当前位置:文档之家› 激光三角法测量钢板厚度光学系统设计

激光三角法测量钢板厚度光学系统设计

激光三角法测量钢板厚度光学系统设计
激光三角法测量钢板厚度光学系统设计

光学系统设计论文

目录

摘要….......................................................................................................................... 第一章引言..................................................................................................................

1.1研究的背景和意义...........................................................................................

1.2 国内外研究现状................................................................................................

1.2.1 国外发展现状.............................................................................................

1.2.2 国内发展现状............................................................................................... 第二章测量原理及方案论证.....................................................................................

2.1 设计任务分析.....................................................................................................

2.2 测厚技术简述....................................................................................................

2.3 激光三角法测量原理...........................................................................................

2.3.1激光三角法测量的类型和区别....................................................................

2.3.2激光三角法测量的基本原理........................................................................

2.4 沙姆条件…………………………………………………................................

2.5 测量模型及方案论证…………………………………………........................... 第三章光学系统设计....................................................................................................

3.1总体结构布局.......................................................................................................

3.2光源......................................................................................................................

3.3聚焦系统与成像系统........................................................................................... 第四章误差与精度分析................................................................................................

4.1 误差分析...............................................................................................................

4.1.1光学系统误差分析.........................................................................................

4.1.2随机误差分析................................................................................................

4.2 精度分析............................................................................................................. 第五章总结.................................................................................................................... 参考文献.........................................................................................................................

摘要

在科学技术迅速发展的今天,外形尺寸的测量一直是工业生产中的一个重要环节,厚度测量更是人们关注的焦点。在测厚领域里,采用激光三角法这一典型的非接触式测量方法对物体的厚度进行绝对测量不仅能满足测量的实时性,还能保证测量的高精确度,这种测量方法已经成为工业生产的发展趋势。本文所提出的基于激光三角法厚度在线测量技术采用双光路半导体激光技术与直射型激光三角法相结合,同时对平板物体进行厚度的在线测量。

文中主要包括总体方案的设计和由此涉及的关键技术、测量原理、精度与误差、实验等几个部分,本课题提出的基于激光三角法厚度绝对测量研究,是集机、电、光、计算机等技术于一体的精密测量方法,它的主要组成部分是:激光器、聚焦系统和成像系统、光电转换器件CCD及计算机数据处理部分。这里由于是只对光学系统进行设计,所以本文主要论述的是光学系统部分的任务分析,测量原理的理论分析和计算方法,并对光学系统可能产生的误差进行分析,并对于个别误差提出相对应的解决措施,以提高测量精度和测量速度。全文的主要内容分为四章:

第一章:引言,主要介绍了钢板测厚的重要性,由于主要采用的是激光三角法进行测量所以主要介绍以及激光三角法在非接触测量中国内外的发展现状及应用前景。

第二章:测量原理,激光三角法测量的不同类型,通过对比,进行选型;简述激光三角法的测量原理,我们所设计的光学系统的测量模型和方案论证。

第三章:首先介绍了总体结构的布局,然后对光学系统的光源、聚焦系统及成像系统进行设计。

第四章:对光学系统在测量过程中可能产生的误差进行了分析,并对一些误差提出了解决方案以提高测量的精度及速度。

第五章:总结,文章的最后进行了全文的总结,并提出了在设计过程中的不足之处,讲述了自己在设计过程中的心得体会。

第一章引言

§1.1研究背景和意义

现如今,工业发展的水平可以近似直接代表着国民经济的整体实力水平,因此工业的生产技术水平对国民发展有着重要的意义。钢板是造船、桥梁、机械、汽车行业中不可缺少的原材料,在轧钢生产过程中钢板尺寸是很重要的参数,直接决定着钢板的成材率。传统的检测方法是采用检测头与待测钢板直接接触来测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。因此,在现代板材生产中,不论是轧制过程中还是最终产品的调整中,为获得较高的板材命中率和最佳的轧制过程及剪切效果,板材尺寸测量系统已成为生产线上不可缺少的设备之一。宽度偏差每减少1mm,成材率就可以提高0.1%左右,因此尺寸控制技术可显著提高经济效益和产品竞争力。

目前,我国大部分企业仍在延用传统的测量方法,采用接触式的测量方式,技术相对落后,而且在处理复杂的零件时显得无从下手。这种情况严重地影响了工作的效率与工作的质量,为此应加大力度地发展测量的新技术来解决传统测量方式不能处理的问题,以适应现代生产发展的需要。随着工业生产技术的不断提高与更新,这种非接触式的测量方法能够满足对测量所要求的精确度与实时性,己经成为这一领域的发展趋势。再加上电子技术与光学技术的飞速发展,光电检测这种综合多种技术的测量方法成为非接触式测量的重要手段。本文所提出的激光三角法是光电检测技术其中的一种。这种方法在检测长度、距离以及三维形貌的用途中因其具有结构简单、响应速度快、实时处理能力强、使用灵活方便等优点显得更具优势。这种方法已经在测量位移、表面形貌等检测工作中取得了很好的效果,并且会扩展更广阔的使用空间,发挥其优势,推动工业检测技术的发展。

§1.2国内外研究现状

自上个世纪60年代激光测微仪的诞生,这种商品被大力的发展与生产,性能得到不断的改善,应用领域也被扩展的更加广泛,成为一种重要的非接触式检测仪器。国内外也有不少企业在做这方面的技术,一般分为直射式与斜射式两种形式。直射式的产品有基恩士公司生产的LS系列和LK系列,德国Micro-Epsilon

公司的optoNCDT系列,美国MT公司的MicroTRAK系列等多种型号;斜射式的激光位移传感器以日本Keyence公司的LK系列最为突出。表1-1列出了目前市场上常见的几种激光三角位移传感器的技术指标[6]。

表1-1 激光三角位移传感器的技术指标[8]

1.2.1国外发展现状

在欧洲以及美国等发达国家很早就致力于激光三角法测量平板厚度的基础理论研究及测量仪器的研制,并且己经为此投产,生产出了一系列相对比较完善光电检测产品,尤其是在日本和德国,光电子技术的发展的速度非常快,应用也相对的更为广泛一些,所以国外在厚度检测这一方面的发展有着很迅猛的速度,拥有光源照明技术和光电检测元件的种类非常齐全,光电检测技术也很成熟。例如:日本的Mot1toshiAndo等人运用光三角方法印制线路板的线条检测,用这种方法还可以检验出工件表面的划痕和裂痕;英国剑桥大学的Roert Johnes等人将该方法用于涡轮叶片及飞机机翼断面检测,在10mm范围内精度可达2-5;西德早已报道把激光光学三角测量技术和装置用于随线控制,它既可测量钢板的厚度,又可测量钢水的高度;日本的安立一岩通公司推出的通用型激光厚度位移计ST-370型的1、2、3系列。国外各大公司在光电检测技术中的突出表现代表了目前光电检测技术的一个发展程度,同时也预示着光电检测技术更广阔的发展空间。

