当前位置:文档之家› 三维五向编织复合材料宏细观力学性能分析

三维五向编织复合材料宏细观力学性能分析

三维五向编织复合材料宏细观力学性能分析
三维五向编织复合材料宏细观力学性能分析

研究复合材料三维编织预成型件

研究复合材料三维编织预成型件/间层的剪切变形先进纺织复合材料的教育部重点实验室,复合材料研究所,天津工业大学,天津300387,中华人民国 纺织和制衣部门,生物与农业工程系,美国加州大学戴维斯分校 【摘要】这项研究提出了具有不同的面料密度的三维角联锁预成型件的面剪切和层间剪切行为。对三维织物预成型件进行画框剪切试验,分析了剪切应力与剪切角度的非线性曲线和变形机理。设计了一个新的测试方法来确定的层间剪切性能表征。经过层间剪切试验后的样本,通过调查拉出的纱线和中间结构发现变形和破坏机制。结果表明织物密度对三维联锁预成型件面剪切和层间剪切性能有重要的影响,并且织物密度的增加,剪切行为减小。织物密度越低,可变形性越好。层间剪切破坏模式是从织物上引出的粘结剂纱线。希望该研究可以为建立理论模型提供试验基础。 1.引言 连续纤维增强复合树脂基材料引起了很多重视,这都是由于它们所具有的优势,例如高性能,加工周期短,维修和焊接的可能性[1–4]。虽然层压复合材料具有优异的面力学性能,但是层间复合材料的应用围因厚度受到限制,这是由于差的层间性质。三维纺织结构复合材料具有厚度优势,好的破坏误差和有利的影响,抗疲劳优点[5–9]。 作为三维纺织结构加强的复合材料的一种,三维角联锁织物已被广泛地应用于工程领域,归于它在传统织机简单和有效地加工[10–12]。另外,三维角联锁织物最吸引的优点是具有近终成形能力的制造复合材料[13]。三维角联锁预成型件有卓越的机械性能和好的可成形性(图1)。随着预成型技术的发展,可以生产出形状复杂和不同尺寸的结构件。

图1三维角联锁织物的半球成形 在复合材料生产的结构集成制造中,三维角联锁是根据最终复合材料产品形状预成型,该形状可以是复杂的[14–16]。对于三维织物,平面的行为和层间的行为是最重要的变形,并且剪切行为材料变形的主要模式[17?19]。研究三维角联锁织物层和层间的剪切行为是有价值的,因为在生产中它们被广泛应用,尤其是成形工艺。 二维织物的面剪切行为已有比较好的研究。Zhu等人[20,21]通过实验测试仔细研究了二维织物面表征特性,并且发现了发现纱线的减少是起皱的一个关键。Hivet等[22,23]使用相框测试方法]研究了二维织物剪切性能,并指出在实验过程中,剪切结果对纱线的力敏感。拉伸力随剪切角增大而增大。Lomov等[24,25]通过相框试验提出对在三种不同预力状态的非平衡2/2斜纹玻璃/ PP织物的剪切测试,并且研究在纱线方向的拉力载荷对织物的剪切抗力的影响及可重复性的方法。基于二维Lin等人[26]建立了织物的几何形状来模拟的面剪切的有限元模型,仿真结果与实验相同。Cao等。[ 27 ]比较了相框剪切试验结果,这些结果来于用于制定标准的测试设置获得准确的和适当的材料特性的七个不同实验室的。Chen等[28] 开发了有限元模型来预测层压板面和层间的剪切性能。然而,三维角联锁织物的面/层间的剪切行为很少有报道。Charmetant等[29]建立了半球模型来仿真三维织物成形。 在这篇文章,报道了一份仔细研究了关于不同织物密度的三维角联锁织物面剪切和层间剪切行为。记录了剪切应力和剪切角度曲线和面剪切测试的起皱位置,并且它们相互比较,分析了层剪切试验的应力-位移曲线。另外,面剪切非线性曲线的三个阶段被表征。呈现层间剪切破坏形态并且被比较从而在剪切测试

