当前位置:文档之家› 肌肉的收缩原理

肌肉的收缩原理

肌肉的收缩原理
肌肉的收缩原理

肌肉的收缩原理

一肌肉的收缩过程

(一)肌丝滑动学说

在十九世纪就已经用光学显微镜观察到肌小节中的带区。同时还观察到,当肌肉缩短或被牵张时肌小节的长度发生变化。Andrew F. Huxley和R. Niedergerke用特制的干涉显微镜精确地测量肌小节的长度,在1954年确认了十九世纪的报告,即在肌肉缩短时A带的宽度保持不变,而I带和H区变窄。在肌肉被牵张时,A带的宽度仍然保持不变,而I带和H区变宽。同年,Hugh E. Huxley 和Jean Hanson 报告,用相差显微镜观察到在肌小节缩短或被牵张时,肌球蛋白丝和肌动蛋白丝的长度不变,而肌球蛋白丝和肌动蛋白丝重叠的程度发生变化。主要基于这两方面的证据,H. E. Huxley 和A. F. Huxley 在1954年分别独立的提出肌肉收缩的肌丝滑行学说(sliding-filament theory of muscle contraction)。这个学说认为在收缩时肌小节的缩短(也就是肌肉的缩短)是细肌丝(肌动蛋白丝)在粗肌丝(肌球蛋白丝)之间主动地相对滑行地结果。肌小节缩短时,粗肌丝、细肌丝地长度都不变,只是细肌丝向粗肌丝中心滑行。由于粗肌丝地长度不变,因之A带地宽度不变。由于肌小节中部两侧地细肌丝向A带中间滑行,逐渐接近,直到相遇,甚至重叠起来,因此H区地宽度变小,直到消失,甚至出现反映细肌丝重叠地新带区。由于粗肌丝、细肌丝相向运动,粗肌丝地两端向Z线靠近,所以I带变窄。当肌肉牵张或被牵张时,粗肌丝、细肌丝之间地重叠减少。

肌丝滑行学说根本不同于早期地肌肉收缩学说。早期有些研究者曾经提出,肌肉收缩是由于蛋白质分子本身地缩短。蛋白质分子地缩短或是由于折叠型分子增加折叠地结果;或是由于螺旋形分子改变螺旋距或直径地结果。与此相反,肌丝滑行学说主张长度不变地肌丝主动相对滑行是由于肌球蛋白横桥地活动在肌球蛋白丝与肌动蛋白丝之间产生力的结果。

在完整机体内,肌肉的收缩是由运动神经以冲动形式传来的刺激引起的。神经冲动经神经肌肉接点传至肌膜,首先引起肌细胞兴奋,继而触发横桥运动,产生肌肉收缩,收缩肌肉又必须舒张才能进行下一次收缩。因此,从肌细胞兴奋开始,肌肉收缩的过程应包括三个互相衔接的环节:①肌细胞兴奋触发肌肉收缩,即兴奋—收缩耦联;②横桥运动引起肌丝滑行;③收缩肌肉的舒张。

①兴奋—收缩耦联肌细胞兴奋触发肌肉收缩的过程又称兴奋—收缩耦联(Excitation-contraction Coupling)。因为肌细胞的兴奋过程是以肌细胞膜的电变

化为特征的,而收缩过程则以肌丝滑行为基础,它们有着不同的生理机制,兴奋—收缩耦联就是将上述两个过程联系起来的中介过程。

在脊椎动物的骨骼肌上,运动轴突末梢的动作电位引起神经递质乙酰胆碱的释放,这又引起肌肉终板上产生突出后电位,即终板电位。终板电位又相继引起肌纤维膜上全或无的肌肉动作电位。动作电位从终板两端传播开,使整个肌纤维膜兴奋。在动作电位达到顶点之后几毫秒肌纤维产生全或无的收缩(见图4-13)。肌膜上的动作电位出发肌纤维收缩的一系列过程叫做兴奋收缩耦联。

目前认为兴奋—收缩耦联至少包括三个步骤:动作电位通过横管系统传向肌纤维深处;三联管结构传递信息;纵管系统对钙离子的释放和再聚积。即当肌细胞兴奋时,动作电位沿横管系统进入三联管,横管膜去极化并将信息传递给纵管系统,使相邻的终池膜对钙离子的通透性增大,钙从贮存的终池内大量释放出来,并扩散到肌浆中,使肌浆钙的浓度迅速升高(图1-9)(由安静时10-7ml/l,在很短时间内升高到10-5ml/l,约增大100倍),随后触发肌肉收缩。钙离子被认为是兴奋—收缩耦联的媒介物。

②横桥运动引起肌丝滑行安静时肌肉已具备收缩的条件,肌肉之所以不产生收缩,是因为存在于横桥和肌动蛋白之间的原肌球蛋白分子将肌动蛋白上能与横桥结合的位点掩盖了起来,形成所谓肌肉收缩的抑制因素,而触发该抑制因素的解除,是肌浆中的钙离子及其引起的肌钙蛋白构型的改变。由此,一般认为肌肉收缩的基本过程是:当肌浆钙离子的浓度升高时,细肌丝上对钙离子有亲和

力的肌钙蛋白结合足够钙离子,引起自身分子构型发生变化,这种变化又传递给原肌球蛋白分子,使后者构型亦发生变化,其结果,原肌球蛋白分子的双螺旋体从肌动蛋白双螺旋结构的沟沿滑到沟底,抑制因素被解除,肌动蛋白上能与横桥结合的位点暴露出来。横桥与肌动蛋白结合形成肌动球蛋白,后者激活横桥上ATP酶的活性,在镁离子参与下,结合在横桥上的ATP分解释放能量,横桥获能发生向粗肌丝中心方向倾斜摆动,牵引细肌丝向粗肌丝中央滑行。当横桥角度发生变化时,横桥上与ATP结合的位点被暴露,新的ATP与横桥结合,横桥与肌动蛋白解脱,并恢复到原来垂直的位置。紧接着横桥又开始与下一个肌动蛋白的位点结合,重复上述过程,进一步牵引细肌丝向粗肌丝中央滑行。只要肌浆中钙离子浓度不下降,横桥的运动就不断进行下去,将细肌丝逐步拖向粗肌丝中央,肌节缩短,肌肉出现缩短(图1-10)。

横桥活动地详细情况还未确定,现将目前已了解地总结如下:

A肌球蛋白地横桥头部一系列位点地第一个首先附着于肌动蛋白丝相应地位点上,接着第二、第三、第四……个位点附着于肌动蛋白丝其他相应地位点上,每一个位点都比前一个位点有更强地肌球蛋白-肌动蛋白结合力。

B 这种结合产生肌球蛋白头部地转动,牵伸肌球蛋白头部与粗肌丝之间地横桥连接。横桥接连地弹性使头部步进式转动不致产生大的突然地张力。

C 横桥连接中地张力传递给肌球蛋白丝,产生滑行运动,由牵伸横桥连接引起地张力消失。

D 头部转动完成后,肌球蛋白头部与肌动蛋白丝分离,转回到舒张时的位置。Mg2+-ATP附着于头部酶位点水解。ATP水解引起肌球蛋白头部构象变化,使头部处于贮能状态。当肌球蛋白头部再次附着于肌动蛋白丝时,贮存的能量用于头部顶着肌动蛋白转动,产生主动滑行。接着肌球蛋白与肌动蛋白丝分离,沿着肌动蛋白丝再前进一步重复这个周期性的活动。这样,肌小节中无数的横桥的附着、转动和分离活动一小步一小步的产生着滑行运动。

上述过程有两点值得注意,首先,ATP并不是直接用于产生横桥力,而是先附着于肌球蛋白头部使之与肌动蛋白丝分离,ATP水解产生的能量贮存再分离的肌球蛋白头部,然后肌球蛋白头部才能重新附着于肌动蛋白,利用这些能量重复这种周期性活动。其次,横桥附着活动要求细胞内游离的钙离子浓度在10-7摩以上才能进行。

肌肉收缩是横桥活动的结果,但是横桥活动引起肌肉缩短只能发生在外负荷允许肌肉缩短时(等张收缩)。如果外负荷阻碍肌肉缩短(等长收缩),横桥活动仍然产生张力。

③. 收缩肌肉的舒张当刺激中止后,终池膜对钙离子通透性降低,纵管膜上的钙泵作用加强,不断将肌浆中的钙离子回收进入终池,肌浆钙离子浓度下降,

钙与肌钙蛋白结合消除,肌钙蛋白恢复到原来构型,继而原肌球蛋白也恢复到原来构型,肌动蛋白上与横桥结合的位点重新被掩盖起来,肌丝由于自身的弹性回到原来位置,收缩肌肉产生舒张。

因此可以从神经肌肉兴奋过程进行对从刺激神经到肌肉收缩这一系列过程进行概述,动物体内整个神经肌肉的兴奋过程大致概述如下:

1)中枢神经系统内地运动神经元由于细胞体或树突受到突触活动地影响可以引发动作电位,并在运动轴突(传出纤维)上传播。

2)运动轴突上地动作电位引起神经肌肉接点上地轴突末梢释放乙酰胆碱。

3)乙酰胆碱与终膜上地受体结合。

4)这种结合激活了受体地离子通道,产生终板电极。

5)终板电极引起肌膜去极化达到阀电位,再启动肌肉动作电位,传遍肌膜。

6)乙酰胆碱被终膜上地胆碱酯酶迅速分解。

7)肌纤维膜上地动作电位沿横管传到肌纤维深部(图4-16)。

8)电信号沿横管传播,由于某种现在还不清楚地原因影响到肌质网。

9)肌质网侧囊释放钙离子。

10)细胞质终钙离子浓度由静息时在10-7摩以下增加到激活水平10-6摩或更高。钙与肌钙蛋白结合,产生构象变化。

11)这种构象变化引起原肌球蛋白位置地变化,消除了对横桥与肌动蛋白丝结合的空间障碍。

12)横桥头部一位点附着于肌动蛋白丝,接着一系列位点相继附着,引起肌球蛋白头部推动肌动蛋白丝并牵伸横桥连接。

13)这种牵伸使得肌动蛋白丝向A带终主动滑行。肌小节缩短一小段。

14)Mg2+ATP附着于肌球蛋白头部ATP酶位点,头部与肌动蛋白丝分离,ATP 水解,水解产生的能量使肌球蛋白分子发生构象变化,然后其头部再附着于肌动

蛋白丝的下一个位点,重复12)-13)的周期活动。在一次单收缩中,横桥多次重复12)-13)的周期活动。

15)最后,由于肌质网主动将钙离子吸入侧囊,肌浆中钙离子浓度下降,肌钙蛋白重新抑制横桥的附着活动,因之肌肉舒张,直到下一次去极化。

(二)钙在肌肉收缩中的作用

钙离子在肌肉收缩中起着重要的作用,但这在钙螯合剂EDTA、EGTA发现以前是不容易察觉的。因为钙离子起作用的浓度很低(10-7摩或以上),一般情况下很难使钙离子浓度低于这个水平,甚至双蒸馏水所含钙离子的浓度也超过10-5摩。现在已经研究清楚,肌肉细胞内钙离子浓度低于10-7摩时,肌肉不能收缩。这是由于肌动蛋白丝上有两种调节蛋白(肌钙蛋白复合体与原肌球蛋白)在起着抑制收缩的作用。S. Ebashi的试验指出,肌钙蛋白复合体和原肌球蛋白妨碍横桥附着在肌动蛋白丝上。肌钙蛋白是脊椎动物横纹肌肌丝中仅有的能与钙离