1.2.2国内研究现状

虽然国内在光电检测技术上的起步较晚,但是鉴于传统的接触式测量技术有

着较大局限性,行内的技术人员早已注重了对于新型测量方式—非接触式测量技术的研究,使其技术在国内迅速发展,并且取得了一些相对比较好的成果。例如:1987年8月由电子工业部第二十五研究所的陈为民、卞海洋等人研制成功的激光测厚仪采用激光双三角测量原理,由激光器!视频信号处理器、微机等组成;1991年,中国科技大学的金泰义、李胜利等人开发研制出了JW—1型CCD激光测微仪,它以半导体激光器为光源,通过CCD进行信号接收,接受的数据送入计算机进行处理。这种测微仪是光、机、电一体化的典型事例,是光电检测方面研制的比较早的CCD激光测厚仪,采用光电藕合器件CCD实现,整体系统的技术水平在当时的国内己经体现了检测技术的最高水平;长春光机所研制的基于光学三角测量原理的激光非接触探头结构简单,体积小,重量轻,测量精度高,速度快;安徽工业大学电信学院的章小兵在研究了板材在线测厚时就用的激光三角法并叙述了激光三角法测厚的原理[1],对板材在线测厚系统进行了硬件设计和软件设计并给出了系统测量指标。与此同时,例如计算机视觉测试技术等新型技术都是在以激光三角法为理论基础的研究上发展起来的。

§1.3展望

通过大量的检索查新国内国外文献资料,可以发现目前我国光电检测仪器与工业发达的国家相比,我国的光电检测的仪器产业还不够成熟。我国主要报导的多,实际设计应用的少。从减小测量误差、提高测量有效速率方面与发达国家的产品设计还是存在一定的差距的。特别是本文涉及的以激光技术激光三角检测技术、光学系统设计和计算机技术相结合对平板进行绝对测厚的技术在国内鲜少报道。

第二章测量原理和方案论证

§2.1设计任务分析

由于在生产线从加热炉出来,经轧辊机轧制的钢板,温度很高,一般在900℃左右,呈现红色或暗红色。为了更快更准确的获得钢板尺寸数据,得到最佳的轧制过程及剪切效果,需要实时在线采集钢板尺寸信息,并及时显示出来,以便于操作工人及时调整轧机或者印制尺寸标识。所以我们根据实际应用需求,要求所设计的测量系统必须可以进行非接触式的在线测量,为了简化设计难度,在设计要求中假设是在钢板冷却后再进行测量。所需测试的钢板的厚度为5±0.05mm,精度要求为±1%。

§2.2测厚技术简述

测厚技术通常都是以非接触式检测方法为主,按照测量原理和使用的传感器类型来分,大致可分为激光三角法、电容法、射线法、超声法等。这里我们选用的是激光三角法测厚度,所以其他测量方法就不做过多的赘述。

激光三角法利用探头中的激光器发射出激光,入射到电荷藕合器件CCD或位置检测器PSD作为接收器,通过在接收面上的像点经过位移变化,再通过计算公式计算出被测面的位移。本系统就是采用这种双激光三角法进行厚度测量,其原理示意图如图2.1所示。

图2.1双激光三角法厚度测量原理示意图

激光三角法在测厚领域里已经日趋发展成熟,通过光学系统、机械系统、电路系统三者有机的结合,已经有一系列的测厚仪器问世;同时在近几年中,应用激光三角法,结合电荷耦合器件CCD,应用两个探头同时进行厚度测量,使测厚技术己经逐步向于动态、实时化测量,自动、程序化数据处理方向高速发展。

§2.3激光三角法测量原理

根据前文所述的任务分析,我们选择采用具有分辨力高、测量精度高、稳定性好、非接触测量、可实现在线检测、测量仪器体积小等特点的激光三角法,来实现位移测量的。尽管常用的微位移检测的方法有很多种,例如机械法、电学法、光学法等,但都无法与激光三角法匹敌,激光三角法是位移检测方法的发展趋势,具有广阔的应用前景。

2.3.1激光三角法测量的类型及区别

(1)反射型与投射型

激光三角法光路按检测方式分为反射型与透射型本系统采用的就是反射型的激光三角法,通过激光在被测对象的表面发生反射,接收到被测信息。而对于一些特殊材料的被测工件如透明物质,由于其表面非常光滑,用反射型会对测量产生一定的影响,则可以采用透射式激光三角法,通过激光器发出的光线透过被测工件再投射在光敏面上而获取测量信息。

(2)单束光和片光

按入射光束的形态来分,又可分为单束光和片光。顾名思义,若单束光入射的话,光斑小、光的强度高,但是广度不够,如果片光入射则需要采用激光透射光条与一个面阵探测器组成,通过光切法,也称结构光图像法,能一次获取一条扫描线上的数据。本系统采用的是单束光入射测量。

(3)直射型和斜射型

若按入射光线与被测工件表面法线的关系来分,可分为直射式和斜射式。对于直射式,就是光束垂直入射到被测物表面,采用漫反射光进行测量,当物体纵向移动时,所测的始终是同一个被测点;斜射式的入射光束则与被测物表面形成一定的角度。

斜射型:如下图2.2所示,入射光束与被测物面成一夹角,利用反射到探测器件CCD的像点位置变化测量物体的位置厚度,当物体纵向移动时,所测的被测点会随移动发生改变,当测量平滑物体如玻璃、镜面时要比直射型的测量精度高很多。斜射式入射光照射在物体的不同位置,当被测物体移动时,光点的位移不能直接得到,要通过角度计算得出。斜射式分辨率很高,但测量范围较小、体积较大、光斑较大,所以在此不符合本系统体积的要求。

图2.2斜射型示意图

直射型:如下图2.3所示,激光器发出的入射光束垂直于成像透镜光轴O,光敏面与成像物镜O平行,被测点的位移与光电探测器上光斑的位移为线性关系,可用于测量相对或绝对位移,但其光敏面要求很大,而且被测点在成像面的像并不清晰,因此测量精确度不高。光斑较小,光强集中,体积较小,并且不会因被测面不水平而扩大光斑是直射型三角法的最大优点。但由于直射型接收的是散射光,当测量到较为平滑的被测面时,散射性能较差,使光电探测器件CCD接收到的散射光光强小,对测量产生影响,令测量过程受到阻碍,测量精度受到影响。

图2.3直射型示意图

2.3.2激光三角法测量的基本原理

通过上述对激光三角法测量的类型及区别的论述,及我们设计任务需求的分析,综合考虑我们选择了单束光入射,光路检测方式为反射型,光束垂直入射到被测物表面,采用漫反射光进行测量的直射型激光三角法对钢板厚度进行测量。

(1).传统的激光三角法

传统的激光三角法基本原理如图2.4所示,采用直射型,光电探测器采用的是CCD,当散射光通过成像透镜时,如果将CCD以垂直于激光束入射的位置进行安装耦合,则成像到CCD上的光点会由于没有完全聚焦而出现弥散斑,测量并不完全。

图2.4 激光三角法的基本原理图

于是为了光点所成的像在接收器表面上每一点都清晰,则要求透镜光轴与接收面之间必须形成一定的夹角,所以我们选用CCD接收器为倾斜式的方式,即完全聚焦的激光三角法测量,如图2.5所示。

图2.5完全聚焦的激光三角法示意图

图中PO为入射光源,光线经准直透镜后垂直入射到物体表面,反射后经过成像透镜中心点M成像在CCD接收面上,入射光PO与反射光以的夹角为θ,反射光OA 与CCD成像平面的夹角为,P点成像于CCD平面上的B点,O点成像于CCD平

