当前位置:文档之家› 管道工程伴热管的设计

管道工程伴热管的设计

管道工程伴热管的设计
管道工程伴热管的设计

⒊蒸汽外伴热管的设计

(2)伴热管:

当伴热管用钢管时,一般只用无缝钢管,不用焊接钢管。如输送管为不锈钢管时其伴热管应为低碳钢管;不锈钢的仪表引线则用紫铜管;输送管为铝管时用不锈钢管伴热。

由于钢管不易随意弯曲并与输送管紧密贴靠,只用于平行法,紫铜管适用于螺旋法。

如多根敷设时按图5-9,伴热管之间用DN15隔管每隔5m一组。对于垂直输送管如需要2根以上伴热管时则在管外周均匀敷设,如图5-10。

1

图5-9 多根伴热管的敷设方法输送管直径mm

DN40、50 20

DN80-200 40

DN250以上60

2

3

⒊蒸汽外伴热管的设计

对于易受温度影响的产品,如酸、碱应在工艺管道和伴热管道之间垫上一层隔热材料(如石棉带),避免因伴热线同工艺线接触而产生高温点。一般每隔,用厚宽的石棉带做隔热材料(如图5-12)所示。对于直管部分,输送管与伴热管之间膨胀量不同,应在伴热管上设膨胀环吸收相对伸长量以减少应力。约间距设一个膨胀环或按相对伸长量每隔设一个

头处设置膨胀环,如图5-13所示。

4

图5-12带过热保护的伴热管

1.石棉;2.钢带

5

1.法兰;2.钢带;3.拌管;4.水平弯管

图5-13拌管的热补偿

另一种方法是:当伴热管长20m以上时,将其中部固定在输送管的管卡上,以便热胀量能均匀分布到伴热管

的两端,在伴热管引入点及引出处的保温层要留出约100mm长的矩形孔,为不妨碍伴热管的热胀(如图5-14)。

6

1.钢带;

2.伴热管

图5-14伴热管的热膨胀固定点

7

⒊蒸汽外伴热管的设计

(3)阀门伴热:

只有在介质温度必须保持高于130℃时,才对阀门伴热。有多根伴热管时,在阀门上最多使用2根伴热管,其余伴热管直接跨过去;或采用带蒸汽夹套的阀门。

图5-15a为伴热管为钢管时阀门处伴热的方法;图5-15b和c是为铜管螺旋形缠绕的伴热方法。

调节阀组的蒸汽伴热管敷设方法如图5-16所示。

8

图5-15阀门的伴热

9

图5-15阀门的伴热

10

输气管道工程设计条件

一、基础资料 1 需业主提供的基础资料 开展输气管道工程设计前业主至少应提供下列资料,但不限于: 1.1 设计任务书或设计委托书; 1.2 资源与市场数据。 1.3 技术要求,至少应包括: 1)管道的起、终点、系统功能、建设水平、质量要求; 2)管输气体的来源及物性; 3)管道的任务输量、最小输量、最大输量; 4)管道沿线天然气的分输或注入要求; 5)管道用户用气特点及不均匀系数; 6)上游供气方不同年份供气量及供气压力; 7)不同年份用户用气量及用气压力需求; 8)工期要求。 1.4 管网规划及与拟建管道有关的已建的管道系统状况。 1.5 业主对工程管理的要求。 1.6 经济评价与概算资料 1)资金来源及贷款方式; 2)工程建设期及分年度投资比例; 3)类似工程投资及施工情况。 2 现场需要收集的外部接口资料 2.1 自然状况资料 1 管道沿线行政区划及地方志,沿线城市、乡镇发展规划。 2 管道沿线地形、地貌及植被分布情况; 3 管道沿线资源情况,包括:矿产、农业、林业、牧业、渔业、动植物、文物保护区分布等; 4 管道沿线重要设施分布,包括:军事设施、铁路枢纽、机场、码头、水库等的分布和发展计划; 5 管道沿线附近已建管线和构筑物的情况; 6 管道沿线重大项目的建设与规划; 7 基本气象资料。根据工程规模和建设水平的要求,气象资料宜为近10、20、30 年和50 年的统计数据。包括:全年平均气温、最冷月平均气温、极端最高温度、极端最低温度;管道埋深处最高、最低、和最冷月平均地温,标准冻土深度和最大冻土深度;降雨量(当地采用的降雨量计算公式,年和逐月的平均、最大、最小降雨量、最大强度降雨量、连续降雨最多的天数)、降雪量(初雪日、终雪日、连续降雪时间、最大积雪深度)、蒸发量,年平均日照、雷电日、沙尘暴天数,冰凌、冰雹强度;相对湿度;海拔高度;当地平均大气压;近年各月最大风速及各月风向、频率或全年的和夏季的风向频率玫瑰图、最大风速和风压值、静风出现的日期和持续时间、风暴和风沙出现的时间和状况。 8 沿线人文资料; 9 沿线水利设施、水利规划及水利部门的有关规定;