子结合的蛋白质。每个肌钙蛋白复合体可以结合4个钙离子。沿着肌动蛋白丝每40纳米有1个肌钙蛋白复合体与肌动蛋白丝和原肌球蛋白相连接。在静息状态时,原肌球蛋白所处的位置妨碍肌球蛋白头部与肌动蛋白丝结合。肌钙蛋白复合体与钙离子结合后构象发生变化,使原肌球蛋白离开原位,让肌球蛋白横桥附着于肌动蛋白位点(图4-12)。钙离子与肌钙蛋白结合,解除了对横桥活动的经常性的抑制,引起肌肉收缩。除去肌肉中的钙离子则收缩停止,而肌肉中钙离子浓度的调节又与肌膜上的电活动相关联。

二单收缩和强直收缩

(一)单收缩

整块肌肉或单个肌纤维接受一次短促的刺激后,先产生一次动作电位,紧接着所进行的一次机械性收缩,称为单收缩(Single Muscle Twitch)。单收缩反映了肌肉收缩的最基本特征。在生理实验中,通过记录肌肉单收缩曲线(如图1-11),可显示肌肉收缩分为三个时期,即潜伏期、收缩期和舒张期。潜伏期(latent period)从肌肉接受刺激开始,到肌肉开始收缩为止,这一时期肌肉无明显的外部表现,系肌肉接受刺激产生兴奋、兴奋传导、以及兴奋—收缩耦联所经历的时间。快纤维的潜伏期短到10毫秒,而慢纤维的潜伏期可达100毫秒或更长。收缩期与舒张期以肌肉收缩时张力或长度变化达到最大时为界。从肌肉开始收缩到收缩的最高点,这段时间叫做收缩期(contraction period)。从收缩的最高点到肌肉恢复惊喜状态,这段时间叫做舒张期(relaxation period) 。显然,舒张期的时间要比收缩期时间长得多,单收缩曲线是非对称曲线。

(二)强直收缩

实验时,如果给予肌肉一连串的刺激,只要每次刺激的间隔时间不短于单收缩所需要的时间,肌肉即出现一连串的单收缩。若增加刺激的频率,使每次刺激的间隔短于单收缩所持续的时间,肌肉的收缩将出现融合现象,即肌肉不能完全舒张(如图1-12所示),为强直收缩。强直收缩有两种。一种在增加刺激频率时,肌肉未完全舒张就产生第二次收缩,肌肉收缩出现部分的融合,称为不完全强直收缩(Incomplete Tetanus)。不完全强直收缩曲线呈锯齿状。另一种,如果继续增加刺激频率,使肌肉在前一次收缩期末就开始第二次收缩,肌肉收缩反应出现完全的融合,称为完全强直收缩(Complete Tetanus)。完全强直收缩曲线为一条平整的光滑曲线,其收缩反应远远大于单收缩,有报道,在最大完全强直收缩时,肌肉收缩产生的张力是单收缩的4倍。人体进行各种运动时,其肌肉收缩都属于完全强直收缩,而强直收缩的持续时间,则受神经传来的冲动所控制。

强直收缩产生的力量比单收缩要大,是因为,在单收缩时一部分能量消耗

在反复克服肌肉结缔组织和肌中其它成分的长度变化上,而在强直收缩时,由于不允许肌肉回到其静息长度,故不需要把这部分能量消耗在反复克服组织内部的阻力上,使收缩的能量更多地用于肌肉做功。

引起肌肉完全强直所需要的最低刺激频率,称为临界融合频率,它取决于肌肉单收缩时间的长短。临界融合频率与单收缩的收缩时间成反比,收缩时间越短则临界融合频率越高。不同肌肉临界融合频率是不一样的。如猫眼内直肌收缩时间为7.5毫秒,临界融合频率为每秒350次,腓肠肌的收缩时间为25-40毫秒,临界融合频率为每秒100次,比目鱼肌的收缩时间为90-120毫秒,临界融合频率为每秒30次。眼内直肌则为每秒300次。肌肉的兴奋和收缩是不同的过程,在完全强制收缩中,收缩可以完全融合,但肌肉的动作电位并不融合,而是各自分离的锋电位。

(三)刺激强度、刺激频率与肌肉收缩的关系

用单电震刺激神经引起所支配的肌肉收缩。如前所述,如刺激强度低于阀强度则不引起肌肉的反应。刚刚可以引起肌肉最小收缩反应的最低强度称为阀强度,这种强度的刺激称为阀刺激。逐步增加刺激强度则肌肉收缩反应逐步增大。

可以从神经与肌肉的关系进一步分析肌肉收缩反应的变化。每一运动神经元发出的传出纤维在肌肉内分成许多小分支,每一分支支配一条肌纤维。来自这一运动神经元的冲动同时传给它所支配的全部肌纤维,使这些肌纤维同时收缩。一个运动神经元及其传出纤维所支配的肌纤维组成一个运动单位(motor unit)。运动单位有大有小,眼外直肌中,每一运动单位只有几条肌纤维,而二头肌中,每一运动单位有1000-2000条肌纤维。因此,可以设想,阀刺激只是引起极少数的运动单位收缩,出现最小的收缩反应。随着刺激强度的增加,兴奋更多的运动单位,形成更大的收缩反应。当全部运动单位兴奋,则出现最大的收缩反应,引起最大收缩反应的最小刺激强度叫做顶强度。刺激强度超过顶强度的单个刺激也不会引起更大的反应。

肌肉收缩反应的大小取决于刺激强度与频率;增加刺激强度则参与收缩的运动单位增多;增加刺激频率则形成收缩的总和(summation of contraction)。两个阀上刺激相继作用于神经肌肉标本的神经或肌肉上所引起的肌肉收缩反应因两个刺激相隔时间的长短不同而有所不同。如刺激的间隔大于单收缩的持续期则出现两次分离的单收缩。如两次刺激的间隔小于单收缩的持续期则出现两次收缩的总和。当第二次收缩开始时,如肌肉处于舒张期,也就是仍处于部分收缩的状态,则第二次收缩叠加在第一次收缩的舒张期上,形成一个比单收缩稍大的收缩。如两次刺激间隔进一步缩短,第二次收缩在第一次收缩的收缩期开始,则两个收缩波融合起来形成一个单一的更大的收缩。图4-20表示等长收缩的总和。刺激S1、S2等所引起的等长单收缩的持续期为150毫秒,S2与S3的间隔期在A为200毫秒,在B为60毫秒,在C为10毫秒。

三肌肉收缩的形式与力学特征

(一)肌肉收缩形式

肌肉收缩表现产生张力或/和长度变化。依肌肉收缩时的张力和长度变化,可将肌肉收缩的形式分为三类:缩短收缩、拉长收缩和等长收缩。

1 缩短收缩

缩短收缩是指肌肉收缩所产生的张力大于外加的阻力时,肌肉缩短,并牵引骨杠杆做相向运动的一种收缩形式。缩短收缩时肌肉起止点靠近,又称向心收缩。如进行屈肘、高抬腿跑、挥臂扣球等练习时,参与工作的主动肌就是作缩短收缩。作缩短收缩时,因负荷移动方向和肌肉用力的方向一致,肌肉做正功。

依据整个关节运动范围肌肉张力与负荷的关系,缩短收缩又可分非等动收缩和等动收缩两种。非等动收缩(习惯上称等张收缩),在整个收缩过程中给定的负荷是恒定的,而由于不同关节角度杠杆得益不同和肌肉收缩长度变化的影响,在整个关节移动范围内肌肉收缩产生的张力和负荷是不等同的,收缩的速度也不相同。例如,屈肘在举起恒定负荷时,肱二头肌的张力在关节角度为115—120°时最大,关节角度为30°时最小。由此,在非等动收缩中所能举起的最大重量只能是张力最小的关节角度所能承受的最大重量,也就是说,肌肉在作最大非等动收缩时,只有关节的某一角度达到收缩能力的100%,而关节的其它部分则小于100%。用非等动收缩发展力量只有关节力量最弱点得到最大锻练(如图1—13、1—14所示)。

等动收缩是通过专门的等动负荷器械来实现的。该器械使负荷随关节运动进程得到精确调整,即在关节角度的张力最弱点负荷最小,而在关节角度张力的最强点负荷最大,因此,在整个关节范围内肌肉产生的张力始终与负荷等同,肌肉能以恒定速度或等同的强度收缩。在作最大等动收缩时,肌肉产生的张力在整个关节范围都是其能力的100%。因而采用等动收缩形式发展力量可使肌肉在关节整个运动范围都得到最大锻练。

2 拉长收缩

当肌肉收缩所产生的张力小于外力时,肌肉积极收缩但被拉长,这种收缩形式称拉长收缩。拉长收缩时肌肉起止点逐渐远离,又称离心收缩。肌肉收缩产生的张力方向与阻力相反,肌肉做负功。在人体运动中拉长收缩起着制动、减速和克服重力等作用。

在运动实践中拉长收缩又往往与缩短收缩联系在一起,形成所谓牵张-缩短环,即肌肉在缩短收缩前先进行拉长收缩,使肌肉被牵拉伸长,这样,在紧接着的缩短收缩时,便可产生更大的力量或输出功率。如跑步时支撑腿后蹬前的屈髋、屈膝等,使臀大肌、股四头肌等被预先拉长,为后蹬时的伸髋、伸膝发挥更大的肌肉力量创造了条件。

3 等长收缩

当肌肉收缩产生的张力等于外力时,肌肉积极收缩,但长度不变,这种收缩形式称等长收缩。等长收缩时负荷未发生位移,从物理学角度认识,肌肉没有做外功,但仍消耗很多能量。等长收缩是肌肉静力性工作的基础,在人体运动中对运动环节固定、支持和保持身体某种姿势起重要作用。

