m,B B S S ν ?=∑,r m B f m,B B H H ν ?=? ∑, r m r m r m G H T S ?=?-?或 r m B f m,B G G ν ?=? ∑ G-H方程 (?△G/?T)p=(△G-△H)/T或[?(△G/T)/?T]p=-△H/T2 (?△A/?T)V=(△A-△U)/T或[?(△A/T)/?T]V=-△U/T2 积分式:2 r m0 ()//ln1/21/6 G T T H T IR a T bT cT ?=?+-?-?-? 应用:利用G-H方程的积分式,可通过已知T1时的△G(T1)或 △A(T1)求T2时的△G(T2)或△A(T2) 微分式 热力学第三定律及其物理意义 规定熵、标准摩尔熵定义 任一物质标准摩尔熵的计算

热力学第二定律习题详解

习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于2 1 1T T -。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于2 1 1T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式2 1 1Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于21 1T T -。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ] (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统 内能不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的[ ]

热力学第二定律习题

第二章热力学第二定律(09级习题) 一、单选题 1、下列关于卡诺循环的描述中,正确的是() A.卡诺循环完成后,体系复原,环境不能复原,是不可逆循环 B.卡诺循环完成后,体系复原,环境不能复原,是可逆循环 C.卡诺循环完成后,体系复原,环境也复原,是不可逆循环 D.卡诺循环完成后,体系复原,环境也复原,是可逆循环 2、工作在393K和293K的两个大热源间的卡诺热机,其效率约为() A.83% B.25% C.100% D.20% 3、对于理想气体的等温压缩过程,(1)Q=W、(2)ΔU=ΔH、(3)ΔS=0、(4)ΔS<0、(5)ΔS>0上述五个关系式 中,不正确的是() A.(1) (2) B.(2) (4) C.(1) (4) D.(3) (5) 4、设ΔS1与ΔS2分别表示为n molO2(视为理气),经等压与等容过程,温度从T升至2T时的熵变,则ΔS1/ΔS2 等于() A.5/3 B.5/7 C.7/5 D.3/5 5、不可逆循环过程中,体系的熵变值() A.大于零 B.小于零 C.等于零 D.不能确定 6、对理想气体的自由膨胀过程,(1)Q=ΔH、(2)ΔH>Q、(3)ΔS=0、(4)ΔS>0。上述四个关系中,正确的是 () A.(2) (3) B.(1) (3) C.(1) (4) D.(2) (4) 7、1mol理想气体从300K,1×106Pa绝热向真空膨胀至1×105Pa,则该过程() A.ΔS>0、ΔG>ΔA B.ΔS<0、ΔG<ΔA C.ΔS=0、ΔG=ΔA D.ΔA<0、ΔG=ΔA 8、孤立体系发生一自发过程,则() A.ΔA>0 B.ΔA=0 C.ΔA<0 D.ΔA的符号不能确定 9、下列过程中ΔG=0的过程是( ) A.绝热可逆且W'=0的过程 B.等温等容且W'=0的可逆过程 C.等温等压且W'=0的可逆过程 D.等温且W'=0的可逆过程 10、-ΔG (T,p) > -W'的过程是( )

第二章热力学第二定律

第二章热力学第二定律 ;选择题 1 . Δ G=O 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程 (B) 等 温等压且非体积功为零的过程 (C)等温 等容且非体积功为零的过程 (D) 可 逆 绝 热 过 程 答案:A 2 .在一定温度下,发生变化的孤立体系,其总熵 (A) 不变(B)可能增大或减小(C)总是减小(D)总是增大答案:D 。因孤立系发生的变化必 为自发过程,根据熵增原理其熵必增加。 3 .对任一过程,与反应途径无关的是 (A)体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 执 八、、 答案:A 。只有内能为状态函数与途径无关,仅取决于始态和终态。 4 .下列各式哪个表示了偏摩尔量: 答案:A 。首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。只有 和D 符合此条件。但 D 中的^i 不是容量函数,故只有 A 是偏摩尔量。 5.氮气进行绝热可逆膨胀 Δ U=O (B) Δ S=O (C) Δ A =O (D) Δ G=O 答 案:B 。绝热系统的可逆过程熵变为零。 6 .关于吉布斯函数 G,下面的说法中不正确的是 (A) Δ G ≤ W 在做非体积功的各种热力学过程中都成立 (B) 在等温等压且不做非体积功的条件下,对于各种可能的变动,系统在平衡态的吉氏函数 最小 (C) 在等温等压且不做非体积功时,吉氏函数增加的过程不可能发生 (D) 在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A O 因只有在恒温恒压过程中 Δ G ≤ W'才成立。 7 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动 机是造不成的(D 热不可能全部转化为功 答案:D 。正确的说法应该是,热不可能全部转化为功而不引起其它变化 &关于克劳修斯-克拉佩龙方程下列说法错误的是 (A)该方程仅适用于液-气平衡(B)该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D)该方程假定与固相或液相平衡的 气体为理想气体 答案:A 9 .关于熵的说法正确的是 (A)每单位温度的改变所交换的热为熵 (B)可逆过程熵变为零(C)不可逆过程熵将增加 (D) 熵与系统的微观状态数有关 答案:DO (A)熵变的定义dS = Q r /T 其中的热应为可逆热;(B)与(C)均在绝热 体系吸收的 (A) .-n i τ, p 』j (B) .?σ,V,n (C) (D) .' n i T, p,n j