输气管道设计规范 GB50251-2003

1 总则 1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0. 2 本规范适用于陆上输气管道工程设计。 1.0.3 输气管道工程设计应遵照下列原则: 1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系; 2 采用先进技术,努力吸收国内外新的科技成果; 3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。 1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。 2 术语 2.O.1 管输气体 pipeline gas 通过管道输送的天然气和煤气。 2.O.2 输气管道工程 gas transmission pipeline project 用管道输送天然气和煤气的工程。一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。 2.O.3 输气站 gas transmission station 输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。

2.O.4 输气首站 gas transmission initial station 输气管道的起点站。一般具有分离,调压、计量、清管等功能。 2.O.5 输气末站 gas transmission terminal station 输气管道的终点站。一般具有分离、调压、计量、清管、配气等功能。 2.O.6 气体接收站 gas receiving station 在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.7 气体分输站 gas distributing station 在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.8 压气站 compressor station 在输气管道沿线,用压缩机对管输气体增压而设置的站。 2.0.9 地下储气库 underground gas storage 利用地下的某种密闭空间储存天然气的地质构造。包括盐穴型、枯竭油气藏型、含水层型等。 2.O.10 注气站 gas injection station 将天然气注入地下储气库而设置的站。 2.O.11 采气站 gas withdraw station 将天然气从地下储气库采出而设置的站。 2.O.12 管道附件 pipe auxiliahes 指管件、法兰、阀门、清管器收发筒、汇管、组合件、绝缘法兰或绝缘接头等管道专用承压部件。

输气管道课程设计

输气管道课程设计 姓名:李轩昂 班级:油储1541 学号:201521054114 指导教师:任世杰

目录 前言------------------------------------------------------------------------------------------------- 4第一章设计概述---------------------------------------------------------------------------------- 5 1.1设计原则--------------------------------------------------------------------------------- 5 1.2 管道设计依据和规范----------------------------------------------------------------- 5 1.3长输气管道设计原始资料------------------------------------------------------------ 6 1.3.1天然气管道的设计输量 ------------------------------------------------------- 6 1.3.2气源特性 ------------------------------------------------------------------------- 6 1.3.3气源处理 ------------------------------------------------------------------------- 6 1.3.4管道设计参数 ------------------------------------------------------------------- 7 1.3.5基本经济参数 ------------------------------------------------------------------- 7第2章管道工艺计算---------------------------------------------------------------------------- 9 2.1天然气物性参数计算------------------------------------------------------------------ 9 2.1.1天然气的平均分子质量、平均密度和相对密度------------------------- 9 2.1.2天然气压缩因子的计算 ------------------------------------------------------- 9 2.1.3天然气粘度计算 -------------------------------------------------------------- 10 2.1.4定压摩尔比热 ----------------------------------------------------------------- 10 2.2输气管道水力计算------------------------------------------------------------------- 11 2.2.1雷诺数的计算 ----------------------------------------------------------------- 11 2.2.2管道内压力的推算 ----------------------------------------------------------- 12 2.2.3管道壁厚推算 ----------------------------------------------------------------- 12 2.3输气管道热力计算------------------------------------------------------------------- 12 2.3.1总传热系数 -------------------------------------------------------------------- 12 2.3.2天然气的平均地温 ----------------------------------------------------------- 13 2.3.3考虑气体的节流效应时输气管沿管长任意点的温度计算----------- 13 2.4管道工艺计算结果------------------------------------------------------------------- 14 2.4.1首站到分输站1 --------------------------------------------------------------- 14 2.4.2分输站1到分输站2 --------------------------------------------------------- 14 2.4.3分输点2到末点 -------------------------------------------------------------- 15

输气管道工程设计规范,gb50251-2015

输气管道工程设计规 范,gb50251-2015 篇一:输气管道设计规范GB50251-2003 1 总则 1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0. 2 本规范适用于陆上输气管道工程设计。 1.0.3 输气管道工程设计应遵照下列原则: 1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系; 2 采用先进技术,努力吸收国内外新的科技成果; 3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。 1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。 2 术语 2.O.1 管输气体pipeline gas

通过管道输送的天然气和煤气。 2.O.2 输气管道工程gas transmission pipeline project 用管道输送天然气和煤气的工程。一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。 2.O.3 输气站gas transmission station 输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 2.O.4 输气首站gas transmission initial station 输气管道的起点站。一般具有分离,调压、计量、清管等功能。 2.O.5 输气末站gas transmission terminal station 输气管道的终点站。一般具有分离、调压、计量、清管、配气等功能。 2.O.6 气体接收站gas receiving station 在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.7 气体分输站gas distributing station 在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.8 压气站compressor station 在输气管道沿线,用压缩机对管输气体增压而设置的站。

热管及热管式换热器的研究

热管及热管式换热器的研究 天津裕能环保科技有限公司李兴 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。 1热管及热管式换热器的发展 1.1热管工作原理及特点 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。另外,热管还具有优良的等温性、热流密度可变性、热流方向的可逆性、热二极管与热开关性、恒温特性以及对环境的广泛适应性等一