三种肌肉收缩形式,反映了肌肉收缩的不同特征。人体任何一种运动动作的实现,都有赖于三种肌肉收缩形式的协调配合。

另外,有人对三种肌肉收缩形式产生的张力水平进行过研究。结果表明:拉长收缩产生的最大力量,大大超过等长和缩短收缩。拉长收缩产生的力量约比缩短收缩大50%,比等长收缩大25%左右。也就是说,肌肉收缩力量水平,由大到小依次是拉长收缩、等长收缩和缩短收缩。但拉长收缩放下负荷要比缩短收缩举起负荷容易,这是因为拉长收缩耗氧少、耗能也少的缘故。同时,比较肌肉收缩形式与发生延迟性肌肉疼痛的关系也表明,拉长收缩诱发肌肉疼痛最显著,而缩短收缩则不明显,等长收缩时诱发的肌肉疼痛比缩短收缩稍明显,但大大低于拉长收缩。有人还报道,等动收缩后肌肉疼痛几乎不会发生。

上述三种肌肉收缩形式的比较如表1-2。

(二)肌肉收缩的力学特征

肌肉收缩的力学特征,指的是肌肉收缩时的张力与速度、长度与张力的关系,它们反映了负荷对肌肉收缩的影响。此外,肌肉的功能状态(即收缩能力)不同,肌肉收缩时表现的力学特征也不一样,由此,肌肉的功能状态也是影响肌肉收缩的因素之一。

1 后负荷对肌肉收缩的影响——张力与速度关系

肌肉开始收缩时才遇到的负荷或阻力称后负荷。当肌肉在后负荷的条件下收缩时,最初由于肌肉遇到阻力而不能缩短,只表现张力的增加,但当肌肉张力发展到与负荷阻力相等时,肌肉开始以一定的速度缩短,负荷被移动。如果以肌肉开始缩短的张力和初速度为指标,改变后负荷大小,会发现,后负荷越大,肌肉产生的张力也越大,肌肉缩短开始也越晚,缩短的初速度也越小,反之亦然。肌肉在后负荷作用下表现的张力与速度的这种关系描绘在坐标上可得到一条曲线,称张力-速度曲线(如图1-15所示)。该曲线说明:在一定的范围内,肌肉收缩产生的张力和速度大致呈反比关系;当后负荷增加到某一数值时,张力可达到最大,但收缩速度为零,肌肉只能作等长收缩;当后负荷为零时,张力在理论上为零,肌肉收缩速度达到最大。肌肉收缩的张力-速度关系提示,要获得收缩的较大速度,负荷必须相应减少;要克服较大阻力,即产生较大的张力,收缩速度必须缓慢。

以上所述的肌肉收缩的张力—速度关系是由肌肉的性质决定的。研究表明,肌肉张力和收缩速度可能分别被两种独立的机制所控制,收缩产生张力的大小取决于活化的横桥数目,而收缩速度则取决于横桥上能量释放的速率。当后负荷增大时,使更多的横桥处于活化状态,这样增大了肌肉收缩的张力,同时抑制了ATP水解,降低了能量释放率,使收缩速度变慢。收缩速度与活化横桥数目无关,其道理就象一个人或几个人以同样速度拖一根绳子,绳子的速度不变。

训练可改变肌肉收缩的张力—速度曲线。有训练运动员,其张力-速度曲线向右上方偏移,即在相同的力量下,可发挥更大的速度;或在相同的速度下,可表现出更大的力量。另外,据日本金子报道,不同训练负荷,对张力-速度曲线可产生不同的专门性影响。无负荷(0%Pmax)的最大缩短收缩训练,能最有效地增进最大速度;而100%Pmax的等长训练,则使最大力量增进最多。它们的张力- 速度曲线在训练后的特点是分别在速度或力量上有较大的改变。在30%Pmax和60%Pmax训练,表现力量和速度全面增进,因而其张力-速度在训练后成平行的改变(图1-16)。

2前负荷对肌肉收缩的影响——长度与张力关系

前负荷是指在肌肉收缩前就加在肌肉上的负荷,它使肌肉收缩前就处于某种被拉长状态。改变前负荷实际上是改变肌肉收缩的初长度。实验表明,逐渐增大肌肉收缩的初长度,肌肉收缩时产生的张力也逐渐增加;当初长度继续增大到某一数值时,张力可达到最大;此后,再继续增大肌肉收缩的初长度,张力反而减小,收缩效果亦减弱。通常把引起肌肉收缩张力最大的初长度称为适宜初长度。如果在坐标图上将肌肉在不同前负荷作用下长度与张力的变化绘制下来,就可以得到一条曲线,该曲线称为肌肉收缩的长度-张力曲线(图1-17)。该曲线类似开口向下的抛物线,其顶点显示适宜初长度时,肌肉收缩产生的张力最大。长度-

张力关系可用肌丝滑行的收缩原理加以解释。肌肉初长度处于适宜水平时,肌节长度约2.0—2.2微米,粗、细肌丝正处于最理想的重叠状态,因而起作用的横桥数目最多,表现收缩张力最大。与此相反,如果肌肉拉得太长,粗、细肌丝趋向分离,起作用的横桥数目减少,肌肉张力下降;同样,如果肌肉过于缩短,细肌丝中心端在肌节中央交错,起作用的横桥数目亦减少,肌张力将急剧下降。

何谓肌肉适宜初长度?一般认为,人体肌肉的适宜初长度稍长于肌肉在身体中的“静息长度”,此长度被认为接近在人体自然条件下最大可能的伸长,但也有人认为它实际上较此为短。不难理解预先拉长肌肉的初长度可增大肌肉的收缩力。

3肌肉收缩能力的改变对肌肉收缩的影响

上述前、后负荷对肌肉收缩的力学影响,显然是肌肉在本身功能状态恒定情况下对外部负荷改变所作的相应反应。但肌肉的功能状态也是可以改变的,它也可影响肌肉的收缩效果。例如,缺氧、酸中毒、肌肉中能源物质的大量消耗,以及其它因素引起的肌肉兴奋-收缩耦联、肌肉内蛋白质和横桥功能特性的改变,都可降低肌肉收缩效果。而钙离子、咖啡因,肾上腺素等体液因素则可通过影响肌肉的收缩机制提高肌肉收缩效果。通常把可以影响肌肉收缩效果的肌肉内部功能状态的改变,定义为肌肉收缩能力的改变,以区别肌肉收缩时外部条件即前、后负荷对肌肉收缩效果的影响。这样的区分虽然在概念上比较容易,但在在体情况下要区分哪些改变是由肌肉收缩能力改变引起的,哪些是由负荷条件改变引起的,常常比较困难。然而对肌肉收缩能力改变的深入研究,对探讨训练对肌肉收缩能力的影响具有重要意义。例如上述训练引起肌肉力量-速度曲线向右上方偏移的改变,可能是由于肌肉收缩能力的改变所引起的。

四肌肉的做功、功率和机械效率

(一)肌肉的做功

在物理学里,把一个物体在力的作用下移动,称做该力对物体作了功,其值等于力和物体沿力方向移动距离的乘积。可用下列公式表示:

W(功)=F(力)·S(距离)cosθ(θ为F和S之间夹角)

肌肉在作非等长收缩时,可以作功,在作等长收缩时,物体没有产生位移,因而没有作功。

肌肉作功时克服的阻力,包括肌肉的内阻力和外阻力。因此,肌肉作功相应分为内功和外功。肌肉克服外阻力,如举起重物,做了外功,此时肌肉收缩的能量被转移为重物的位能,如肌肉做功是使身体运动,则转变为身体运动的动能。通常所讲的肌肉作功,主要是指肌肉作的外功,即机械功。肌肉机械功的大小取决于肌肉收缩时产生的张力和肌肉长度变化,后者是影响肌肉作功中的距离因素。

肌肉张力的大小由肌肉收缩时的力学、解剖学和生理学等条件所决定。负荷是肌肉产生张力的基本力学条件,没有负荷,肌肉不可能产生张力。负荷可以是重量,也可以是它的惯性力或其它的力。肌肉工作时,随着负荷的增大,肌肉收缩产生的张力也增大。影响肌肉张力的解剖学因素,主要是肌肉的生理横断面的大小。肌肉生理横断面是肌肉所有肌纤维横断面积的总和,在其它条件相同下,肌肉生理横断面愈大,包含的肌纤维也愈多,它所产生的张力也愈大。肌肉张力与生理横断面的关系可以用绝对力量、比肌力和生理横面三者的关系来表示。一块肌肉在对抗它所能勉强移动的负荷下收缩,所产生的最大张力为绝对力量,肌

肉每平方厘米生理横断面所发挥的最大力量,称比肌力,比肌力等于肌肉的绝对力量与生理横断面积的比值。据测定,人体肌肉的比肌力约4-10kg·cm-2,很显然,生理横断面积越大,肌肉的力量也越大。决定肌肉张力的生理条件可归结为神经肌肉兴奋和疲劳的程度,即神经系统的机能状态。大强度力量训练能提高肌肉的力量,在很大程度上是因为改善了神经系统对肌肉工作的调节能力。日本生理学家猪饲道夫曾报道,有训练的优秀运动员在最大用力时,神经系统可以动员90%肌纤维参加工作,而常人最大用力时只能动员60%的肌纤维参与工作。

肌肉的长度决定肌肉工作时能缩短的最大距离。构成肌纤维的基本功能单位是肌小节,每块肌肉中肌小节的长度相对是一样的,而肌肉长度大,表明串联着的肌小节数量多,肌肉收缩时,缩短的程度就大。有报道,肌纤维平行排列的肌肉,在其它条件相同时,其机械功的大小与肌肉长度成正相关,即肌肉越长,缩短的距离越大,肌肉作功能力就越大。但这种情况只适用于不太长肌肉。由于肌肉不太长,因而,分布于肌肉全长的肌纤维几乎能够在同时发生兴奋。在肌纤维很长的多关节肌肉中,如缝匠肌,肌肉的机械功与其长度之间,并不完全成正比关系。这是因为,兴奋与收缩总是发生在肌肉的某些部位,而未兴奋部位由于被拉长而减少肌肉收缩能力,故作功能力远赶不上肌肉长度的增加。在羽状肌中,肌肉的机械功取决于最大肌束的长度,以及最大肌束与中央腱所成的角度。

(二)肌肉收缩的功率

在以上讨论肌肉做功时,没有涉及做功所需要的时间。从肌肉工作能力来说,时间因素是极其重要的。如果两群肌肉做的功一样多,那么短时间完成这一功的肌肉,显然其能力较大。物理学中把单位时间所作的功称为功率,即:

P(功率)=W(功)/t(时间)

由于W=F·S,上式可写成:

P(功率)=F(力)·V(速度)

在运动技术中,通常把力和速度的乘积称为爆发力,因此,功率又被称为肌肉收缩的爆发能力。

在体育运动中,人体所能输出的功率或爆发力的大小是十分重要的。如短跑的起跑和疾跑,其加速度的大小取决于功率值的大小。起跳和投掷动作效果,同样也都取决于功率的大小。

肌肉作等长收缩时功率等于零,在非等长收缩时,功率等于力与速度的乘积,其值可由肌肉收缩的张力-速度曲线(如图1-15)计算出来。由于肌肉工作时张力与速度呈反变关系,要满足肌肉收缩力和收缩速度同时都达到最大,从而获得最大功率,实际上是不可能的。功率的最大值应出现在速度和张力的最佳值处。金子1970年的研究认为,这个最佳值,即力和速度的最佳匹配条件都大约为它们最高值的35%,此时,肌肉输出的功率或产生的爆发力最大。因此,在运