面上的A点,由图中可知,P点与O点高度不同,所成的像投射到光敏面上的位置也是不同的,设O点所在平面为基准面,A为CCD成像平面上的成像基准点,则光线PO上的点与CCD平面上的投影点是一一对应的。因此,只要知道光线PO 上的任何一点在CCD成像面上的位置就可以求出该点的高度信息。由图2.5,可列出以下关系式

(2.1)

由公式(2.1)可推出(2.2) 式中:

PO一一物点的高度信息;

AB一一P点在CCD成像平面的成像点与成像基准点A的偏移量

OM一一O点成像PO物距;

MA一一O点成像像距;

激光束垂直投射到被测物面,所形成的漫反射光斑作为传感信号,用透镜成像将收集到的漫反射光会聚到像平面的光接收器上形成像点。当被测物面移动时,入射光斑也会随之移动,像点也会在光接收面上做相应的移动,根据像移大小和系统结构参数可以确定被测物面的位移量,从而还可以获取其它方面信息。本系统中,为使光接收器上的像点不存在盲点,光接收器的光敏面必须与成像光轴成一夹角。这样既可以保证入射光斑与其像斑位移具有的关系精确,还可以使成像点最小,有利于提高测量精度。同时为了提高测量精度,和θ必须满足沙姆

(Seheimpflug)条件,即,如图2.6所示[5]:

图2.6物一像位移轨迹图

图中d 0为基准点的物距,d i 为基准点的象距,O ’为O 经成像透镜的像点,A 、B

分别为a 、b 经成像透镜的像点,θ为光入射角, 为成像角,l 为成像透镜,焦距为F 。

当激光光束照射到a 点时,由图3.7可知:

由相似三角形△ao 1l △l 得:

令 则由式(2.3),

(2.4)

可化简为

同理可推得,当物面由O 至b 时

(2.3) (2.5) (2.4) (2.6) (2.7) (2.8)

(2.9) (2.10)

综合上面可得,

式中,符号“+”对应于图2.6由o移至b,符号“─ ”对应物面由o移至a。式中,符号“+”对应于图2.6由o移至a,符号“─ ”对应物面由o移至b。

(2.12)

(2.11)

由Z-I关系公式可得Z-I关系曲线,图2.7所示。从图中可以看出I该曲线为非线性曲线,只有当物面在O点附近较小范围移动时,上述曲线可近似按线

性关系处理。

图2.7 Z-I非线性关系曲线

§2.4Scheimpflug Condition(沙姆条件) 被测物表面,镜头平面和影像的平面在一个共同点上相交的光学状态称沙姆条件,即在直射型激光扫描测量中,当入射光斑沿激光束方向位移时,其成像点在像平面内沿直线轨迹移动,则激光束轴线!成像透镜主面及CCD像平面三者交于一点,满足高斯条件,这是激光三角测量传感器实现精密测量的前提条件。

§2.5测量模型及方案论证

本课题采用直射式三角法,测量模型的的基本组成有激光器、聚

焦物镜、成像物镜及光敏阵列线阵。CCD其测量原理为激光器发出光的轴线与聚焦物镜的主平面两者同处一个平面上,并与CCD垂直。当激光器发出一束平行光,经由聚焦物镜聚焦在待测物的表面,产生的散射光通过成像透镜成像在CCD光敏面上。CCD将像信号转换为电信号测出其像点的位置。当被测物体沿着法线方向移动时,其表面上光斑会随着聚焦物镜的位置变化而发生改变,相应地,像点在光敏器件CCD上的位置也要发生变化,精确地测量像点在CCD上的位移x,就可以得到被测物体的位移量。由于是绝对测量,所以采用激光上下表面双三角法,准确的测量运动物体的厚度。如下图5.1所示,图中a

为散射光接收角,θ是成像角,d0为参考点处的物距,d i为像距,d 为上下两参考面之间的距离,x是物位移,x’为像位移。

图2.8 激光三角法测厚原理图[2]

由上图可得光学关系式:

式中 β一一成像透镜的放大倍数

上、下物面相对的移动距离为x 1和x 2,两CCD 上的像点移动至x ’11和x ’21,像点移动距离

,。根据几何关系,有

因此,

由于上下探头完全对称,同理可得

(2.13)

(2.14)

(2.15)

其中

在探头参数确定

后,C

1与C

2

为定值,当上

下探测头测得像点位移量后,按公式(2.14)、(2.15)式计算便可得到物

件的位移量x

1、x

2

,物件厚度为

第三章光学系统设计

§3.1总体结构布局

3.1.1系统的组成

系统由以下几大部分组成:激光发射器,光三角位移检测系统,计算机数据

处理系统,工作台。

图3.1 测量系统方框图

1.激光测头部分

由激光发射器组成的光源系统、聚焦光源的准直系统、接收光信号的激光成像系统构成,由于本设计测量为绝对厚度,所以我们采用两个激光探测头。

2.光三角位移检测系统

本文采用激光三角法原理设计的测厚系统,用线阵CCD作为光电接收器件,通过物面的位移由此检测出在感光面上成像点的位移,通过计算得出厚度。

3.计算机、实时数据处理与控制系统

计算机数据处理系统是将接收到的光信息转化为数据输入计算机,通过计算机的内部编程结构计算出所求厚度,并显示出测量结果、存贮及打印。

4.工作台

对所测物件进行固定,并使其可按照一定规律、方向、有速度的平稳运动。这种系统主要是由基座、滑台、导向、传动、定位与夹紧结构等组成的。

2.3.2总体结构布局

基于激光三角法原理设计的测厚系统,是通过上述的激光探头系统发出光源,照射在被测物体上,通过光三角位移系统作为信息载体,接收并反馈出所需信息,并经过计算机控制系统进行数据确定,对工件进行测量,则被测工件的绝对厚度可以确定了。根据系统组成,总体结构布局如下图3.1

图3.1总体结构布局

§3.2 光源

目前,激光作为一种新型能源[6],具有单色性好,光亮度极高,方向性强等优点,它在测量,加工等多种领域都有很广泛的应用。在众多的激光器中,氦氖气体激光器和半导体激光器应用尤为广泛。其中氦氖气体激光器具有连续输出激光的能力、结构简单,但体积较大,而半导体激光器具有体积较小、效率较高、驱动功率小等优点,尤其适用于测距。于是为了本设计要求,本文选取了半导体激光器。半导体激光器发出的激光,由于空间相干性好,投射点也相应的变得很小,辐射能量就越小,分辨率就越高,能量密度也随之增大。文中选用的是波长为688nm半导体激光器。在实验中发现,由于选用的激光器发出的激光光强较大,使投射到光电探测器CCD上像点的光斑也随之增大,影响测量系统的分辨率。解决的方法是在聚焦透镜后面放置一块偏振片,通过调节偏振片,改变其旋转方向,对激光器所发出的线偏振光进行过滤,使光束中心光强较强的光束通过过滤,滤除边缘较弱的光,使光束细化,则CCD上像点的光斑减小,提高仪器的测量精度。

§3.3聚焦系统及成像系统

在光路设计中,聚焦系统和成像系统是本设计中的关键环节。整个系统的可靠性在很大程度上取决于聚焦系统和成像系统的准确性。

3.3.1聚焦透镜

激光器光源发出的光尽管光束较细,发散角较小,但仍存在一定的直径,在CCD的光敏面上形成的是一个小光斑,测量精度会由于覆盖光敏面上的光敏元离散而受到影响。另外,当物体表面随法线方向进行移动,位移发生变化时,像点在CCD的光敏面上也作出相应的位置移动,如果像点过大,而CCD光敏面量程一定会影响测量效果,则应尽量缩小投射在CCD光敏面上的像点直径,减小孔径,使像差较小。在本系统中,聚焦透镜的设计不是本文研究的主要重点,则设计中我们采取了结构相对简单、准直效果较好的单透镜聚焦系统。