系列优点。 1.2热管分类 热管按其工作温度可分为:低温、中温及高温热管,选用热管时必须根据热管的工作温度来选用管内的工质。低温热管的工质有丙酮、氨、氟里昂等;中温热管的常用工质有:水、萘等,水的工作温度为90~250oC,萘的工作温度为280~400℃;高温热管的常用工质有:钠、钾等液态金属,工作温度一般在450℃以上。热管按工质回流的动力可分为:吸液芯热管、重力热管或两相闭式热虹吸管、重力辅助热管、旋转式热管、分离型热管、电流体动力学热管、电渗透热管等。根据热管翅片与管壳的连接方式可分为:串片式热管、镍铬合金钎焊热管、高频绕焊热管 3种形式 1.3热管式换热器结构及分类 由于单根热管传热量有限,于是把单根热管集中起来,形成一束置于冷、热源之间,使热源中的热量通过热管束源源不断地传至冷源,这就是热管式换热器。热管式换热器中的热管元件可以呈错列三角形排列,也可以呈顺列矩形排列。热管式换热器由热管、箱体和中间隔板组成,隔板将箱体分为两部分,形成冷、热介质的流道,隔板保证两侧流体互不混淆,热管横穿隔板,一端与热流体接触,一端与冷流体接触,冷热两端可按需加装翅片以增大传热面积。热管式换热器的基本结构。 热管式换热器按照流体的不同种类可分为:气一气型热管式换热器,气一液型热管式换热器,液一液型热管式换热器;按照热管式换热器的结构型式可分为:整体式、分离式、回转式和组合式。 1.4热管式换热器的特性

输气管道工程设计规范

输气管道工程设计规范 GB 50251-2003 ) 1、适用范围:本规范适用于陆上输气管道工程设计。 2、输气工艺: 1)输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计算,设 计年工作天数应按350d 计算(350d 是为冬夏平衡,同时最大输气量应以标态计算。)。 2)进入输气管道的气体必须除去机械杂质,且至少符合n级天然气标准(GB17820)。 3)当输气管道及其附件已按照国家现行标准《钢质管道及储罐腐蚀控制工程设计规范》 SY0007和《埋地钢质管道强制电流阴极保护设计规范》SY/T0036的要求采取了防腐措施时, 不应再增加管壁的腐蚀裕量。 4)工艺设计应确定的参数有:输气总工艺流程;输气站的工艺参数和流程;输气站的数量和站间距;输气管道的直径、设计压力及压气站的站压比。 5)管道输气应合理利用气源压力。当采用增压输送时,应合理选择压气站的站压比和 站间距。当采用离心式压缩机增压输送时,站压比宜为~,站间距不宜小于100km。 6)具有配气功能的分输站的分输气体管线宜设置气体的限量、限压设施。 7)输气管道首站和气体接收站的进气管线应设置气质监测设施。 8)输气管道的强度设计应满足运行工况变化的要求。 10)输气站应设置越站旁通。进出站管线必须设置截断阀。截断阀的位置应与工艺装置区保持一定距离,确保在紧急情况下便与接近和操作。截断阀应当具备手动操作的功能。 11)输气管道工艺设计应具被以下资料:管输气体的组成;气源数量、位置、供气量及可调范围;气源压力及可调范围,压力递减速度及上限压力延续时间;沿线用户对供气压力、供气量及其变化的要求,当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据;沿线自然环境条件和管道埋设处地温。 12)输气管道的水力计算见本标准6?9页以及简化标准的附录。 13 )输气管道安全泄放 ( 1 )输气站应在进站截断阀上游和出站截断阀下游设置泄压放空设施。 (2)输气站存在超压可能的受压设备和容器,应设置安全阀。安全阀泄放的气体可引入同级压力的放空管线。 (3)安全阀的定压(P o)应根据管道最大允许操作压力(P)确定,并应符合下列要求: a 当P W时,P o= P+; b 当v P W时,P o=; c 当P>时,P o=。 (4)安全阀泄放管直径应按照下列要求计算:

热管技术及其在热能工程中的应用

文章编号:1004-8774(2003)03-24-04 热管技术及其在热能工程中的应用 收稿日期:2002-09-09 何天荣 (湖南大学衡阳分校,湖南421101) 摘要:热管技术越来越得到人们的重视,热管的应用也日益广泛。然而,热管技术在热能动力工程上的应用还处于初期阶段。文章在介绍热管技术基本知识的基础上,介绍了热管技术在热能工程中的应用的几个方面及安全问题,用以推动热管技术的进一步发展。 关键词:热管技术;热能工程;应用与安全 中图分类号:Tk172.4 文献标识码:B Heat Pipe Technology and its Application in Thermal Engineering HE Tian-rong Abstract:Heat pipe technoIogy is getting more and more regards,and its appIications are aIso extensive increasingIy. However,in thermaI power engineering,it is stiII being earIy stage.In this paper,after the basic knowIedge of heat pipe technoIogy is introduced,we anaIyze severaI kinds of appIication of heat pipe technoIogy in thermaI engineering and security probIem thereof,in order to impeI it to deveIop further. Key words:Heat pipe technology;Thermal engineering;Application and security 1 前言 1964年热管诞生于美国的洛斯?阿拉莫斯(Los AIamos)科学实验室,1967年该实验室首次将一支实验用水热管送上了地球卫星轨道,1968年热管第一次用于测地卫星GEOS-!,用来控制仪器的温度。除空间技术外,热管相继为电子工业所采用,用来冷却电子管、半导体元件和集成电路板等电子元件,并应用于机械、电机部件的冷却。20世纪70年代热管应用于医用手术刀,随后应用的新领域是能源工程。国外用于余热回收和空调的热管换热器已部分商品化。并开展了热管技术在太阳能和地热利用方面的研究。1972年我国研制出第一根热管,它是以钠为工质的,接着研制了以氨、水、导热油为工质的热管。 热管除了在宇航、石化、电子、机械、轻纺工业及医学上的应用外,目前热管已逐渐应用于热能工程,并显示出它的强大优势。 2 热管的基本结构及原理 2.1 热管的基本结构 热管是由管壳、管芯(或称吸液管)和工作液体三部分组成,如图1所示。管壳是由碳钢、不锈钢、铜等金属材料制造的能承受一定压力的完全密闭的管状容器,内部空腔具有较高的原始真空度。管芯是紧贴管壁的由毛细多孔结构材料制成,它一般为金属丝网或烧结的金属粉末。工业用热管也有采用槽道吸液结构或丝网与槽道复合结构。工作液体是热管工作时传递热量的工作介质,一般有水、氨、甲醇、丙酮、R-21、R-113等,其中水的工作范围为45~210C。工作液在热管内呈气态和液态两种工作状态,它是在热管处于真空状态下被充入,并填满毛细材料中的微孔,然后予以密封的。 2.2 热管的工作原理 如图1所示,热管一端为蒸发段,中间一段为绝热段(即与外界无热交换),另一端为冷凝段。当蒸发段受热时,毛细材料中的液体蒸发产生蒸汽流向另一端冷凝段。冷凝端由于放热冷却使蒸汽又凝结成液体,液体再沿毛细多孔材料流回蒸发段,如此不断循环,将热量从一端传到另一端。从热管内部的工作过程来看,也对应分成三个工作段,即汽化段、输运段和放热凝结段。利用这种原理工作的热管称为毛细管式热管。 42工业锅炉2003年第2期(总第78期)

输气管道工程设计条件-精品

【关键字】方案、建议、意见、情况、道路、条件、文件、质量、增长、计划、运行、地方、系统、持续、配合、保持、发展、建设、研究、特点、位置、安全、网络、力量、基础、需要、环境、工程、项目、资源、能力、需求、方式、渠道、办法、标准、规模、结构、水平、任务、速度、分析、保护、规划、开展、管理、维护、调整、分工、方向、改革、协调、实施、规范 一、基础资料 1 需业主提供的基础资料 开展输气管道工程设计前业主至少应提供下列资料,但不限于: 1.1 设计任务书或设计委托书; 1.2 资源与市场数据。 1.3 技术要求,至少应包括: 1)管道的起、终点、系统功能、建设水平、质量要求; 2)管输气体的来源及物性; 3)管道的任务输量、最小输量、最大输量; 4)管道沿线天然气的分输或注入要求; 5)管道用户用气特点及不均匀系数; 6)上游供气方不同年份供气量及供气压力; 7)不同年份用户用气量及用气压力需求; 8)工期要求。 1.4 管网规划及与拟建管道有关的已建的管道系统状况。 1.5 业主对工程管理的要求。 1.6 经济评价与概算资料 1)资金来源及贷款方式; 2)工程建设期及分年度投资比例; 3)类似工程投资及施工情况。 2 现场需要收集的外部接口资料 2.1 自然状况资料 1 管道沿线行政区划及地方志,沿线城市、乡镇发展规划。 2 管道沿线地形、地貌及植被分布情况; 3 管道沿线资源情况,包括:矿产、农业、林业、牧业、渔业、动植物、文物保护区分布等; 4 管道沿线重要设施分布,包括:军事设施、铁路枢纽、机场、码头、水库等的分布和发展计划; 5 管道沿线附近已建管线和构筑物的情况; 6 管道沿线重大项目的建设与规划; 7 基本气象资料。根据工程规模和建设水平的要求,气象资料宜为近10、20、30 年和50 年的统计数据。包括:全年平均气温、最冷月平均气温、极端最高温度、极端最低温度;管道埋深处最高、最低、和最冷月平均地温,标准冻土深度和最大冻土深度;降雨量(当地采用的降雨量计算公式,年和逐月的平均、最大、最小降雨量、最大强度降雨量、连续降雨最多的天数)、降雪量(初雪日、终雪日、连续降雪时间、最大积雪深度)、蒸发量,年平均日照、雷电日、沙尘暴天数,冰凌、冰雹强度;相对湿度;海拔高度;当地平均大气压;近年各月最大风速及各月风向、频率或全年的和夏季的风向频率玫瑰图、最大风速和风压值、静风出现的日期和持