动实践中,要发挥肌肉工作的最大输出功率或产生最大爆发力,肌肉作业的理想负荷应是中等负荷,并以尽可能快的速度进行收缩。

(三)肌肉收缩的机械效率

肌肉收缩时消耗的能量,被转变为功及热。在等长收缩时机械功等于零,因而,其化学反应能全部释放变成热。在作非等长收缩时,能量的一部分消耗于作功上,另一部分转变成热,所以,肌肉工作消耗的总能量是作功所消耗的能和所产生的热能的总和。肌肉工作的机械效率(η)是完成的机械功(W)与消耗的总能量(E)的比率:

η=W/E

人的机械效率一般为25—30%。如熟练的步行为33%,而自由泳为1.5%(古林)。人的机械效率不是常数,以肌肉活动条件为转移,其大小取决于肌肉活动时负荷和收缩速度。适宜的负荷和适宜收缩速度所实现的机械效率最高。而适宜负荷和适宜速度也不是固定不变的,它们取决于神经肌肉的机能状态。运动训练有助肌肉工作机械效率的提高。

(四)肌肉的杠杆作用

骨骼肌的收缩,通过肌腱在骨骼上产生力,当这力足够大时会使骨骼肌随肌肉的缩短而运动。肢体弯曲或朝向身体的运动叫做屈伸(flexion),肢体伸直或离开身体的运动叫做伸展(extension)。引起这些活动至少要有两块肌肉。图4-22表示肱二头肌收缩引起上肢的屈曲,肱三头肌的收缩引起上肢的伸展,这种使肢体产生相反方向运动的肌肉群叫做颉颃肌(antagonists)。在步行时,腿部腓肠肌的收缩引起小腿屈曲,肱四头肌的收缩引起小腿伸展。如果腓肠肌和肱四头肌同时收缩则膝关节不能弯曲,只有踝关节能活动,引起躯体上升,脚跟离地,立在脚尖上(图4-23)。

体内肌肉、骨骼和关节构成不同的杠杆系统,如图4-24A图所表示的上肢的杠杆系统,肱二头肌固着在前臂处(力点)距肘关节(支点)约5厘米,手掌心(重点)到肘关节约35厘米。设x为肱二头肌作用于前臂上以维持手中10千克铅球的力,则

5x=35×10

x=70(千克)

这套杠杆系统可以放大肌肉的运动。如图4-24B图所示,设Vm为肱二头肌收缩的速度,Vh为手运动的速度,则Vh=7Vm。因此,比较慢的肌肉收缩的速度可以产生比较快的手的运动,棒球投手投球的速度可达每小时100千米,而他的肌肉缩短之速度只有这个速度的几分之一。

五肌肉结缔组织对肌肉收缩的影响

肌肉作为器官,其构成除肌组织外,还有结缔组织、神经组织和丰富的血管网。结缔组织在肌肉中对肌组织起着支持和连结作用,此外,结缔组织还是肌肉收缩的弹性成分,它和肌肉的收缩成分呈串联或并联关系(如图1-18),当收缩成分收缩时,弹性成分被拉长,将一部分能量以弹性势能的形式贮存起来,当这种能量贮存足够大时,则以弹性反作用力形式释放出来,克服负荷阻力,使负荷产生移动。弹性成分的这种作用被称为肌肉收缩的第二种机制。结缔组织的上述功能,在体育运动实践中已被广泛重视,对肌肉结缔组织的研究已成为当前运动生理学研究的领域之一。

(一)肌肉结缔组织的组成

肌肉的结缔组织包括肌肉两端的肌腱和肌肉内部的肌内膜、肌束膜、肌外膜以及肌节中的Z线和M线等。肌肉结缔组织表现为所有结缔组织共有的结构特点,即细胞少、基质多,而基质中含有胶元、弹性蛋白、蛋白多糖等。胶元是结缔组织最主要成分,它以胶元纤维形式存在。

(二)运动对肌肉结缔组织的影响

1长期运动可提高肌腱的抗张力量和抗断裂力量肌腱是由成束的胶元纤维组成,其横截面积远小于肌肉,但抗张应力很大。据计算,运动时肌腱抗张应力约350—420kg.cm-1,其安全应力大约为断裂应力的三分之一,为210kg.cm-1。

肌腱抗张应力通常超过其骨上附着点的抗张应力,因而,运动损伤时,常导致肌腱撕脱而不是断裂。实验表明,运动训练可提高肌腱的抗张应力,特别是肌腱与骨结合区的结合能力和力量,从而使肌腱能承受更大的拉力。肌腱工作能力的这种提高可能与运动导致肌腱增粗和胶元含量增加有关。有人通过动物实验发现,运动训练后肌腱抗张力和羟脯氨酸的含量均增加;但也有人发现,训练后虽抗张力增加,而羟脯氨酸的含量未见增加。另有研究表明,运动训练可使肌腱中的代谢发生变化,其中,肌腱的含氮量增加,苹果酸脱氢酶和琥珀酸脱氢酶的活性增加;肌腱中基质含量增加。

2 长期运动可使肌中结缔组织肥大研究已显示,肌肉超负荷训练后,在引起肌肉肥大的同时,肌中结缔组织也相应增加。例如,在动物实验中,将跖肌和二腹肌在跟腱附着点上切断,使它的工作全部由比目鱼肌单独承担,结果,比目鱼肌产生代偿性肥大,在代偿性肥大的第二天,肌中结缔组织中的成纤维细胞增加近二倍。另一些类似实验也证实,在切断后的18天,比目鱼肌中每克肌中的胶元蛋白增加,胶元蛋白合成酶本胶元脯氨酸羟化酶的活性在第三天后即已增加,此酶可促使新生胶元蛋白链中的脯氨酸残基羟化为羟基脯氨酸。肌中胶元蛋白的增加,可能是导致肌中结缔组织增加的原因。

参考文献

同肌肉报告中参考文献

刺激坐骨神经引起骨骼肌收缩的全过程上课讲义

刺激坐骨神经引起骨骼肌收缩的全过程

1.刺激坐骨神经,引起骨骼肌收缩的全过程 A.AP的产生 在坐骨神经一端施加一个阈上刺激,使膜除极达到阈电位,Na+通道开放,Na+内流,引起膜的去极化和反极化,此时Na+通道迅速失活,K+通道通透性增加,K+ 外流,引起膜的复极化和超极化,动作电位产生,引起兴奋。 B.兴奋的传导 分为有髓纤维传导和无髓纤维传导。无髓纤维冲动传导的机制又称局部电流学说,指的是兴奋部位与邻近部位之间存在电位差,产生局部电流,其方向是在膜内电流由兴奋部位流向未兴奋部位,膜外由未兴奋部位流向兴奋部位。局部电流的流动使邻近部位除极达到阈电位,邻近部位兴奋。依此方式,兴奋沿神经纤维传导。有髓纤维冲动传导的机制又称跳跃传导学说,有髓纤维有髓鞘处称节间段,髓鞘间断处称郎飞节。节间段处因脂质厚,离子不能跨膜流动,故有髓纤维受刺激时,兴奋总是在郎飞节处产生,传导兴奋时总是在兴奋的郎飞节和邻近的郎飞节形成局部电流,使邻近的郎飞节兴奋,即兴奋的传导是从一个郎飞节跳跃到另一个郎飞节。这也是有髓纤维冲动传导比无髓纤维快的原因。 C.N-M接头处兴奋的传递 神经末梢的终末小支深入肌纤维膜的凹陷中,称为神经-肌肉接头。神经终末的膜构成接头前膜即终末膜,肌纤维膜称为接头后膜即终板膜。AP 传递至终末膜,膜上Ca2+通道开放,Ca2+内流,引起递质小泡前移,释 放递质乙酰胆碱,乙酰胆碱与终板膜上n型受体结合,n型受体是离子 通道偶联受体,结合后通道打开,Na+内流,K+ 外流,产生终板电位 EPP。EPP是局部电位,以电紧张的方式影响邻近肌膜,其强度积累达 到肌膜阈值后,引起肌膜发生动作电位,并沿肌纤维传导。 D.兴奋-收缩偶联 肌膜的兴奋通过T管膜传向肌细胞内三联体和肌节近旁,三联体处T管膜除极引起Ca2+内流,该信息传递给终末池上受体引起Ca2+的释放。 E.肌细胞的收缩 当肌肉收缩引起肌质内的Ca2+浓度升高时, Ca2+ 与肌钙蛋白的TnC结合,TnI与肌钙蛋白的结合力下降,原肌球蛋白变构移位,暴露出肌动蛋白 与横桥的结合位点。横桥与肌动蛋白结合,消耗ATP,拖动细肌丝向肌 节中央的M线方向滑行,肌节缩短,即肌肉收缩。 2.刺激、AP、RP、TP、锋电位、兴奋、兴奋性之关系 刺激:能为人体感受并引起组织细胞、器官和机体发生反应的内外环境变化统称为刺激 RP(静息电位): 细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差; TP(阈电位):细胞膜达到AP时的需要最小的膜电位水平; SP(锋电位):AP的一个过程之一,AP的除极和复极过程的前半部分进行极为迅速,且变化幅度很大,记录出来的尖波即为锋电位; AP(动作电位):在RP的基础上,产生的一种可传导的电位波动,包括锋电位和后电位两个过程; 兴奋是细胞受刺激产生AP的反应,只有细胞产生动作电位才能说它是兴奋; 兴奋性:细胞受刺激产生AP的能力。 3.从N-M接头传递和跨膜信号转导,谈谈细胞通讯过程;信号转导在生命活动中的意义 A.多细胞生物是由不同类型的细胞组成的社会,这个社会中的单个细胞间必须通过细