3.3.2成像透镜

本系统的成像透镜是根据测量系统的分辨率、测量范围、工作距离等要求光

电转换器件CCD本身特性进行设计的。系统测量范围很大时,要求散射光在CCD 面上的成像点不能过大。如果测量范围很大,当被测物体移动到测量范围边缘时,光强会随移动而逐渐衰减,所以要根据实际情况调节放大倍率刀的大小。

第四章误差与精度分析

§4.1误差分析

基于激光三角法的厚度绝对测量试验系统是一个由机械、光学、电子和计算机组成的一个有机的整体,因此在测量实验中所得到的结果中所包含的误差也是由多种误差因素引起的。在这些误差中,有些通过具体计算就可以得到,而有些则需要通过实验标定的方法来进行估算,并且在某些情况下只能求出误差的变动范围,这就是误差极限值。这里主要介绍光学系统的误差分析[4]。

4.1.1光学系统误差分析

在本测量系统中,光学系统的误差主要是指采用的激光器、光学透镜产生的,从测量原理上看,光源方面我们需要采用一种体积小、驱动功率小、使用方便的光源发生器,同时还需要光源的空间相干性好,这样才可以使投射到测量物体上的光斑小,光斑越小分辨率就越高,但是如果光斑非常小,辐射能量就不会很大,导致接收灵敏度就要降低。所以,为了在通过光学系统聚焦后产生较高的能量密度,系统采用了半导体激光器作为光源,这样才能使探头小型化。但是半导体激光器本身也会产生误差[7]。

激光测距的方法及原理

激光测距的方法及原理 激光测距技术与一般光学测距技术相比具有操作方便、系统简单及白天和夜晚都可以工作的优点。与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度,而且激光具有良好的抵抗电磁波干扰的能力。其在探测距离较长时,激光测距的优越性更为明显。光测距技术是指利用射向目标的激光脉冲或连续波激光束测量目标距离的距离测量技术。较常用的激光测距方法有三角法、脉冲法和相位法激光测距。 1.三角法激光测距 激光位移传感器的测量方法称为激光三角反射法,激光测距仪的精度是一定的,同样的测距仪测10米与100米的精度是一样的。而激光三角反射法测量精度是跟量程相关的,量程越大,精度越低。 采用激光三角原理和回波分析原理进行非接触位置、位移测量的精密传感器。广泛应用于位置、位移、厚度、半径、形状、振动、距离等几何量的工业测量。半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 图1. 激光三角测量原理图 激光发射器通过镜头将可见红色激光射向物体表面,经物体反射的激光通过接受器镜头,被内部的CCD线性相机接受,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度即知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可设置独立检测窗口。常用在铁轨、产品厚度、平整度、尺寸等方面。

钢板厚度测量系统

长沙理工大学钢板厚度测量系统 学院:汽车与机械工程学院 班级:车辆1102 学号:201169030201 姓名:侯健

钢板厚度测量系统 一、测量对象说明 本测量系统对象是普通钢板,但为保持测量灵敏度要求其厚度大于0.1mm,被测面应光洁、不应有洞眼、刻痕等,长度50mm、宽度30mm、厚度在0~16mm间。 二、测量原理框图 三、测量原理与方法说明 1.测量原理 如图1所示,在金属板一侧的电感线圈中通以高频激励电流I1时,线圈将产生高频磁场,由于集肤效应,高频磁场作用于金属板表面薄层,并在这薄层中产生涡流。涡流I2又会产生交变磁通Ф2反过作有于线圈,使得线圈中的磁通Ф1发生变化而引起自感量变化,在线圈中产生感应电势。电感的变化随涡流而变,而涡流又随线圈与金属板间距x而变化,因此可以用高频反射式涡流传感器来测量位移x的变化。图2为涡流效应等效电路。R1为线圈电阻;L1为线圈电感;R2为短路电阻;L2为短路环电感;U1为激励电压;M为线圈与短路环间的互感。

回路方程: 受涡流影响后线圈的等效阻抗为: 线圈阻抗只与L1、L2、M有关,而L1、L2、M都与x有关,即Z=f(x),因此,如固定传感器的位置,当间距x发生变化时,Z就发生变化,从而达到以传感器阻抗变化值来检测被测金属位移量的值。 传感器阻抗变化还需进一步转化为电信号以便进入数据采集系统。通常的测量方法式采取阻抗变换电路:电涡流传感器探头内线圈,与其它固定阻抗组成原始平衡电桥,随着钢板厚度的变化,探头线圈阻抗值随之变化,这样就破坏了电桥的原始平衡,失衡电桥的桥路输出电压值可反映被测钢板厚度值。除电桥法外,还有高精度的谐振调幅、调频等测量电路。 2、测量方法说明 利用高频反射式涡流传感器的原理,采用上下2路涡流传感器,被

光电子课程设计_基于三角测量法的激光测距

光电子课程设计: 基于三角测量法的激光测距 摘要:本文先对激光测距的种类及原理进行介绍,其次分析不同种类的优缺点。确定制作测距仪器的制作方向。分析测量当中不同元器件存在的问题,寻找有效的解决方案,重点研究摄像头成像时存在误差的形成原因。根据研究得到的数据,对PC客户端的程序设计进行调整。利用程序尽可能减少由于硬件产生的误差。重点是设计出能确定光点的定位算法,通过对摄像头的定标、激光定位,达到实验数据与实际测量误差在10%以内。最后,提出对作品进行优化和系统功能提升计划 关键词:短距离、低成本、三角测量法 ABSTRACT: In this paper, the principle of laser ranging species and introduced first, followed by analysis of the advantages and disadvantages of different types. Production rangefinder to determine the direction of the production. Analytical measurements among different components of the problems, to find effective solutions to the causes errors in the presence of the camera focused on imaging. According to data obtained from studies on the client PC programming adjustments. The use of procedures to minimize errors due to hardware-generated. Focuses the light spot can be determined to design the location algorithm, through the camera calibration, laser positioning, to the experimental data and the actual measurement error is within 10%. Finally, the work in optimizing system functionality and Enhancement Programme KEY WORDS: Short distance、Low cost 、Triangle measurement

激光三角法测量钢板厚度光学系统设计

光学系统设计论文

目录 摘要….......................................................................................................................... 第一章引言.................................................................................................................. 1.1研究的背景和意义........................................................................................... 1.2 国内外研究现状................................................................................................ 1.2.1 国外发展现状............................................................................................. 1.2.2 国内发展现状............................................................................................... 第二章测量原理及方案论证..................................................................................... 2.1 设计任务分析..................................................................................................... 2.2 测厚技术简述.................................................................................................... 2.3 激光三角法测量原理........................................................................................... 2.3.1激光三角法测量的类型和区别.................................................................... 2.3.2激光三角法测量的基本原理........................................................................ 2.4 沙姆条件…………………………………………………................................ 2.5 测量模型及方案论证…………………………………………........................... 第三章光学系统设计.................................................................................................... 3.1总体结构布局....................................................................................................... 3.2光源...................................................................................................................... 3.3聚焦系统与成像系统........................................................................................... 第四章误差与精度分析................................................................................................ 4.1 误差分析............................................................................................................... 4.1.1光学系统误差分析......................................................................................... 4.1.2随机误差分析................................................................................................ 4.2 精度分析............................................................................................................. 第五章总结.................................................................................................................... 参考文献.........................................................................................................................