GB50369-2006油气长输管道工程施工及验收规范

中华人民共和国建设部公告 第407号 建设部关于发布国家标准《油气长输管道工程施工及验收规范》的公告 现批准《油气长输管道工程施工及验收规范》为国家标准,编号为:GB 50369—2006,自2006年5月1日起实施。其中,第4.1.1、4.2.1、10.1.4、1O.3.2、10.3.3(2、3、4)、 10.3.4、14.1.1、14.1.2、14.2.2条(款)为强制性条文,必须严格执行。 本规范由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 前言 本规范是根据建设部建标[2002]85号《关于印发“二00一年至二O0二年度工程建设国家标准制订、修订计划”的通知》文件的要求,由中国石油天然气集团公司组织中国石油天然气管道局编制完成的。 本规范共分19章和3个附录,主要内容包括:总则,术语,施工准备,材料、管道附件验收,交接桩及测量放线,施工作业带清理及施工便道修筑,材料、防腐管的运输及保管,管沟开挖,布管及现场坡口加工,管口组对、焊接及验收,管道防腐和保温工程,管道下沟及回填,管道穿(跨)越工程及同沟敷设,管道清管、测径及试压,输气管道干燥,管道连头,管道附属工程,健康、安全与环境,工程交工验收等方面的规定。 在本规范的制定过程中,规范编制组总结了多年油气管道施工的经验,借鉴了国内已有国家标准及行业标准和国外发达工业国家的相关标准,并以各种方式广泛征求了国内有关单位、专家的意见,反复修改,最后经审查定稿。 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由建设部负责管理和对强制性条文的解释,由中国石油天然气管道局负责具体技术内容解释。本规范在执行过程中,请各单位结合工程实践,认真总结经验,如发现需要修改或补充之处,请将意见和建议寄交中国石油天然气管道局质量安全环保部(地址:河北省廊坊市广阳道,邮编:065000),以便今后修订时参考。 本规范主编单位、参编单位和主要起草人: 主编单位:中国石油天然气管道局 参编单位:中国石油集团工程技术研究院 主要起草人:魏国昌陈兵剑郑玉刚王炜续理 高泽涛马骅苏士峰陈连山钱明亮 胡孝江姚士洪葛业武李建军隋永莉 田永山杨燕徐梅李林田宝州 1 总则

192空调用热管换热器的设计计算全文

空调用热管换热器的设计计算 西安工程大学 王晓杰 黄翔 武俊梅 郑久军 摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在空调领域热管技术也逐渐受到重视,除了理论研究热管技术在空调领域的应用外,设计出合适的换热设备对热管在空调领域的应用也及其重要。热管换热器的计算内容主要有热力计算和校核计算。其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。空调用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在制冷空调领域的应用研究。 关键词: 热管 空调 热力计算 1 引言[1][2][4] 热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,制冷空调领域冷冷热流体温差小,因此热管技术也逐渐受到重视。根据实际需要设计出合理的热管换热器对于空调领域来说也极为重要。 同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。在这里主要对热管换热器的热力计算做个介绍。热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。从而避免露点腐蚀及因结露而形成的灰堵。 空调系统要处理的对象一般为室外新风或是室内排风,都属于气态介质,因此空调用热管换热设备为气-气热管换热器。本文将对空调用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是待处理室外新风,二次空气可以是室内排风或室外新风。 2 热管换热器的设计计算[3][4] 2.1已知设计参数 一次空气质量流量M h , 进出口温度T 1,T 1’,二次空气质量流量M c , 进出口温度T 2,T 2’。一般六个已知量中,只要给定5个即可,另一个参数可由热平衡方程算出,如需要,还需给出一、二次空气的允许压降,二次空气出口温度未知时的计算过程为: ①一次空气定性温度T h =2 ' 11T T + (1) 查定性温度下的一次空气物性参数:定压比密度h p C 导热系数h λ粘度h μ 普兰德数h r P ②一次空气放出热量)(' 11T T C M Q h p h h -= (2)

油气输送管道穿越工程设计要求规范(GB50423-2015)