肌肉的工作原理

肌肉的工作原理 一.肌肉的协作关系 人们的动作有的很简单,但更多是复杂的动作。一个简单的动作,往往不是一块肌肉所能完成的,而复杂的体育动作,则在数块或数群肌肉的协调工作下,使环节产生各种各样的运动,或使人体维持某种姿势。根据肌肉在运动中所起的作用,可分为原动肌、主动肌、次动肌(副动肌)、对抗肌、固定肌及中和肌等。 1.原动肌、主动肌和次动肌 直接完成某动作的肌肉叫做原动肌。如肱肌、肱二头肌、肱桡肌和旋前圆肌4块肌肉是屈肘关节的原动肌。其中前两块在原动肌中起主要作用,因此叫主动肌;后两块起次要作用,故叫次动肌(或副动肌)。 2.对抗肌 与原动肌功能相反的肌肉叫对抗肌。如肱三头肌就是屈肘关节肌的对抗肌。当肘关节做伸的动作时,则相反。 3.固定肌 将原动肌定点所附着的骨固定起来的肌肉叫固定肌。如做前臂弯举动作时,肩关节周围的肌肉必须固定肱骨,才能更好地完成这一动作,这时肩关节周围的肌肉就是固定肌。 4.中和肌 有的原动肌具有数种功能,如斜方肌除了可使肩胛骨后缩外,还能使它上回旋。在进行扩胸运动时,只要求肩胛骨后缩,不要求上回旋。这时有另一些肌肉(如菱形肌和胸小肌)参与工作以抵消斜方肌上回旋的作用,使斜方肌充分发挥肩胛骨后缩的功能。这些限制或抵消原动肌发挥其他功能的肌肉就叫做中和肌。 有时两块原动肌都具有多种功能,其中有一种(或两种)功能是共同的,其他则是互相对抗的。如胸大肌可使上臂屈、内收和内旋。背阔肌可使上臂伸、内收和内旋。因此胸大肌和背阔肌在上臂内收和内旋方面为原动肌,这时屈、伸方面的功能则相互限制或抵消,因此互为中和肌。 二.肌肉的工作性质 肌肉工作性质可分为动力性工作和静力性工作两大类。 1.动力性工作 肌纤维紧张持续时间短,收缩和放松不断交替,经常改变拉力角度、方向及骨杠杆的位置,这种工作称为动力性工作。动力性工作分为向心工作(克制工作)和离心工作(退让工作)两种。(1)向心工作 肌肉收缩克服阻力,肌力大于阻力,使运动环节朝肌肉拉力方向运动的工作叫向心工作。如三角肌和冈上肌使肩关节外展的工作性质就是向心工作。 (2)离心工作 肌肉在阻力作用下逐渐被拉长,阻力大于肌力,使运动环节朝肌肉拉力相反方向运动的工作叫做离心工作。如体操下法动作中屈膝缓冲,股四头肌的工作性质就是离心工作。 2.静力性工作 肌纤维紧张持续一段时间,收缩和放松不交替,使运动环节固定、维持一定身体姿势的肌肉工作称为静力性工作。它分为支持工作、加固工作和固定工作三种。 (1)支持工作 肌肉收缩或拉长到一定程度后,长度不再变更,肌拉力矩与阻力矩相等,使运动环节保持一定姿势的工作,这种工作称为支持工作。如双杠直角支撑时,髋关节屈肌和腹肌就是做支持工作。

肌肉的本质及其受伤的原理及处理

一、肌肉的构造 肌组织的肌细胞呈细丝状,称为肌纤维,其特征是能将化学能转变为机械能,使肌纤维缩短,产生收缩,以保证机体的各种运动。肌肉组织按其形态与功能,可分为平滑肌、骨骼肌与心肌。 结构特征:肌细胞呈长圆柱形或梭形,一般称为肌纤维,肌细胞之间排列紧密,细胞之间有少量结缔组织、毛细血管和神经纤维。 当肌肉损伤时,可引起出血及神经损伤 肌组织的分类如下: 骨骼肌(分布在骨骼上) 肌组织心肌(分布在心脏) 平滑肌(分布在内脏和血管壁上) 肌肉在人体内的分布极其广泛,全身肌肉约有500余块,其重量约占体重40%,而四肢肌肉约占肌肉总重量的80%。肌组织的基本特征是收缩和放松。收缩时肌肉缩短,横断面增大,松弛时则相反。由于中枢神经系统持续兴奋使肌肉经常保持持续性的轻微收缩状态,这种状态叫肌紧张,肌紧张可使身体维持一定的姿势。实际上,人在静止时,肌肉仍然处于稍微收缩的状态中。 每块肌肉都是由许多肌纤维集合起来组成一个肌束,再由许多小的肌束合并成一个大的肌束,最后由若干个大的肌束合并成整块肌肉。整块肌肉的外围

都由结缔组织薄膜包裹着,称肌外衣,它向肌肉两端的延续部分称为肌腱。肌肉借肌腱附着于骨膜、筋膜和关节囊的表面。肌腱没有收缩能力,但有很大的抵抗力。 二、肌肉的辅助结构 1.筋膜筋膜有浅筋膜和深筋膜两种,浅筋膜(皮下筋膜)位于皮肤的深面,是含脂肪成分的一层疏松结缔组织,通常所说的筋膜(或固有筋膜)位于浅筋膜的深层。深筋膜在四肢最发达,包被在每块肌肉的周围,并深入各群肌肉之间,形成肌间隔,最后连于骨膜上。 筋膜的作用是分隔肌群中的肌肉,使深层肌肉在工作时具有同等的工作条件。在病理情况下,筋膜能够限制炎症的扩散。 2.腱鞘腱鞘是由两层结缔组织构成的长管,套在肌腱上,两层膜之间有滑液,运动时可减少肌腱和骨之间的摩擦。 三、肌肉分类 1.按形状分类以肌肉的外形轮廓可分为长肌、短肌、轮匝肌和阔肌。 2.按肌头数目分类有二头肌、三头肌、四头肌等。每个头各有一个起点,由两个头合成一个肌腹,为二头肌,其余依此类推。 四、肌肉的物理特性 1.伸展性与弹性肌肉受外力时长度增加,这种特性叫伸展性。当外力解

肌肉的收缩原理(材料详实)

肌肉的收缩原理 一肌肉的收缩过程 (一)肌丝滑动学说 在十九世纪就已经用光学显微镜观察到肌小节中的带区。同时还观察到,当肌肉缩短或被牵张时肌小节的长度发生变化。Andrew F. Huxley和R. Niedergerke用特制的干涉显微镜精确地测量肌小节的长度,在1954年确认了十九世纪的报告,即在肌肉缩短时A带的宽度保持不变,而I带和H区变窄。在肌肉被牵张时,A带的宽度仍然保持不变,而I带和H区变宽。同年,Hugh E. Huxley 和Jean Hanson 报告,用相差显微镜观察到在肌小节缩短或被牵张时,肌球蛋白丝和肌动蛋白丝的长度不变,而肌球蛋白丝和肌动蛋白丝重叠的程度发生变化。主要基于这两方面的证据,H. E. Huxley 和A. F. Huxley 在1954年分别独立的提出肌肉收缩的肌丝滑行学说(sliding-filament theory of muscle contraction)。这个学说认为在收缩时肌小节的缩短(也就是肌肉的缩短)是细肌丝(肌动蛋白丝)在粗肌丝(肌球蛋白丝)之间主动地相对滑行地结果。肌小节缩短时,粗肌丝、细肌丝地长度都不变,只是细肌丝向粗肌丝中心滑行。由于粗肌丝地长度不变,因之A带地宽度不变。由于肌小节中部两侧地细肌丝向A带中间滑行,逐渐接近,直到相遇,甚至重叠起来,因此H区地宽度变小,直到消失,甚至出现反映细肌丝重叠地新带区。由于粗肌丝、细肌丝相向运动,粗肌丝地两端向Z线靠近,所以I带变窄。当肌肉牵张或被牵张时,粗肌丝、细肌丝之间地重叠减少。 肌丝滑行学说根本不同于早期地肌肉收缩学说。早期有些研究者曾经提出,肌肉收缩是由于蛋白质分子本身地缩短。蛋白质分子地缩短或是由于折叠型分子增加折叠地结果;或是由于螺旋形分子改变螺旋距或直径地结果。与此相反,肌丝滑行学说主张长度不变地肌丝主动相对滑行是由于肌球蛋白横桥地活动在肌球蛋白丝与肌动蛋白丝之间产生力的结果。 在完整机体内,肌肉的收缩是由运动神经以冲动形式传来的刺激引起的。神经冲动经神经肌肉接点传至肌膜,首先引起肌细胞兴奋,继而触发横桥运动,产生肌肉收缩,收缩肌肉又必须舒张才能进行下一次收缩。因此,从肌细胞兴奋开始,肌肉收缩的过程应包括三个互相衔接的环节:①肌细胞兴奋触发肌肉收缩,即兴奋—收缩耦联;②横桥运动引起肌丝滑行;③收缩肌肉的舒张。 ①兴奋—收缩耦联肌细胞兴奋触发肌肉收缩的过程又称兴奋—收缩耦

肌肉工作原理

一.肌肉的协作关系 人们的动作有的很简单,但更多是复杂的动作。一个简单的动作,往往不是一块肌肉所能完成的,而复杂的体育动作,则在数块或数群肌肉的协调工作下,使环节产生各种各样的运动,或使人体维持某种姿势。根据肌肉在运动中所起的作用,可分为原动肌、主动肌、次动肌(副动肌)、对抗肌、固定肌及中和肌等。 1.原动肌、主动肌和次动肌 直接完成某动作的肌肉叫做原动肌。如肱肌、肱二头肌、肱桡肌和旋前圆肌4块肌肉是屈肘关节的原动肌。其中前两块在原动肌中起主要作用,因此叫主动肌;后两块起次要作用,故叫次动肌(或副动肌)。 2.对抗肌 与原动肌功能相反的肌肉叫对抗肌。如肱三头肌就是屈肘关节肌的对抗肌。当肘关节做伸的动作时,则相反。 3.固定肌 将原动肌定点所附着的骨固定起来的肌肉叫固定肌。如做前臂弯举动作时,肩关节周围的肌肉必须固定肱骨,才能更好地完成这一动作,这时肩关节周围的肌肉就是固定肌。 4.中和肌 有的原动肌具有数种功能,如斜方肌除了可使肩胛骨后缩外,还能使它上回旋。在进行扩胸运动时,只要求肩胛骨后缩,不要求上回旋。这时有另一些肌肉(如菱形肌和胸小肌)参与工作以抵消斜方肌上回旋的作用,使斜方肌充分发挥肩胛骨后缩的功能。这些限制或抵消原动肌发挥其他功能的肌肉就叫做中和肌。 有时两块原动肌都具有多种功能,其中有一种(或两种)功能是共同的,其他则是互相对抗的。如胸大肌可使上臂屈、内收和内旋。背阔肌可使上臂伸、内收和内旋。因此胸大肌和背阔肌在上臂内收和内旋方面为原动肌,这时屈、伸方面的功能则相互限制或抵消,因此互为中和肌。 二.肌肉的工作性质 肌肉工作性质可分为动力性工作和静力性工作两大类。 1.动力性工作