激光三角测距实验第八组报告

激光三角测距实验 ——第八组 一、实验目的 学习激光三角测距基本原理;了解激光三角测距的应用;搭建激光三角测距系统,实现测量距离的显示,掌握激光三角测距技术。 二、实验原理 三角位移测量系统是从光源发射一束光到被测物体表面,在另一方向通过成像观察反射光点的位置,从而计算出物点的位移。由于入射光和反射光构成一个三角形,所以这种方法被称为三角测量法,又可按入射光线与被测工件表面法线的关系分为直射式和斜射式。 三、摆放方式 直射式直射式三角法测量等效光路如图 1 所示。激光器发出的光线,经会聚透镜聚焦后垂直入射到被测物体表面上,物体移动或表面变化导致入射光点沿入射光轴移动。接收透镜接收来自入射光点处的散射光,并将其成像在光点位置探测器(如PSD、CCD)敏感面上。 若光点在成像面上的位移为x′,利用相似三角形各边之间的比例关系,有 化简后可求出被测面的位移

式中,a 为激光束光轴和接收光轴的交点到接收透镜前主面的距离;b 为接收透镜后主面到成像面中心点的距离;α 为激光束光轴与接收透镜光轴之间的夹角;β 为探测器与接收透镜光轴之间的夹角。 斜射式 图3.2 为斜射式三角测量原理图,激光器发出的光与被测面的法线方向成一定角度入射到被测面上,同样用接收透镜接收光点在被测面的散射光或反射光。 若光点的像在探测器敏感面上移动x′,则物体表面沿法线方向的移动距离为x,利用相似三角形的比例关系,参照前一个公式,用x/cosγ 替换x,α+γ 替换α,有 式中,α 为激光束光轴与被测面法线之间的夹角;γ 为成像透镜光轴与被测面法线之间的夹角;β 为探测器光轴与成像透镜光轴之间的夹角。当γ 为零时,属于斜入射直接收式。 直射式和斜射式特点比较 斜射式可接收来自被测物体的正反射光,比较适合测量表面接近镜面的物体。λ直射式接收散射光,适合于测量散射性能好的表面,如果表面较为平滑,则可能由于耦λ合到光电探测器的散射光强过弱,使测量无法进行,也就是说可能存在测量盲区。斜射式入射光光点照射在物体不同的点上,因此无法直接知道被测物体某点的位移情况,λ而直射式可以。当然,斜射式也可以通过标定的方法得出位移。直射式光斑较小,光强集中,不会因被测面不垂直而扩大光斑,而且一般体积较小。斜λ射式传感器分辨率高于直射式,但它的测量范围较小,体积较大。斜入射直接收式传感器的体积和直入射式相当,并且分辨率高于直射式,因此较为常用。

基于激光三角测距法的激光雷达原理综述

龙源期刊网 https://www.doczj.com/doc/586788827.html, 基于激光三角测距法的激光雷达原理综述 作者:周俞辰 来源:《电子技术与软件工程》2016年第19期 摘要 本文主要介绍了激光雷达系统的特点和基本结构,着重讨论了基于激光三角测距法的激光雷达的工作原理,详细论述了二维激光扫描的测量方法,并延伸讨论了三维激光扫描的测量方法及光路结构。 【关键词】激光雷达激光三角测距法 2D/3D激光扫描 1 引言 激光雷达LiDAR(Light Detection and Ranging),是激光探测及测距系统的统称,是一种通过位置、距离、角度等测量数据直接获取对象表面点三维坐标,实现地表信息提取和三维场景重建的对地观测技术。激光雷达最基本的工作原理与普通雷达相似,均是通过发射系统发送一个信号,由接收系统收集并处理与目标作用产生的返回信号,来获得对象表面的三维信息。目前激光雷达的测量原理主要分为脉冲法,相干光法和三角法三种,本文主要讨论基于激光三角测距法的激光雷达系统的工作原理。 2 激光雷达基本理论 2.1 激光雷达系统的特点及应用前景 激光雷达相比于传统接触式测量具有快速、不接触、精度高等优点,同时该技术受成像条件影响小,反应时间短,自动化程度高,对测量对象表面的纹理信息要求低。 在激光雷达应用的主要测量原理中,脉冲法和相干光法对激光雷达的硬件要求高,但测量精度比激光三角法要高得多,故多用于军事领域。相比于此,激光三角测距法因其成本低,精度满足大部分工业及民用要求,得以受到关注。 目前移动机器人的导航方式主要包括:磁导航、惯性导航和视觉导航,其中视觉导航由于具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向。目前机器人的SLAM(Simultaneous localization and mapping,同步定位与地图构建)算法中最理想的设备仍旧是激光雷达,机器人通过激光扫描得到所处环境的2D或3D点云,从而可以进行诸如SLAM等定位算法,确定自身在环境当中的位置并创建出所处环境的地图。激光雷达的非 接触式测量特点,具有快速、精度高、识别准确等优点,广泛应用于移动机器人视觉系统的距离、角度、位置的测量方面,成为测量研究领域的热点。

非接触式钢板厚度测试仪

西安工业大学北方信息工程学院 课程设计(论文)题目:非接触式钢板厚度测试仪 系别:光电信息系 专业:光电信息工程 班级:B090104 学号:B09010418 姓名:韦华伟 2012年10月29号

目录 第1章引言 (1) 1.1 研究的背景和意义 (1) 1.2 国内外研究状况 (1) 第2章测量原理和方法论证 (2) 2.1 检测系统的测量原理 (2) 2.2 方案的可行性分析 (3) 2.3 本章小结 (4) 第3章系统设计 (4) 3.1 光学系统设计 (4) 3.2机械结构设计 (5) 3.3 电路系统设计 (6) 3.4 计算机软硬件系统设计 (15) 第4章精度分析 (18) 4.1 电路对测量精度的影响 (18) 4.2 误差分析 (18) 第5章总结 (19) 参考文献 (20)