油气输送管道穿越工程设计规范(GB50423-2007) 3.1 基础资料 3.1.1 穿越工程设计前,应取得所输介质物性资料及输送工艺参数。其要求应按现行国家标准《输油管道工程设计规范》GB 50253和《输气管道工程设计规范》GB 50251的规定执行。 3.1.2 穿越工程设计前,应根据有关部门对管道工程的环境影响评估报告、灾害性地质评估报告、地震安全评估报告及其他涉及工程的有关法律法规,合理地选定穿越位置。穿越有防洪要求的重要河段,应根据水务部门的防洪评价报告,选定穿越位置及穿越方案。 3.1.3 选定穿越位置后,应按照国家现行标准《长距离输油输气管道测量规范》SY/T 0055和《油气田及管道岩土工程勘察规范》SY/T 00 53,根据设计阶段的要求,取得下列测量和工程地质所需资料: 1 工程测量资料,包括1:200~1:2000,平面地形图(大、中型工程)与断面图; 2 工程地质报告,包括1:200~1:2000地质剖面图、柱状图、岩土力学指标、地震、水文地质及工程地质的结论意见。 3.1.4 应根据下列钻孔布置要求获取地质资料: 1 挖沟埋设穿越管段,应布置在穿越中线上。 2 水平定向钻、顶管或隧道敷设穿越管段,应交叉布置在穿越中线两侧各距15~50m处。在岩性变化多时,局部钻孔密度孔距可布置为20~30m。 3.1.5 根据现行国家标准《中国地震动参数区划图》GB 18306,位于地震动峰值加速度a≥0.19地区的大中型穿越工程,应查清下列四种情况,并取得量化指标: 1 有无断层及断层活动性质、一次性最大可能错动量。 2 地震时两岸或水床是否会出现开裂或错动。 3 地震时是否会发生基土液化。 4 地震时是否会引起两岸滑坡或深层滑动。 3.1.6 穿越管段应有防腐控制的设计资料。 3.2 材料 3.2.1 穿越工程用于输送油气的钢管,应符合现行国家标准《石油天然气工业输送钢管交货技术条件第1部分:A级钢管》GB/T 97 11.1或《石油天然气工业输送钢管交货技术条件第2部分:B 级钢管》GB/T 9711.2的规定,并应根据所输介质、钢管直径、钢管壁厚、使用应力与设计使用温度等补充有关技术条件要求。对于管径小于DN300,设计压力小于6.4MPa的输油钢管或设计压力小于 4.0MP a的输气钢管,可采用符合现行国家标准《输送流体用无缝钢管》GB/

GB50253-2003输油管道工程设计规范解析

1总则 1. 0. 1为在输油管道工程设计中贯彻执行国家现行的有关方针政策,保证设计质量,提高设计水平,以使工程达到技术先进、经济合理、安全可靠及运行、管理、维护方便,制定本规范。 1.0.2本规范适用于陆上新建、扩建或改建的输送原油、成品油、液态液化石油气管道工程的设计。 1. 0. 3输油管道工程设计应在管道建设、营运经验和吸取国内外先进科技成果的基础上合理选择设计参数,优化设计。 1. 0. 4输油管道工程设计除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 2术语 2. 0. 1输油管道工程oil pipeline project 用管道输送原油、成品油及液态液化石油气的建设工程。一 般包括输油管线、输油站及辅助设施等。 2.0.2管道系统pipeline system 各类型输油站、管线及输送烃类液体有关设施的统称。 2.0.3输油站oil transport station 输油管道工程中各类工艺站场的统称。 2.0. 4首站initial station 输油管道的起点站。 2. 0. 5末站terminal 输油管道的终点站。 2. 4. 6中间站intermediate station 在输油首站、末站之间设有各类站场的统称。 2. 0. 7中间热泵站intermediate heating and pumping station 在输油首站、末站之间设有加热、加压设施的输油站。

2. 0. 8中间泵站intermediate pumping station 在输油首站、末站之间只设有加压设施的输油站。 2.0.9中间加热站intermediate heating station 在输油首站、末站之间只设有加热设施的输油站。 2. 0. 10输人站input station 向管道输入油品的站。 2. 0. 11分输站off-take station 在输油管道沿线,为分输油品至用户而设置的站。 2. 0. 12减压站pressure reducing station 由于位差形成的管内压力大于管道设计压力或由于动压过大,超过下一站的允许进口压力而设置减压装置的站。 2. 0.13弹性弯曲elastic bending 管道在外力或自重作用下产生的弹性限度范围内的弯曲变形。 2.0.14顺序输送hatch transportation 多种油品用同一管道依次输送的方式。 2. 0.15翻越点turnatrer point 输油管道线路上可能导致后面管段内不满流(slack f low)的某高点。 2.0.16一站控制系统,ration control system 对全站工艺设备及辅助设施实行自动控制的系统。 2. 0. 17管件pipe fittings 弯头、弯管、三通、异径接头和管封头等管道上各种异形连接件的统称。 2. 0. 18管道附件pipe accessories 管件、法兰、阀门及其组合件,绝缘法兰、绝缘接头、清管器收发筒等管道专用部件的统称。 2. 0. 19最大许用操作压力maximum allowable operating pressure(MADP) 管道内的油品处于稳态(非瞬态)时的最大允许操作压力。其值应等于站间的位差、摩阻损失以及所需进站剩余压力之和。 2. 0. 20 U管道设计内压力pipeline internal design pressure 在相应的设计温度下,管道或管段的设计内压力不应小于管道在操作过程中管内