肌肉工作分析

肌肉工作分析 (一)肌肉工作及其协作关系 人体任何一个简单的动作,都是许多肌肉共同参与、互相协同完成。按它们在这一动作中所起的作用,可分为原动机、对抗肌、固定肌和协同肌。 原动机主动收缩发力直接引起环节运动的肌肉,称原动机。 对抗肌当原动机收缩完成动作中,位于原动机相反一侧,并同时松弛和伸长的肌肉,称对抗肌。 固定肌一些肌肉固定原动机定点附着骨,使原动机的拉力对其附着骨充分发挥作用,这些肌肉称肌肉固定肌。 协同肌在原动机使环节绕关节轴作某一方向运动时,还有一些肌肉也收缩发力,参与完成这一运动。 肌肉的协作关系由于人体的任何一个动作,由于多肌肉肌肉参与相互协作完成,因而在完成动作中,肌肉与肌肉之间,肌群与肌群之间,产生相互协作关系。这种协作关系可反映为同一动作中的肌间协作。也可以反映为同一动作中的肌群协作。 人体任何一个动作,原动机、对抗肌、固定肌是同时工作的。 肌肉的协调关系不是固定不变的,而是随着条件不同而相互转换 (二)肌肉性质的分类 肌肉工作性质分为动力工作和精力工作两类 动力工作肌肉收缩时长短或伸长的工作,称动力工作。又可分为向心工作和离心工作。 向心工作肌肉以向心收缩克服阻力的工作,称动力工作。 离心工作肌肉以离心收缩对抗阻力作用的工作,称离心工作。 静力工作肌肉静力收缩时所完成的工作称静力工作。肌肉的起、止点位置相对固定,肌肉的长度不发生变化的收缩形式,称静力收缩。静力工作又分为支持工作、加固工作和固定工作。 支持工作肌肉以一定紧张来平衡阻力矩,从而保持某种静止姿势的工作,称支持工作。 肌肉完成支持工作时有两种形式,一种是肌肉较长时间保持缩短状态来平衡阻力矩。另一种是肌肉较长时间保持伸长的紧张状态来平衡阻力矩。 加固工作当重力沿身体某一部分垂直向下作用于关节时,关于周围的肌肉处于被拉长趋势,并以一种紧张防止关节在重力的作用下脱离,肌肉的这种工作称加固工作。 肌肉发静力工作,较易疲劳,由于在静力工作中,血管和淋巴管受

第一章 肌肉收缩

第一章练习 一、是非题: ()1、肌肉收缩需要有A TP的分解,而肌肉舒张即无需ATP的参与。 ()2、肌肉舒张也需要A TP,是因为钙泵将Ca2+泵回肌浆网需要ATP。 ()3、等速收缩的特点是收缩过程中阻力改变,而速度不变。 ()4、ATP不仅是肌肉活动的直接能源,也是腺体分泌、神经传导、合成代谢等各种生理活动的直接能源。 ()5、在等长收缩时,肌肉收缩成分的长度完全不变。 ()6、短跑时,要求尽量抬高大腿(屈髋)其作用之一是利用弹性贮能。 ()7、剧烈运动时,肌肉中CP含量下降很多,而ATP的含量变化不大。 ()8、快肌纤维的收缩速度大于慢肌纤维,主要原因之一是快肌纤维的氧化生能速度快。()9、要使ST优先发生适应性变化,训练时强度要小,时间要短。 ()10、快肌纤维百分比高的人适合于长跑运动。 ()11、动作电位的产生,是由于当膜电位降低到阈电位水平时,膜对Na+、K+的通透性突然增大而触发的。 ()12、新陈代谢一旦停止,生命也就结束。 ()13、运动电位又称Na+平衡电位,它是不能传播的。 二、选择题: ()1、在骨骼肌兴奋-收缩偶联中起关键作用的离子是: A、Na+ B、K+ C、Mg2+ D、Ca2+ E 、Cl- ()2、吊环十字支撑是: A、向心收缩 B、等长收缩 C、等张收缩 D、离心收缩 E、等速收缩 ()3、快肌纤维75%以上的人,较为适宜于 A、800M跑 B、1500M跑 C、100M跑 D、1万米跑 E、1500M游泳 ()4、在下楼梯时,股四头肌做: A、向心收缩 B、等动收缩 C、离心收缩 D、等长收缩 E、等张收缩 ()5、骨骼肌中的收缩蛋白是指 A、肌动蛋白 B、肌动蛋白和原肌球蛋白 C、肌球蛋白 D、肌球蛋白和肌动蛋白 E、原肌球蛋白 ()6、骨骼肌中的调节蛋白是指 A、肌球蛋白和肌钙蛋白 B、原肌球蛋白和肌钙蛋白 C、肌钙蛋白和肌动蛋白 D、肌球蛋白和原肌球蛋白 E、肌球蛋白和肌动蛋白 ( )7、安静时,阻止横桥与肌动蛋白结合的结构是 A、肌钙蛋白 B、原肌球蛋白 C、肌钙蛋白I单位 D、肌球蛋白 E、以上都不是()8、肌肉中的弹性成份是 A、肌动蛋白丝 B、肌球蛋白丝 C、肌中结缔组织、肌腱、Z线 D、肌原纤维 E、肌动-球蛋白复合体 ()9、在等张收缩时,负荷与速度的关系是 A、负荷恒定,速度恒定 B、负荷改变,速度改变 C、负荷恒定,速度改变 D、速度恒定,负荷改变 E、二者同步变化 ()10、按照物理学定律,等长收缩时肌肉 A、做正功 B、做负功 C、先做正功后做负功 D、未做功 E、做外功 ()11、慢肌纤维在80%以上的人,较为适宜于

《骨骼肌收缩功能》教育教学设计

《骨骼肌收缩功能》教学设计

————————————————————————————————作者:————————————————————————————————日期:

《骨骼肌细胞的收缩功能》教学设计 昔阳县高级职业中学校董春梅 【目的要求】 1.知识目标 掌握肌细胞收缩的结构基础及肌丝滑行的过程 了解影响肌细胞收缩的因素 2.能力目标 通过看图,培养学生的想象、阅读、比较的学习能力 通过演示“肌丝滑行”的图片,培养学生观察能力。 3.情感目标 通过本课的学习,知道生命奇妙性、协调性,从而热爱生命关爱弱势群体【教学重点】 1.肌细胞收缩的结构基础 2.肌丝滑行的过程 【教学难点】 肌丝滑行的过程 【课堂组织】 讲述与多媒体教具结合 【教学内容】 新课导入: 1、以肱二头肌收缩图片和膝跳反射图片让学生观察一下肌肉收缩的效果,

2、提问:那么大家想不想知道它们是如何实现收缩过程的,又有哪些结构参与呢?这就是我们这节课讲述的重点——骨骼肌细胞收缩功能 新课讲授: 一、认识骨骼肌收缩的基本单位——肌小节(根据以前所学知识,结合图形) 1、根据图形先找到肌小节,再理解肌小节在肌细胞中所在的层次 骨骼肌——肌纤维(肌细胞)——肌原纤维——肌节 结论:一个肌小节 = 一个暗带 + 二个1/2明带 2、组成肌小节的每部分名称结构 (1)粗肌丝——肌凝蛋白

分析:粗肌丝分子含有一个球头部和一个杆状部。头部有规律地裸露于M 线两侧粗肌丝的主干表面,形成横桥。 横桥有以下特性: A、在一定条件下,可以和细肌丝上的肌纤蛋白分子呈可逆性的结合; B、具有ATP酶的作用,可以分解ATP而获得能量,供横桥摆动。 (2)细肌丝 分析:细肌丝至少由三种蛋白构成: A、两条肌动蛋白聚合的单链相互缠绕,形成细肌丝的主干,其上有横桥的结合位点;

肌肉如何收缩

肌肉如何收缩 肌的节律性收缩推动血液循环,骨骼肌的收缩产生各种躯体运动,而平滑肌的收缩则引起内脏器官及血管的活动。尽管这三者的结构,分布与机能特点各不相同,但从分子生物学观点看来,三种肌细胞的收缩原理是相似的。 对肌肉收缩形式的分类,目前运用最多的是根据肌肉收缩时产生的张力和长度的变化进行划分,分为缩短收缩、拉长收缩和等长收缩。如果从肌肉收缩时其牵拉骨杠杆运动的方向角度来考虑,缩短收缩又称为向心收缩,拉长收缩又称为离心收缩。

缩短收缩 缩短收缩指肌肉收缩时产生的张力大于外加阻力,肌肉收缩,长度变短,通常缩短收缩还可继续细分为两种不同的收缩形式,不同学者又有不不同的叫法,有的称为等张收缩和等动收缩,有的称为非等动收缩和等动收缩。 等张收缩 理解等张收缩,首先要清楚它定义的基础是缩短收缩,即要符合肌肉产生的张力大于外加阻力。等张收缩时,其负荷即外加阻力在整个收缩过程中是恒定的,而当张力发展到足以克服外加阻力时后,其张力在收缩过程中不再变化,但肌肉在收缩过程中,或由于肌肉长度的变化,或由于负荷臂与重力的相互关系的变化等因素,其能发挥的力量大小,在不同关节角度就有所不同,其收缩速度有所不同。 等动收缩 等动收缩时通过的等动负荷器来实现,该器械使得负荷随关节运动进程得到精确,即在关节角度的最弱点负荷最小,而在关节角度张力的最强点负荷最大。在整个关节范围内肌肉产生的张力始终与负荷相等,肌肉能以恒定的速度或等同的强度收缩。 拉长收缩 拉长收缩又叫离心收缩,当肌肉收缩产生的张力小于外力时,肌肉虽然积极收缩但仍然被拉长了。 等长收缩 对等长收缩概念的描述,当肌肉收缩产生的张力等于外力时,肌肉虽积

肌肉收缩实验报告详解

骨骼肌收缩实验 一.实验目的 1.肌肉标本收缩现象的描记及单收缩的分析,获得该肌肉收缩的阈值。 2.了解刺激强度对骨骼肌收缩的影响。 3.学习掌握刺激器和张力换能器的使用。 4.加强对神经和肌肉了解,熟练解剖。、 二.实验原理 1.肌肉标本收缩现象的描记 利用刺激器可诱发蛙的离体神经肌肉标本发生兴奋收缩现象,可利用适当的参数和图形,客观、详细、准确地描述收缩的生理过程与现象。 骨骼肌受到一次短促的阈上刺激时,先是产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。收缩的全过程可分为潜伏期、收缩期和舒张期。在一次单收缩中,肌峰电位的时程(相当于绝对不应期)仅1~2毫秒,而收缩过程可达几十甚至上百毫秒(蛙的腓肠肌可达100毫秒以上)。 2. 张力换能器 换能器是一种能将机械能、化学能、光能等非电量形式的能量转换为电能的器件或装置,并线性相关。利用物理性质和物理效应制成的物理换能器种类繁多,原理各异。张力换能器是一种能把非电量的