第一章引言 §1.1研究背景和意义 传统的测量方法开始于接触式测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。毋庸置疑,科技的发展和社会的进步还没达到一个高度。因此,在现代板材生产中,不论是轧制过程中还是最终产品的调整中,为获得较高的板材命中率和最佳的轧制过程及剪切效果,板材尺寸测量系统已成为生产线上不可缺少的设备之一。 第一台接触式速续测厚仪大约出现在1930年。操作者用这台侧厚仪器去侧量铜材的厚度时, 必须把它推向待侧的钢带, 用机械的方法来测量距带材边沿几寸范围内的金属材料的厚度。这种测量方法使用极其不便,而且测量精度也很低。在我们看来,一般的物体尺寸的测量,无非长、宽、高(厚),三个方面,而厚度测量是生产中最常见的测量内容之一,常用量具是游标卡尺或千分尺,这些量具在使用时都必须和工件接触,虽然接触压力不大,但对一些特殊工件,在测量时不允许量具和工件接触,否则会在工件表面上留下压印或划痕,甚至有些测量环境环境下很难或无法进行接触式测量,那么,这就需要有一种新的方法来代替接触式测量. 随着科技大发展和生产力的要求,非接触式的测量方法出现了。第一台成功的非接触式自动测厚仪应用了X射线吸收技术。从此,非接触式测量方法开始了迅猛发展,其强大的功能和优点无法使传统的接触式测量望其项背,也为人类社会的发展,工业文明的进步做出了巨大的贡献。 激光测厚仪是近年来开发出的高科技实用型设备, 是用于热轧生产线上时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境, 具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点, 并为轧制钢材厚度控制提供了准确的信息, 从而提高了生产效率和产品质量, 降低了劳动强度度。激光测厚仪使用两年多以来, 具不完全统计, 因板厚误差造成的废品率下降了50%以上, 创经济效益上亿元, 广泛地受到人们的肯定与赞赏。我们有理由相信,在未来的发展过程中,激光测厚仪作为非接触测量领域的一个重要分支将更能发挥其作用。 §1.2国内外研究现状 近50年来,随着现代化生产和加工技术的发展,对于加工零件的检测速度与精度有了更高的要求,向着高速度、高精度、非接触和在线检测方向发展。利用CCD 技术对产品表面质量进行实时检测、动态测量,具有结构简单、非接触、精度高、测量速度快、性能稳定可靠等优点。摄像头的主要传感部件是CCD,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点。 CCD 产业前七大厂商皆为日系厂商,占了全球98.5%的市场份额,在技术

激光三角法测量物体位移

课程设计Ⅱ(论文)说明书题目:激光三角法测量物体位移 学院:电子工程与自动化学院 专业:光信息科学与技术 学生姓名:覃荣梅 学号:1000830303 指导教师:王新强 2014 年1月5 日

摘要 本课程设计基于激光三角法原理对物体较小范围内的移动进行测量。在长度、距离及三位形貌等的测试中有广泛应用。通过激光三角法两个方案直射式和斜射式的特点,结合实验条件,选择最合适的方案进行测量。本次测量最大的特点就是非接触式测距,实际中对非接触式测距一般很难知道物体到成像透镜的距离,可由成像透镜焦距以及激光光线和物体散射光线组成的三角形的边长计算出该距离。通过定标,得出透镜上成像距离与物体像移动距离间的对应关系,用此标尺作为计算移动位移的标准。移动物体采集光斑图像,用matlab软件对图像处理进行处理,计算像的移动距离,再根据几何关系推导出物体的实际移动距离。在最后计算出该方案的标准不确定度,并对方案产生的误差进行分析,提出改进意见。设计方案光路简单,方便快捷,受环境影响小而且测量精确度较高。 关键词:激光三角法;测距;定标;CCD;误差分析

目录 引言 (1) 1. 设计任务 (1) 2. 激光三角法测距基本原理 (1) 3.方案论证和选择 (2) 3.1 激光三角法测距现状 (2) 3.2 测量方案 (2) 3.3 方案比较与选择 (4) 3.4 器件选择 (6) 4. 方案验证步骤及数据记录 (6) 4.1 方案验证步骤 (6) 4.2 测量数据记录 (6) 4.2.1 测量获得成像透镜焦距 (6) 4.2.2 定标 (8) 4.2.3 移动物体测量位移 (8) 5. 测量数据处理 (9) 5.1 各个距离测量值计算 (9) 5.2 定标计算 (9) 5.3 光斑位移量计算 (11) 5.4夹角和物体实际移动位移计算 (11) 6. 误差分析及方案评价 (12) 6.1 相对误差和绝对误差计算 (12) 6.2 误差分析 (13) 6.3 设计方案评价 (13) 7. 课题分析评价 (14) 8. 课设总结 (14) 参考文献 (15) 附录1 实验器件清单 (16) 附录2 实验光路图 (17) 附录3 图像处理程序 (18) 附录4 光斑图像处理后灰度图 (19) 附录5 物体移动光斑图 (20)

第三章 长度尺寸测量工具

第三章长度尺寸测量工具 一、简易量具 1、钢直尺 1)钢直尺结构与规格 钢板尺俗称钢尺或直尺,如图1所示,是用来测量长度的一种最常用的简单量具,可直接测量工件尺寸。尺边平直,尺面有米制或英制的刻度,可以用来测量工件的长度、宽度、高度和深度。有时还可用来对一些要求较低的工件表面进行平面度检查。 图1钢板尺 钢板尺测量范围基本取决于钢尺的长度。测量范围主要有:0~150 mm、0~200 mm、0~300 mm、0~500 mm等规格,其测量范围就是所能测定的最大长度。钢板尺最小刻度一般为0.5 mm或l mm。 2)使用方法 要根据被测件的形状和尺寸大小灵活掌握使用钢板尺的方法。应根据测量尺寸的大小,选择恰当长度的钢板尺。实际测量工件时,应将钢板尺拿稳,用拇指贴靠工件。图2(a)所示为正确的测量方法;图2(b)所示为错误的测量方法。手指位置不对,易使钢板尺不稳定,造成测量不准确。读数时,应使视线与钢板尺垂直,而不应倾斜,否则会影响测量的准确度。 钢板尺起始端是测量的基准,应保持其轮廓完整,以免影响测量的准确度。如果钢板尺端部已经磨损,应以另一刻度线作为基准。 (a)正确 (b)不正确 图2钢板尺测量工件 2、卡钳 卡钳是一种间接测量的简单量具,不能直接读出测量数值,必须与钢板尺或其他带有刻度的量具一起使用才尺或其他带有刻度的量具一起使用才行。 1)卡钳的种类 卡钳还分为普通卡钳和弹簧卡钳。普通卡钳结构简单,是用铆钉或螺钉连接两个卡脚的;弹簧卡钳是用弹簧连接两个卡脚的,通过调整螺母来限制卡脚张开的大小,如图3所示。

图3 卡钳 1—卡钳 2—铆钉或螺钉 3—弹簧 4—螺钉 5—调整螺母卡钳分外卡钳和内卡钳,外卡钳是由两个弧形卡脚连接起来的,两个钳口是相对的,可用来测量外尺寸,如外圆直径、厚度、宽度等。内卡钳是由两个直形卡脚连接起来的,两个钳口是向外的,可用来测量内尺寸,如内孔、沟槽等。 卡钳适合用来测量铸、锻件毛坯。 在精加工过程中,卡钳应与千分尺配合使用,对某一加工尺寸,用预先调整好的卡钳进行测试,可提高测量精度和工作效率。 2)卡钳的调整方法 普通卡钳的调整 卡钳卡脚张开的大小,称为卡钳的开度。调整普通卡钳的开度时,先用两手进行大致调整,开度接近需要的大小时,用手捏住连接处,轻轻敲击卡脚,使它微微张大或缩小来进行细微调整。图4(a)、(b)是轻敲卡脚的外边(图示箭头为敲击方向),使它由大调小;图4(c)、(d)是轻敲卡脚的内边,使它由小调大。 (a)(b) (c)(d)

机械课程设计板料厚度测量仪设计

摘要 根据超声波脉冲反射来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此测量。按此设计的可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域仪器采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。本机利用单片机技术应用液晶显示测量厚度值,并同时显示声速,自动校准实现了已知声速测量厚度及已知厚度测量声速两大功能.操作简单,稳定可靠,是无损检测工作者的理想检测工具. 【关键词】超声波脉冲反射;电涡流传感器;数据采集系统;CCD输出信号。