空气预热器方案说明

10吨蒸汽锅炉空气预热器方案 (节煤率5%以上;提高锅炉岀功10%以上) 一、热管式空气预热器的工作原理及优点 热管式空气预热器的主要传热元件为重力式热管,重力式热管的基本结构如图1所示。热管由管壳、外部扩展受热面、端盖等部分组成,其内部被抽成1.3×(10-1—10-4)Pa的真空后,充入了适量的工作液体。 图1 热管传热原理简图 热管的传热机理是:当热流体流经热管的蒸发段时热量经由扩展受热面和管壁传递给工质,由于管内的真空度较高,工质在较低温度下开始沸腾,沸腾产生的蒸汽流向冷凝段冷凝放出热量,热量再经管壁和扩展受热面传递给冷流体,冷凝后的工质在重力的作用下流回蒸发段,如此循环不已,热量就不断的由热流体传递给了冷流体。 热管的传热机理决定着热管有以下基本特性:①极高的轴向导热性:因在热管内部主要靠工作液体的汽、液相变传热,热阻趋于零,所以热管具有很高的轴向导热能力。与银、铜、铝等金属相比,其导

热能力要高出几个数量级。②优良的等温性:热管内腔中的工质蒸汽处于饱和状态,蒸汽在从蒸发段流向冷凝段时阻损很小,在整个热管长度上,蒸汽的压力变化不大,从而也就决定着在整个热管长度上温度变化不大,所以说热管具有优良的等温性。 由热管组成的热管式空气预热器具有以下的优点:①由热管的等温性决定着在预热器中每排热管都工作在一个较窄的温度范围内,这样就可以通过结构调整使每排热管的壁温高于露点温度,从而避免发生结露、腐蚀和堵灰的现象,从而保证了锅炉不会因为空气预热器的堵灰、引风机出力不足,影响锅炉的正常运行的情况。而管式预热器由于烟气在管内流动时烟温逐渐降低,所以每根管子的壁温都是沿烟气的流动方向逐渐降低的,在每根管子的烟气出口部位,由于烟温和空气温度均较低,很容易发生结露、黏灰、堵灰的现象,影响引风机的抽力,从而影响锅炉的正常运行。②一般管式空气预热器设计和烟气流速较高(11—14m/S),且换热管用壁厚较小(约1.5mm)的焊接管,所以管子很容易磨穿,产生漏风,引起鼓、引风机的电耗增加。而热管式空气预热器,管子为无缝钢管,强化换热主要靠扩展受热面,烟气流速设计较低(6—8m/S),磨损较轻。另外热管式空预器中通过中隔板使冷热流体完全分开,在运行过程中即使单根热管因为磨损、腐蚀、超温等原因发生泄露,也只是单根热管失效,而不会发生漏风现象。③在热管式空气预热器中烟气和空气均横向冲刷管子外侧,烟气横向冲刷管子外侧要比纵向冲刷管子内侧传热系数高出20%--30%。在热管式空气预热器中可以比较容易的实现冷、热流体的完全逆流换热,获得最大的对数温差。另外在保证管壁温度不太低的情况下,烟气侧和空气侧的受热面均可获得充分的扩展。这样空气预热器可以做的非常紧凑,一般在相同的换热量的情况下,热管式空预器比管式空预器体积减少1/3,烟气总流阻减少1/2。④在相同的

天然气输气管线工程设计方案

天然气输气管线工程设计方案 一、工程名称:天然气输气管线工程 二、工程地点:。 三、工程容: 本工程为至天然气输气管线工程,管线规格是φ57×3.5的20#无缝钢管(GB/T8163-2008),输送距离约为7000m. 管线沿途主要以埋地敷设为主。 四、工期要求: 整个工程在30天完成。 五、施工依据及验收规: 1、《凉水至护山天然气输气管线工程施工设计图》; 2、《输气管道工程设计规》GB50251-2003; 3、《城镇燃气设计规》GB50028-2006; 4、《油气长输管道工程施工及验收规》 GB 50369-2003; 5、《输送流体用无缝钢管》GB/T8163-2008; 6、《城镇燃气输配工程施工及验收规》CJJ33-2005; 7、《钢质管道外腐蚀控制规》 GB/T21447-2008; 8、《现场设备、工业管道焊接施工及验收规》GB50236-1998; 9、《石油天然气钢质管道无损检测》SY/T4109-2005; 10、《埋地钢质管道聚乙烯防腐层技术标准》 SY/T0413-2002; 11、《油气输送用钢制弯管》 SY/T5257-2004