生理参数如力、位移等转换为电阻变化的间接型传感器,属于电阻应变式传感器。通常由弹性元件、电阻应变片和其他附件组成。弹性元件采用金属弹性悬梁,可根据机械力的大小选用不同厚度的弹性金属。弹性悬梁的厚度不同,张力换能器的量程亦不同。两组应变片 R1、R4及R2、R3分别贴于梁的两面。两组应变片中间接一只调零电位器,并用5~6V直流电源供电,组成差动式的惠斯登桥式电路(非平衡式电桥)输出电压值与应变片所受力的大小成正比,即力的变化转换成电桥输出电压的变化。此电信号经过记录仪器的放大处理,就能描记出肌肉收缩变化的过程。 实验时,根据测量方向将换能器用“双凹夹”固定在合适的支架上。但由于双凹夹在支架上移位不方便,很难在小范围内做出精细的移位;移位不当,可能引起标本的损伤和换能器的损坏。故现多采用“一维微调固定器”,由上下位置调节钮控制,可在小范围内(上下)精细的移位。这不仅方便了实验操作,也有利于前负荷的控制。测量的方向,即力与位移的方向,要与张力换能器弹性悬梁的前端上下移动的方向保持一致。使能量转换和线性关系良好,符合张力换能器设计与使用上的要求。一般张力换能器的调零电位器设计为暗调节,为了方便使用,其暗调节孔朝上,故张力换能器有暗调节孔的一面为上。 3. 影响骨骼肌收缩效能的因素 肌细胞最本质的功能是将化学能转变为机械功,产生张力和缩短。肌肉收缩效能表现为收缩时产生的张力和/或缩短程度以及产生张力或缩短的速度。横纹肌的收缩效能由收缩前或收缩时承受的负

肌肉训练的基本原则

韦德训练法则 (一)初练者的训练法则: 1。渐进性超负荷法则:增强任何健康素质的基础是使你的肌肉去担负比它已习惯的更重的工作,使肌肉承担不断增大的负荷。具体就是逐步提高重量与密度,但一定要有渐进性。增强任何健康素质(力量肌肉围度、耐力、心肺血管功能等)的基础是使你的肌肉去担负比它已习惯的更重的工作,使肌肉承担个断增加的负荷。例如,若求增大肌肉围度,则不仅要日益试用更大的重量,并且还要增加锻炼的组数和每周锻炼的次数。若求增人局部肌肉的耐力,你可以逐步减少各组动作之间的休息时间和增加锻炼该部肌肉的组数和每组中的动作次数,一切要有渐进性。所有的身体锻炼法的基本观念是超负伉这也是韦德法则的坚实基础。 2。多组练习法则:对每个动作要进行多组训练,以使每一肌肉群都能彻底的锻炼。初期锻炼全身的15个动作,每个动作开始只做1组,要求逐渐增加所练的组数。增加组数就是增加数量,对提高训练水平,加深对肌肉的刺激至关重要。在韦德系统的初建时期,多数专家建议有雄心的健美运动员对其所选用的每个动作,只须各做一组。如果在一次锻炼课程中选用锻炼到全身的12个动作,那就共做12组。但韦德法则提出每个动作要练多组(3—4组)的训练法则,以使每一肌肉群都能得到彻底的锻炼而增大到其最大限度。 3。迷乱莫测法则:也即:动作多变法则。是为了以避免肌肉的适应性,经常给肌肉以新的刺激。促使肌肉不断发展的主要因素之一是决不让其顺应某一锻炼课程。如果采用一套采用不同的方法锻炼,使肌肉不习惯于某种固定的动作方式、角度、重量、次数,以及其程序编排,而感受到强烈的刺激,能引起良好的反应。促使肌肉不断发展的主要因素之一是决不让其顺应某一锻炼课程。如果总是用老一套的方法锻炼,肌肉就会由于太习惯于某种固定的动作方式、角度、重量、次数,以及其程序编排,而感受不到强烈的刺激,不能引起良好的反应。反之,若常加变化,就能使其感受到新刺激,并能增加锻炼者的兴趣,避免枯燥乏味。 4。孤立锻炼法则:对要发展的肌肉部位,要尽可能的,不借助其它部位,单独承受负荷来集中刺激肌肉。可以让许多肌肉群共同来做某项锻炼动作,也可以使它们相对分离地进行这个动作。对完成某一复杂的整个动作说来,每一有关肌肉群都有其各自的作用,除起主要动力作用者之外,有的起协助作用,有的起稳定作用。如求最大限度地发展某一局部肌肉,就要尽可能使其在工作时与其他肌肉活动分离开,不借用身体其他部位的助力而使其单独承受负荷来获得集中的刺激,这种锻炼法主要用于突出加强某一部分的肌肉和着重纠正身体上某一部分的缺点。 (二)中级阶段训练法则:当你的体格开始呈现出健美运动员的基本特点的那种形态——丰满的肌肉,厚实的胸部,轮廓鲜明的四肢,倒三角形的上体和运动员的气魄时,你该知道自己应该进入中级训练了!健美训练的中级阶段重点应花费更多的时间和精力促使已经练就的大块肌肉锻炼成复杂,多层次的结构。应交替使用如下原则: 5。优先训练法则:为了改进身体上最弱的或某一相对不够发达而需重点加强的部位,可把锻炼这一部位的动作全部排在一次训练课的最前面,这样就可以在精力最充沛时来做这些动作。只有高强度的锻炼才能促使肌肉发展,而只有精力充沛时才能达到高强度。此外,这样安排也可保证不会由于时间不够而被锻炼其他部位的动作所挤掉。 6。金字塔法则:肌肉纤维的增大是对重大阻力进行收缩的结果,这样做的同时还增大了肌肉的力量.从理论上说,如果你把能做起8次的最大重量作为一组,做上几组不做准备活动,可以是一种很有效的增大肌肉和力量的锻炼法。然而你不能这样做,因为不做准备活动就用最大力量来练,具有受伤的危险。金字塔法则就是为解决这一问题而建立的。先用你一次能举起的最大重量的60%做上15次,随后逐步增加重量、减少次数,直到你用80%的最大重量做5——6次为止。这样你就可在暖身后收到使用大重量的锻炼效 果而不致受伤。 7。分部练习法则:当你以每周锻炼3次的安排,每次进行全身锻炼,练了几个月之后,如拟增加锻

关于肌肉酸痛的机理

关于肌肉酸痛 因运动而引起的肌肉酸痛,对于参与运动的人而言是一个很普通的伤害经验。一般来说,运动引起的肌肉酸痛可以分为急性肌肉酸痛与慢性(迟发性的肌肉酸痛)二种。急性的肌肉酸痛有别于肌肉拉伤,而是指因肌肉暂时性的缺血,而造成的酸痛现象,只有肌肉作激烈或长期的活动下才会发生,肌肉活动一结束即消失。通常,急性的肌肉酸痛会拌随肌肉僵硬的现象。肌肉酸痛:急性酸痛与慢性酸痛。急性酸痛:肌肉在运动中或运动刚结束后的一段相当短的时间内发生疼痛。急性酸痛与作用肌用力时形成血流的中断有关,在缺血的情况下使得代谢产物无法清除,而堆积在肌肉中,进而刺激到痛觉受纳器。在停止运动后的一分钟左右即完全恢复。肌肉慢性酸痛往往发生在练习后的24-48小时之间。肌肉慢性酸痛的程度与肌肉收缩的形态有关,离心收缩最轻易形成肌肉的慢性酸痛,等张收缩最不显著。肌肉有慢性酸痛的情形出现时,肌力明显下降。肌肉慢性酸痛的原因:*组织牵引理论:肌肉损伤而起。*肌肉痉栾理论:肌肉的反复性抽筋而起。*结缔组织理论:肌肉的结缔组织受伤(如肌腱)而起。事实上,肌肉的慢性酸痛是肌肉的损伤分裂所形成。避免肌肉酸痛的方法:*肌肉伸展运动(以静态的方式进行)。*渐增负荷原则:肌肉练习的超负荷原则使得肌肉轻易因此受伤,配合渐增负荷原则,慢慢提高肌肉的练习的质与量,才能有效避免伤害发生。*适当的补充维他命C,唯仍需进一步分析证实。 迟发性肌肉酸痛则是指,在运动后数小时到24小时左右才出现的肌肉酸痛现象,通常肌肉酸痛的持续时间在一至三天左右。迟发性肌肉酸痛的原因,不外是肌肉受伤、肌肉痉栾或结缔组织异常所引起,不过,一般认为结缔组织异常是引起迟发性肌肉酸痛的最大原因。 较少使用或练习的肌肉,忽然进行激烈或过度反复的活动,轻易引起迟发性的肌肉酸痛,预防的最佳方法是以渐进的方式进行肌肉活动,使肌肉能够负荷将进行的繁重或多次反复运动。假如已有肌肉酸痛现象,则应休息与热疗处理,不宜再过度活动,否则易产生更严重的伤害. 从生理学谈运动疲惫 疲惫是有机体的生理过程,无法维持在一定水准上运作,各器官也不能保持固定的工作能力,其结果是造成作业能力下降的现象。发生疲惫的原因有能源物质的耗尽、代谢产物在肌肉内堆积、氧气不足、身体内部环境稳定性失调或破坏、体力或脑力的疲惫等不同的解释。 疲惫从不同的角度,有不同的分类,包括有: @ 神经疲惫:又称心理疲惫,肇因于大脑方面的心理紧张或压力。 @ 身体疲惫:就是肉体疲惫。中枢疲惫:中枢神经系统机能减低引起的疲惫。@ 末梢疲惫:起于运动神经纤维、肌肉内突触、肌纤维与肌感觉器的疲惫。 @ 急性疲惫:一次肌肉作业后发生的疲惫。慢性疲惫:长时间精神或身体疲惫的累积。 @ 局部疲惫:发生在身体局部位置的疲惫。@ 全身疲惫:全身性运动的疲惫现象。运动疲惫是运动的结果造成运动能力的下降,有关运动疲惫的因素有能量储存的消耗、运动强

肌肉拉伸原理

肌肉拉伸 什么是柔韧性?美国运动医学院专家认为,柔韧性应该跟整个瑜伽体能训练结合起来,发展并保持一系列的活动。柔韧性使运动员有很大的活动自由度,关节能够流畅自如地在整个围活动。肌肉的拉伸被看作最容易、最安全的保持柔韧性的方法。 肌肉拉伸的好处有: 1. 减少受伤的风险; 2. 减少肌肉紧; 3. 保持所有肌肉的正常功能; 4. 舒缓关节紧; 5. 增加关节活动围; 6. 纠正肌肉的不平衡; 7. 增加运动的类型; 8. 促进整体功能的发挥和运动自由度; 9. 增强姿势; 10. 发展身体意识; 11. 减少身体的酸痛; 12. 促进血液循环; 13. 让你的感觉和运动更好; 14. 帮助你提高平衡性和稳定性。 既然拉伸肌肉有这么多的好处,那么为什么还是有人不太愿意进行这个运动呢?一些人认为柔韧性训练枯燥无味,认为结果并不明显。这些误解增加了障碍,可能为我们懒于进行肌肉拉伸训练提供借口。而有的人并不知道肌肉拉伸,也不知道如何拉伸。这也是不进行肌肉拉伸的原因。不幸的是,当这些人受伤之后才意识到肌肉拉伸的重要性。记住,练习肌肉拉伸永远都不嫌迟。 那么怎样才能成功地进行练习,受到很好的效果呢?下面列出瑜伽锻炼的指导原则: 1. 征得医生的允许,明确你是参加瑜伽锻炼还是其他体能锻炼; 2. 找到一个安静的没有干扰和噪音的地方。这个地方应该温度适宜,使肌肉保持适当的灵活性。若有必要,在练习之前,打开暖气,让室升温;