热力学第二定律

《热力学第二定律》教学设计 江苏省南通市天星湖中学耿建 这节课的内容是人民教育出版社2005年版高中《物理》选修3-3教材第十章第五节。 【教学目标】 一、知识和技能 1、能判断涉及热现象的宏观过程是具有方向性的; 2、知道并理解热力学第二定律的两种经典表述; 3、形成关于宏观热现象都具有不可逆性的概念; 4、认识到热力学第一定律与热力学第二定律具有同样重要的意义。 二、过程和方法 分析各种热学现象的过程,归纳出现象背后的普遍规律──热力学第二定律。

三、情感、态度和价值观 1、体会科学发现的曲折性和必然性; 2、体会热力学第二定律对于人类实践的指导意义。 【教学重点和难点】 重点:热力学第二定律内容的理解。 难点:热力学第二定律的两种表述的理解。 【设计思路与教学流程】 设计思路: 本节内容的课程标准是:“通过自然界中宏观过程的方向性,了解热力学第二定律。”热力学第二定律是紧跟在热力学第一定律之后的一节内容。学生早在初中就知道了能量的转化与守恒定律,在学完了热力学第一定律之后,对于能量守恒的认识就更深刻了。因此在此基础上提出“利用海水降温释放的热量作为新能源”这一设想,让学生思考、讨论而引入新课。然后再列举一些自发的热学现象,归纳出其中共同的特征:过程的不可逆性。然后就其中的热传导与功热转化两个过程具体分析,归纳出热力学第二定律的两种经典表述:克劳修斯表述和开尔文表述。热力学第二定律的实质就是指宏观自发的涉及热现象的过程都是不可逆的,任何一类宏观自发的热学过程都可以作为热力学第二定律的表述。本节课的难点在于如何理解热力学第二定律的两种表述,特别是开尔文表述。教学中尽可能多地让学生分析实例,再借助于一些多媒体素材(我利用了一些视频及热机、内燃机两个flash动画),从正、反两方面帮助学生形成对热学现象中的过程认识:热量可以自发地从高温物体传到低温物体;功可以全部转化为热;热量可以

热力学第二定律习题

热力学第二定律习题 一、热力学第二定律1.热传导的方向性①热量可以自发地从高温物体传递给低温物体.②热量从低温物体传递给高温物体,必须借助外界的帮助.2.机械能内能转化方向性①热机定义:把内能转化为机械能的机器.能量:Q1=W+Q2 效率:η100% ②机械能可以自发地全部转化为内能,而内能全部转化为机械能必须受外界影响或引起外界变化.3.第二类永动机不可制成①定义:从单一热源吸收的热量,可以全部用来做功,而不引起其他变化的机器.即:效率η=100%的机器.②原因:违背了热力学第二定律,但没有违背能量守恒定律4.热力学第二定律①两种表述:Ⅰ.不可能使热量从低温物体传递到高温物体,而不引起其他变化.Ⅱ.不可能从单一热源吸收热量并全部用来做功,而不引起其他变化.②实质:自然界中涉及到的热现象的宏观过程都具有方向性.③热力学第二定律是独立于第一定律的.5.能量耗散①定义:无法重新收集和利用的能量,这种现象为能量耗散.②反映了热现象宏观过程的方向性.二、有序、无序和熵1.能量的耗散与退化(1)能量耗散:流散的内能无法重新收集起来加以利用的现象叫做能量耗散.能量耗散从能量转化的角度反映出自然界中的宏观过程具有方向性.2﹑绝对零度不可能达到宇宙中存在着温度的下限—273.15℃,以这个下限为起点的温度叫做绝对温度,用T 表示,单位是开尔文,符号是K.绝对温度T和摄氏温度t之间的换

算关系是T=t+273.15K,热力学零度不可达到.这个结论称为热力学第三定律.3.熵增加原理(1)原理:热力学第二定律有许多表述形式,因此可以将它表述为任何孤立的系统,它的总熵永远不会减少.即自然界的一切自发过程,总是朝着熵增加的方向进行的,这个就是熵增加原理.(2)孤立系统:与外界没有物质交换.热交换,与外界也没有力的相互作用、电磁作用的系统.即强调了自发性.熵:表示孤立系统内能量的耗散和退化程度.一个系统的熵越大,就越接近平衡状态,就越不易转化.4.有序向无序的转化系统自发的过程总是从有序到无序的.熵是表征系统的无序程度的物理量,熵越大,系统的无序程度越高.第二步:【例题考点】【例题1】(2019房山区)下列热现象说法正确的是()A.物体的温度越高,说明物体分子的平均动能越大B.波涛汹涌的海水上下翻腾,说明水分子热运动剧烈C.水凝结成冰,说明水分子的热运动已停止D.空调制冷时,将热量从低温室内传到高温室外,说明热传递是随意的,不具有方向性【解析】A、温度是物体平均动能的标志,物体的温度越高,说明物体分子的平均动能越大,故A 正确。B、波涛汹涌的海水上下翻腾是宏观物体的运动,水分子热运动是微观粒子的运动,两者并不相同,故B错误。C、分子做永不停息的热运动,即使水凝结成冰,水分子的热运动也不会停止,故C错误。D、空调制冷是因为消耗电能而使压缩机工作,而不是热量自发地从低温物体传到高温物体,不能说明不存在方向性,故D 错误。【答案】A 【例题2】(2019唐山)下列说法正确的是()

相关主题
文本预览
相关文档 最新文档