Abstract Thickness measurement, according to the ultrasonic pulse reflection when the launch of the ultrasonic pulse probe through the material object to be tested interface, the pulse is reflected back to the probe, through the accurate measurement of ultrasonic wave propagation in the material time to determine the thickness of the material being tested. Those that make the ultrasonic wave at a constant speed in its internal communications can adopt the measure of various materials. According to this design can accurately measure about all kinds of plates and all kinds of machining parts, can be all kinds of pipeline and pressure vessel in the production equipment to monitor, monitor them in the process of using the degree of corrosion after thinning. Can be widely used in petroleum, chemical industry, metallurgy, shipbuilding, aviation, aerospace and other fields,Equipment using the latest high performance and low power consumption microprocessor technology, based on ultrasonic measuring principle, can measure the thickness of the metal and other a variety of materials, and can be conducted on the material of the sound velocity measurement. The machine using the single chip microcomputer technology application of measuring the thickness of the liquid crystal display (LCD) value, and at the same time shows that sound velocity, implements the automatic calibration known sound velocity measuring thickness and thickness measuring sound velocity known two big functions. The operation is simple, stable and reliable, and is an ideal testing tools to nondes 【key words】ultrasonic pulse reflection; The eddy current sensor; Data acquisition system; The CCD output signal.

基于CMOS单点激光三角法测距系统设计

文章编号:100525630(2006)022******* 基于CM O S 单点激光三角法测距系统设计 Ξ 林小倩,林 斌,潘泰才 (浙江大学国家光学仪器工程技术研究中心,浙江杭州310027) 摘要:根据三角法测距原理,运用单片机技术对距离进行测量,设计了一套基于C M O S 的单点激光三角法测距系统。详细地介绍了系统的硬件组成和软件结构,针对测量用的光 敏传感器之标定曲线的非线性特征,提出了用逐段折线逼近该标定曲线的方法,最后给出 实验结果,并分析了各个参数对实验精度的影响。实验结果表明方案切实可行,该方法的测 量误差小于3%。 关键词:单点激光三角法;单片机;C M O S ;逐段折线逼近 中图分类号:TH 76112 文献标识码:A D istance m ea sur i ng usi ng si ngle -po i n t la ser tr i angula tion syste m design ba sed on C MOS L IN X iao 2qian ,L IN B in ,PA N T a i 2ca i (CN ERC fo r Op tical Instrum ent ,Zhejiang U niversity ,H angzhou 310027,Ch ina ) Abstract :In th is paper ,acco rding to the p rinci p le of distance m easu ring u sing triangu lati on ,a su it of distance m easu ring u sing single 2po in t laser triangu lati on system based on C M O S is designed th rough the techn ique of M CU .T he hardw are of the system and the structu re of the softw are are described in detail ,due to the non 2linear characteristic of the u sed ligh t 2sen sitive tran sducer ′s calib rati on cu rve ,the m ethod of u sing p iecew ise linear line to app rox i m ate calib rati on cu rve is given ,at last ,the resu lts of the exp eri m en t are in troduced and it is analyzed the relati on betw een every param eter and experi m en tal p recisi on .T he resu lts of the exp eri m en t p rove the feasib ility of the idea ,the m easu rem en t erro r of th is m ethod is less than 3%. Key words :single 2po in t laser triangu lati on ;M CU ;C M O S ;p iecew ise linear A pp rox i m ati on 1 引 言 激光测距技术是集光、机、电一体化的高精度测距技术,在军事、测距、测绘等领域得到广泛的应用。常用的几种测距方法中,脉冲测距方式比较适合远距离的测量,特别是在天体测量方面,虽然在目前加以改进后,可测量几米的距离,但是对激光器要求更高,造价也更高;相位测距方式也比较适合于较大距离的测量;激光干涉测距法主要是用来测量微小距离或形状变化的。现设计了一种以单片机技术为核心的低成本数字显示C M O S 单点激光三角法测距仪,利用三角法测距原理、采用激光遥感方式实现距离的非接触测量。对系统的基本原理、硬件电路、软件设计等进行了介绍,最后给出了实验结果。该系统结构简单、成本 第28卷 第2期 2006年4月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .28,N o.2 A p ril,2006 Ξ收稿日期:2005206214 作者简介:林小倩(19802),女,湖北锦门人,硕士生,主要从事光、机、电一体化技术方面的研究。

激光三角法测量物体位移

课程设计Ⅱ(论文)说明书 题目:激光三角法测量物体位移 学院:电子工程与自动化学院 专业:光信息科学与技术 学生姓名:覃荣梅 学号: 1000830303 指导教师:王新强 2014 年 1月 5 日

摘要 本课程设计基于激光三角法原理对物体较小范围内的移动进行测量。在长度、距离及三位形貌等的测试中有广泛应用。通过激光三角法两个方案直射式和斜射式的特点,结合实验条件,选择最合适的方案进行测量。本次测量最大的特点就是非接触式测距,实际中对非接触式测距一般很难知道物体到成像透镜的距离,可由成像透镜焦距以及激光光线和物体散射光线组成的三角形的边长计算出该距离。通过定标,得出透镜上成像距离与物体像移动距离间的对应关系,用此标尺作为计算移动位移的标准。移动物体采集光斑图像,用matlab软件对图像处理进行处理,计算像的移动距离,再根据几何关系推导出物体的实际移动距离。在最后计算出该方案的标准不确定度,并对方案产生的误差进行分析,提出改进意见。设计方案光路简单,方便快捷,受环境影响小而且测量精确度较高。 关键词:激光三角法;测距;定标;CCD;误差分析

目录 引言 (1) 1. 设计任务 (1) 2. 激光三角法测距基本原理 (1) 3.方案论证和选择 (2) 3.1 激光三角法测距现状 (2) 3.2 测量方案 (2) 3.3 方案比较与选择 (4) 3.4 器件选择 (6) 4. 方案验证步骤及数据记录 (6) 4.1 方案验证步骤 (6) 4.2 测量数据记录 (6) 4.2.1 测量获得成像透镜焦距 (6) 4.2.2 定标 (7) 4.2.3 移动物体测量位移 (7) 5. 测量数据处理 (8) 5.1 各个距离测量值计算 (8) 5.2 定标计算 (9) 5.3 光斑位移量计算 (10) 5.4夹角和物体实际移动位移计算 (10) 6. 误差分析及方案评价 (11) 6.1 相对误差和绝对误差计算 (11) 6.2 误差分析 (12) 6.3 设计方案评价 (12) 7. 课题分析评价 (13) 8. 课设总结 (13) 参考文献 (14) 附录1 实验器件清单 (15) 附录2 实验光路图 (16) 附录3 图像处理程序 (17) 附录4 光斑图像处理后灰度图 (18) 附录5 物体移动光斑图 (19)