第二章施工方案 一、施工准备: 1、由项目责任人员与建设方以及设计方一道进行技术交底和现场踏勘,共同核对有关资料。 2、由项目责任人员及有关技术人员一道进行施工图的会审,并编制有关工艺及方案。 3、由项目责任人员对施工人员进行技术方案交底,发放施工资料,进行安全、技术培训。 4、根据现场施工需要,列出进场设备、仪器清单。技安员对进场设备和仪器进行检查,确保其完好性、安全性及有效性。经常进行设备保养和检修,使其始终处于良好的运行状态,满足施工要求。 5、加强钢管、阀门等原材料的供应管理,保证在各项工作需要时准时提供。 6、材料存放 6.1钢管、管道附件、防腐材料及其它设备材料应按产品说明书的要求妥善保管,存放过程中应注意检查,以防锈蚀、变形、老化或性能下降。 6.2焊材等材料应存放在库房中,其中焊条应存放在通风干燥的库房,焊条长期存放时的相对湿度不宜超过60%。钢管、管件、沥青等材料或设备可以分类露天存放,存放场地应平整、无石块,地面无积水。存放场地应保持1%~2%的坡度,并设有排水沟。易燃、易爆物品的库房应配备消防器材。 6.3防腐管应同向分层码垛堆放,堆放高度不宜超过3m,且应保证管子不失稳变形、不损坏防腐层。 7、原材料的检验、验收 7.1对施工用所有的材料进行验收,检查材料的外观或包装、合格证、

输气管道工程设计规范2015

输气管道工程设计规范 1 总则 2 术语 3 输气工艺 3.1一般规定 3.1.1 输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计量。当采用年输气量时,设计年工作天数应按350d计算。 3.1.2进入输气管道的气体应符合现行国家标准《天然气》GB17820中二类气的指标,并应符合下列规定: 1 应清除机械杂质; 2 露点应比输送条件下最低环境温度低5℃; 3 露点应低于最低环境温度; 4 气体中硫化氢含量不应大于20mg/m3; 5 二氧化碳含量不应大于3%。 3.1.3 输气管道的设计压力应根据气源条件、用户需求、管材质量及管道附近的安全因素,经技术经济比较后确定。 3.1.4 当输气管道及其附近已按现行国家标准《钢质管道外腐蚀控制规范》GB/T21447和《埋地钢质管道阴极保护技术规范》GB/T21448的要求采取了防腐措施时,不应再增加管壁的腐蚀裕量。 3.1.5 输气管道应设清管设施,清管设施与输气站合并建设。 3.1.6 当管道采用内壁减阻涂层时,应经技术经济比较确定。 3.2工艺设计 3.2.1工艺设计应根据气源条件、输送距离、输送量、用户的特点和要求以及与已建管网和地下储气库容量和分布的关系,对管道进行系统优化设计,经综合分析和技术经济对比后确定。 3.2.2 工艺设计应确定下列内容: 1 输气总工艺流程; 2 输气站的工艺参数和流程; 3 输气站的数量及站间距; 4 输气管道的直径、设计压力及压气站的站压比。

3.2.3 工艺设计中应合理利用气源压力。当采用增压输送时,应结合输量、管径、输送工艺、供电及运行管理因素,进行多方案技术经济必选,按经济和节能的原则合理选择压气站的站压比和确定站间距。 3.2.4 压气站特性和管道特性应匹配,并应满足工艺设计参数和运行工况变化的要求。再正常输气条件下,压缩机组应在高效区内工作。 3.2.5 具有分输或配气功能的输气站宜设置气体限量、限压设施。 3.2.6 当输气管道起源来自油气田天然气处理厂、地下储气库、煤制天然气工厂或煤层气处理厂时,输气管道接收站的进气管线上应设置气质监测设施。 3.2.7 输气管道的强度设计应满足运行工况变化的要求。 3.2.8 输气站宜设置越站旁通。 3.2.9进、出输气站的输气管线必须设置截断阀,并应符合现行国家标准《石油天然气工程设计防火规范》GB50183的有关规定。 3.3 工艺设计与分析 3.3.1 输气管道工艺设计至少应具备下列资料: 1 管道气体的组成; 2 气源的数量、位置、供气量及其可变化范围; 3 气源的压力、温度及其变化范围; 4 沿线用户对供气压力、供气量及其变化的要求。当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据; 5 沿线自然环境条件和管道埋设处地温。 3.3.2 输气管道水力计算应符合下列规定: 1 当输气管道纵断面的相对高差Δh ≤200m 且不考虑高差影响时,应按下式计算: 5.052221)(1051???????-=TL Z d P P q v λ (3.3.2—1) 式中:v q ——气体(P 0=0.101325MPa ,T=293K )的流量(m 3/d ); P 1——输气管道计算段的起点压力(绝)(MPa ); P 2——输气管道计算段的终点压力(绝)(MPa ); d ——输气管道内径(cm ); λ——水力摩阻系数; Z ——气体的压缩因子; ?——气体的相对密度; T ——输气管道内气体的平均温度(K ); L ——输气管道计算段的长度(km )。 2 当考虑输气管道纵断面的相对高差影响时,应按下列公式计算: 5 .01152221)(21)1(1051??? ?????????????????++??+-=∑=-n i i i i v L h h L TL Z d h P P q αλα (3.3.2—2)

相关主题
文本预览
相关文档 最新文档