3. 树立切实可行的目标。如果你每天只能够抽出15分钟锻炼,那么就不要指望练习30个姿势。不必贪多,坚持练习比什么都重要; 4. 调整你的瑜伽练习,每个时期都有一定的训练目标。例如,日期逢单,那么练习这些,日期逢双,练习那些。另外一个例子是,某天特别注意调整身体的肩部、下背以及腹部,而另外一天特别注意调整臀部、髋关节以及腹部,等; 5. 空腹时练习瑜伽效果最好。吃个水果、喝杯果汁也是可以接受的,不要吃煎饼等; 6. 练习瑜伽时,肌肉、关节和神经不应该感到酸痛。肌肉拉伸时有轻微的酸痛很正常,但是疼痛就不行。做动作要轻柔、有耐心。记住,冰冻三尺非一日之寒; 7. 注意修正姿势,特别留意身体对每个姿势的反映; 8. 每个姿势之间不要跳跃。尽可能自然巧妙地移动这些姿势,形成“静态”的姿势。动作不连贯或者幅度大可能会拉伤肌肉; 9. 记住拉伸相对的肌肉。这将使对应肌肉得到同等锻炼和休息的机会。例如,当准备拉伸腿筋时,有必要拉伸或者活动股四头肌; 10. 一直保持腹部的参与很有帮助。也就是说,一直注意“将肚脐吸向脊椎”。这可以帮助支持腰椎。另外,“将胸廓提离腰部”,以支持较好的姿势,并增加肺活量; 11. 不要过度拉伸已经拉伸过的区域,这可能造成“过度灵活”。过犹不及,关节的正常功能跟柔韧性一样重要; 12. 对瑜伽练习和高尔夫挥杆充满热情。多看我的讲义,多理解生物力学知识; 13. 保持积极的态度,认识到练习瑜伽对身体有明显的促进作用。马上行动,亡羊补牢,为时未晚; 14. 从瑜伽姿势练习中收获乐趣。

肌肉生长的原理

肌肉增长的原因是超量补偿(也称超量恢复)。在肌肉锻炼时有些肌纤维会断裂,锻炼后肌纤维会自我修复,修复后的肌肉体积比原来更大,所以肌肉就更大了~~ 肌肉酸痛的时候能否坚持训练呢?弄清这个问题要先了解以下几个概念。 一、A TP供能。ATP(三磷酸腺苷)是肌肉活动唯一的直接能量来源。在酶的催化作用下,ATP迅速分解并释放能量,以供肌肉收缩之需。肌肉中ATP储量很少,必须边分解边合成,才能供给肌肉持续活动的需要。供ATP分解后再合成的能源有三个途径,一是糖与脂肪的有氧氧化,二是CP(磷酸肌酸)的分解,三是糖元的无氧分解。 二、无氧代谢。无氧代谢是人体能量代谢的组成部分。当肌肉进行短时间、高负荷运动时,氧的供应量不足以进行糖的有氧氧化,肌肉即利用CP(磷酸肌酸)和糖的无氧分解所释放的能量再合成ATP,以供肌肉运动之需。 三、糖的无氧分解。糖的无氧分解是在氧供应不足的情况下,糖原或葡萄糖分解为乳酸,同时快速释放能量合成ATP,以供肌肉收缩所需。因为CP(磷酸肌酸)在肌肉中储量也很少(现在有人工合成的肌酸可用于训练补剂),所以糖的无氧分解是无氧代谢的主要供能方式。 糖无氧分解的代谢产物是乳酸,肌肉酸痛的感觉就是乳酸大量堆积造成的。肌肉中无氧代谢产生的乳酸不能在肌肉内逆转为糖,而是少部分被氧化,大部分由血液输送到肝脏,转变为肝糖原。 由上可知,重量训练后的肌肉酸痛是必然的,只有乳酸不断地通过血液循环进入肝脏转变为糖原,肌肉酸痛才会逐渐消失。而这一过程是训练后恢复过程的一部分。 乳酸是一种强酸,它在体内积聚过多会使体内酸碱度的稳定受到破坏,从而使机体工作能力降低。许多健美运动员的经验证明,肌肉酸痛时坚持训练,肌肉感觉不刺激,很难练涨。而且肌肉酸痛会使肌肉的本能反应趋向排斥肌肉运动,所以很难集中意念进行训练,更不用说建立肌肉---意志联系了。因此最好是等到肌肉酸痛现象消失后再训练。尽管你的训练热情很高,训练欲望很强烈,但你要明白:没有充分的恢复,肌肉就不可能充分生长。 那么,肌肉酸痛现象的消失能不能作为机体充分恢复的标准呢?了解这个问题需要先弄清“恢复”的概念。 健美训练消耗和恢复的过程分三个阶段: 第一阶段:运动时,消耗过程占优势,由于能量物质的消耗大于恢复,所以运动时能量物质逐渐减少,肌肉和身体各系统的工作能力逐渐下降。 第二阶段:运动后的恢复阶段。运动停止后消耗过程减弱,恢复过程占优势,这时能量物质和各器官系统功能逐渐恢复到原来水平。 第三阶段:超量恢复阶段。集体内能量物质的再生与合成进一步加强,运动时被消耗的物质不仅恢复到原来水平,而且在一段时间内超过原来的水平,此时机体的工作能力最强。这成为超量恢复或超量补偿,随后又逐渐回到原来的水平。

肌肉的本质及其受伤的原理及处理

肌肉的本质及其受伤的原理及处理

二、肌肉的辅助结构 1.筋膜筋膜有浅筋膜和深筋膜两种,浅筋膜(皮下筋膜)位于皮肤的深面,是含脂肪成分的一层疏松结缔组织,通常所说的筋膜(或固有筋膜)位于浅筋膜的深层。深筋膜在四肢最发达,包被在每块肌肉的周围,并深入各群肌肉之间,形成肌间隔,最后连于骨膜上。 筋膜的作用是分隔肌群中的肌肉,使深层肌肉在工作时具有同等的工作条件。在病理情况下,筋膜能够限制炎症的扩散。 2.腱鞘腱鞘是由两层结缔组织构成的长管,套在肌腱上,两层膜之间有滑液,运动时可减少肌腱和骨之间的摩擦。 三、肌肉分类 1.按形状分类以肌肉的外形轮廓可分为长肌、短肌、轮匝肌和阔肌。 2.按肌头数目分类有二头肌、三头肌、四头肌等。每个头各有一个起点,由两个头合成一个肌腹,为二头肌,其余依此类推。 四、肌肉的物理特性 1.伸展性与弹性肌肉受外力时长度增加,这种特性叫伸展性。当外力解除后,肌肉恢复原来的长度,称为肌肉的弹性。

2.黏滞性肌肉收缩时,肌纤维之间摩擦产生阻力,是由于肌肉的黏滞性引起的。气候寒冷时,肌肉的黏滞性增大。所以在各项运动前要做准备活动,使体温升高,以减小肌肉的黏滞性。 五、使上肢各关节运动的肌群 1.斜方肌位于背部和项部的皮下,一侧 呈三角形,两侧相合呈斜方形,肌纤维分上、 中、下三部分。 (1)起点枕外粗隆项韧带,第七颈椎棘 突,全部胸椎棘突。 (2)止点肩胛冈,肩峰,锁骨外1/3处。 (3)机能近固定:上行纤维使肩胛骨上提,上回旋后缩;横行纤维使肩胛骨后缩;下行纤维使肩胛骨下降和上回旋。远固定:一侧收缩,使头和颈向同侧屈和回旋;两侧收缩,使头和脊柱伸直。 2.菱形肌位于斜方肌深层,呈菱形。 (1)起点下位两个颈椎和上位四个胸椎的棘突。 (2)止点肩胛骨内侧缘。 (3)机能近:使肩胛骨下回旋,上提和后缩。远:两侧同时收缩,使脊椎伸直。 3.肩胛提肌位于斜方肌深层,细而长。 (1)起点上位四个颈椎横突。

力量训练原理及方法

就力量训练而言,最好先从大肌肉群开始,例如胸部、腿部和背部。较大的组合练习对中枢神经系统影响更大且能稳定肌肉。胸部和背部练习应在腿部练习后进行。 对抗肌肉群应按次序进行,例如,胸部、背部、腘绳肌和股四头肌、肱二头肌和肱三头肌,这样对身体动作和姿势不会产生副面影响。 腹部练习也应该进行。在训练计划中,过早进行腹部练习会削弱支撑系统并容易导致腰部受伤,特别是进行力量练习时如蹲起 第二节最大力量 ?1定义:最大力量是指肌肉通过最大随意收缩克服阻力时所表现出来的最高力值。 ?2发展最大力量的途径:加大肌肉横断面(hypertrophy);增加肌肉中磷酸肌酸(CP)的储备量,以加快工作中ATP的合成速度;提高肌肉间及肌纤维之间的协调性;改进和完善运动技巧。 3.最大力量训练的基本要求 ?3.1强度:本人最大负重量的三分之二以上的负荷(60-80%);一般不采用极限负荷保证重复次数和时间,防止外伤、减轻心理负荷。注意每周穿插;不采用40%以下的强度运动单位少、红肌纤维参加工作的成分增加。注意准备过程。 快1 .5-2.5秒;动作速度不可太快,如用惯性去克服阻力,降低训练效果。 ? 3.4间歇时间:增大肌肉体积;改善肌肉协调;注意基本恢复。 力量训练方法设计的基本原则: ?大力量设计:高负荷、低重复次数、完全休息 ?肌肉体积:中等负荷、大训练量、完全或不完全休息 ?力量耐力:低强度、大运动量、不完全休息

4.发展最大力量的具体手段和方法 ?4.1重复练习法:负荷强度为75-90%。训练组数为6-8组,每组重复3-6次,组间间歇3分钟。 ?4.2阶梯式极限用力法:又称金字塔负荷体系。一次课的练习从较低的负荷开始,逐渐加大负荷而减少练习次数。保加利亚举重教练阿巴杰耶夫将这种方法发展为将负荷的强度加到100%,即要求达到当天最高水平(见图)。 ?4.3静力训练法: ?以肌肉收缩力克服和对抗外力,使肌肉张力改变,长度不变,环节不运动。 ?通过大强度的静力性练习来发展最大力量。负荷强度为90%以上,每次持续时间为3一6秒,练习4次,次间

相关主题
文本预览
相关文档 最新文档