钢板厚度检测作业指导书

一、编制目的 为保证钢结构钢板厚度检测项目的顺利开展,确保检测工作的规范性,特制定本作业指导书。 二、适用范围 本作业指导书适用于钢结构钢板厚度检测项目。 三、引用标准 1、《建筑结构检测技术标准》(GB/T 50344-2004); 2、《钢结构施工质量验收规范》(GB 50205-2001); 3、《热轧钢板和钢带的尺寸、外形、重量及允许偏差》 (GB/T709-2006) 四、检验仪器设备 1、TT110+42513420超声波测厚仪 五、操作程序 1、在承接检测时应向委托方索取工程图纸及相关技术资料。 2、检测人员应根据技术资料要求,确定检测标准、检测部位,及检测等级、检测比例、合格级别。 3、清洁表面,测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀物质等覆盖层物质。 4、检查电源 5、将测头置于开放空间,按一下“on”键,开机。 ●开机后,出现“5900m/s”可以正常使用,反之则应校准仪器。 6、仪器的校准

给仪器标准块上涂抹耦合剂,使探头与标准块垂直接触,轻按住探头,仪器显示〈4.0mm〉,即完成探头校准。 7、测量 首先在钢板测试面位置涂抹耦合剂,然后迅速将探头与测试面垂直地接触并轻轻压住,屏幕显示测量值,提起测头可进行下次测量;如果在测量中测头放置不稳,显示一个明显的可疑值,可挪动探头或左右旋转探头,最后选取最小测量数值。每个构件检测5处,每处测量三次,取平均值。 8、关机 在无任何操作的情况下,大约2~3min后仪器自动关机。 六、原始记录及报告 1、原始数据记录在记录表格中,并由现场检测人员签字。 2、检测报告内容必须包括必要的检测信息,符合标准、规范、规程的要求,并与相应的原始记录一致。检测报告主要包括:标题、检测单位的名称、报告唯一性编号和每页的标识、委托单位名称、工程名称、所用检测方法的标识或说明、检测样品的状态描述和编号、委托日期、检测日期、报告日期、检测结果、检测人员、报告编写人员、报告审核人员以及批准人的签名等。 3、如检测报告的内容是有关复检检测的内容,检测报告上应有明确的标记。凡分包项目的检测报告可在备注栏中注明必要的说明。

激光三角法测距的基本原理

激光三角法测距传感器的设计与实现 朱尚明合肥经济技术学院机电系合肥:230052葛运建中科院合肥智能机械研究所摘要本文介绍了激光三角法测距的基本原理,利用新型位敏元件PSD设计并实现了一种高分辨率、大量程的测距传感器,并对不同条件下的测试结果进行了分析。 关键词激光三角法散射光斑位敏元件PSD 算术运算电路 近年来,电子学和光学技术的飞速发展使得光电检测已成为自动化技术领域的一个热点,在机器人传感器及工业自动检测领域中应用十分活跃[1][2]。激光三角法测距传感器就是利用光电技术对距离进行非接触测量的一种新型传感器[3][4]。该传感器具有测量速度快、抗干扰能力强、测量点小、适用范围广等优点,目前在国内外受到了越来越多的重视。 1 激光三角法测距的基本原理激光三角法测距的基本原理是基于平面三角几何,如图1—1所示。其方法是让一束激光经发射透镜准直后照射到被测物体表面上,由物体表面散射的光线通过接收透镜会聚到高分辨率的光电检测器件上,形成一个散射光斑,该散射光斑的中心位置由传感器与被测物体表面之间的距离决定。而光电检测器件输出的电信号与光斑的中心位置有关。因此,通过对光电检测器件输出的电信号进行运算处理就可获得传感器与被测物体表面之间的距离信息。为了达到精确的聚焦,发射光束和光电检测器件受光面以及接收透镜平面必须相交于一点[5]。在图1—1中,假设发射光束和接收透镜光轴之间的夹角为Η,光电检测器件的受光面和接收透镜光

轴之间的夹角为Υ,接收透镜在基准距离处的物距和像距分别为E和E′,不难推出被测物体的距离变化?和光电检测器件图1—1 ?之间的关系为 ?=E3sinΥ3?[E′3sinΗ-?3sin(Η+Υ)] =(D13?)(D2-?)式中D1=E3sinΥsin(Η+Υ) D2=E′3sinΗsin(Η+Υ) 由于式(1—1)的推导不带任何先行假设或近似,因此这一关系是严格精确的,它对任何距离的变化都成立。基于这一关系进行运算处理,便可实现激光三角法测距传感器的高分辨率和大量程

钢板厚度测量---光电仪器课程设计

西安工业大学北方信息工程学院课程设计(论文) 题目:钢板厚度测试仪 系别: 专业: 班级: 学号: 姓名: 2012年11月12号

目录 第1章引言 (1) 1.1 研究的背景和意义 (1) 1.2 国内外研究状况 (1) 第2章测量原理和方法论证 (2) 2.1 检测系统的测量原理 (2) 2.2 方案的可行性分析 (3) 2.3 本章小结 (4) 第3章系统设计 (4) 3.1 光学系统设计 (4) 3.2机械结构设计 (5) 3.3 电路系统设计 (6) 3.4 计算机软硬件系统设计 (15) 第4章精度分析 (18) 4.1 电路对测量精度的影响 (18) 4.2 误差分析 (18) 第5章总结 (19) 参考文献 (20)

第一章引言 §1.1.1研究背景和意义 测量是人类生产、社会生活中不可或缺的活动:工作计时、购物称重、量体裁衣……都是测量活动,是分别对时间、质量、长度等物理量的测量。几何量测量则主要是对各种零件的几何形状、几何尺寸的测量,它在整个测量系统中占有重要地位,在现代化的工业企业中按照专业化协作原则组织生产的,各零部件在专业分厂成批制造后集中到一厂进行装配,因而只有通过精确的测量、制造才能保证零部件的互换性和装配的可靠性,从而保证整机产品的质量和使用性能。由此可见测量技术在现代的工业企业中的重要作用。传统的测量方法开始于接触式测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。那么,这就需要有一种新的方法来代替接触式测量. 随着科技大发展和生产力的要求,非接触式的测量方法出现了。第一台成功的非接触式自动测厚仪应用了X射线吸收技术。从此,非接触式测量方法开始了迅猛发展,其强大的功能和优点无法使传统的接触式测量望其项背,也为人类社会的发展,工业文明的进步做出了巨大的贡献。 激光测厚仪是近年来开发出的高科技实用型设备, 是用于热轧生产线上时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境, 具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点, 并为轧制钢材厚度控制提供了准确的信息, 从而提高了生产效率和产品质量, 降低了劳动强度度。激光测厚仪使用两年多以来, 具不完全统计, 因板厚误差造成的废品率下降了50%以上, 创经济效益上亿元, 广泛地受到人们的肯定与赞赏。我们有理由相信,在未来的发展过程中,激光测厚仪作为非接触测量领域的一个重要分支将更能发挥其作用。 §1.1.2测量分类 几何量测量中,长度(包括厚度)是基本的、主要的测量参数,其测量的技术水平随人类文明发展而不断地创新、拓宽。从线刻尺到千分尺等机械测长仪, 说明了长度测量技术的不断发展。进入20世纪后,加工精度的提高又要求有 较高的测量技术,因此出现了光、电、气等各种测量手段。在较丰富的测量方法中,分类方法也较多,特别是对不同的被测对象,采用的方法也不一样,大致可 分为: 按自动化方式来分:自动测量、非自动测量,非自动测量是手动测量的方法,是在测量操作者的直接操作下完成整个厚度测量过程;而自动测量是指按测量者 是指按测量者所规定的程序自动进行并完成厚度测量过程的方法。很明显,自动

相关主题
文本预览
相关文档 最新文档