复合材料试题B卷及答案

2014学年度第 一 学期课程考试 《复合材料》本科 试卷(B 卷) 注意事项:1. 本试卷共 六 大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题(30分,每题2分) 【得分: 】 1.复合材料中的“碳钢”是( ) A 、玻璃纤维增强Al 基复合材料。 B 、玻璃纤维增强塑料。 C 、碳纤维增强塑料。 D 、氧化铝纤维增强塑料。 2.材料的比模量和比强度越高( ) A 、制作同一零件时自重越小、刚度越大。 B 、制作同一零件时自重越大、刚度越大。 C 、制作同一零件时自重越小、刚度越小。 D 、制作同一零件时自重越大、刚度越小。 3.在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料( ) A 、前者成本低 B 、前者的拉伸强度好 C 、前者原料来源广泛 D 、前者加工更容易 4、Kevlar 纤维( ) A 、由干喷湿纺法制成。 B 、轴向强度较径向强度低。 C 、强度性能可保持到1000℃以上。 D 、由化学沉积方法制成。 5、碳纤维( ) A 、由化学沉积方法制成。 B 、轴向强度较径向强度低。 C 、强度性能可保持到3000℃以上。 D 、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在:( ) A 、120℃以下 B 、180℃以下 C 、250℃以下 D 、250℃以上 7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是( )

A、环氧树脂吸湿变脆。 B、水起增塑剂作用,降低树脂玻璃化温度。 C、环氧树脂发生交联反应。 D、环氧树脂发生水解反应。 8、玻璃纤维() A、由SiO2玻璃制成。 B、在所有纤维中具有最高的比弹性模量。 C、其强度比整块玻璃差。 D、价格贵、应用少。 9、生产锦纶纤维的主要原料有() A、聚碳酸酯。 B、聚丙烯腈。 C、尼龙。 D、聚丙烯。 10、晶须() A、其强度高于相应的本体材料。 B、长径比一般小于5。 C、直径为数十微米。 D、含有很少缺陷的长纤维。 11、对玻璃纤维和聚酰胺树脂构成的复合材料命名不正确的是()。 A.玻璃纤维聚酰胺树脂复合材料B.玻璃纤维/聚酰胺树脂复合材料 C.聚酰胺材料D.聚酰胺基玻璃纤维复合材料 12、目前,复合材料使用量最大的增强纤维是()。 A.碳纤维B.氧化铝纤维C.玻璃纤维D.碳化硅纤维13、目前,复合材料使用量最大的民用热固性树脂是()。 A.环氧树脂 B.不饱和聚酯 C.酚醛树脂 D.尼龙14.聚合物基复合材料制备的大体过程不包括() A.预浸料制造B.制件的铺层 C.固化及后处理加工D.干燥 15、有关环氧树脂,说法正确的是() A、含有大量的双键 B、使用引发剂固化 C、使用胺类固化剂固化 D、属于热塑性塑料 二、判断题(20分,每题2分)【得分:】 1、复合材料是由两个组元以上的材料化合而成的。() 2、混杂复合总是指两种以上的纤维增强基体。() 3、层板复合材料主要是指由颗料增强的复合材料。() 4、最广泛应用的复合材料是金属基复合材料。() 5、复合材料具有可设计性。() 6、竹、麻、木、骨、皮肤是天然复合材料。() 7、分散相总是较基体强度和硬度高、刚度大。()

三维四向编织-三维五向编织碳_环氧复合材料实验研究_百汇总

第16卷 1999年第4期 10月复合材料学报ACT A M AT ERIA E COM PO SIT A E SIN ICA V ol.16No.4Octo ber 1999收修改稿、初稿日期:1998-09-25,1998-08-25 三维四向编织碳/环氧复合材料实验研究 宝君杜 严勇摘要讨论了三维四向编织碳/环氧复合材料力学性能研究的实验方法。通过实验得到了弹性 常数及反映材料非线性行为的力学性能指标随编织角的变化规律,并分析讨论了编织参数对该类 材料破坏模式的影响作用。 关键词编织复合材料,力学性能,实验研究 中图分类号T B332 复合材料力学性能的实验研究在复合材料的开发与应用中发挥着重要作用。尤其是在材料设计研究中,实验研究对于评价加工工艺及原材料性能对复合材料性能的影响具有十分重要的意义。迄今已有许多种实验方法,其中有些方法比较简单,已经制定了标准;然而,有些实验方法涉及复合材料固有的复杂性,尚不够成熟,有待进一步进行研究。三维编织复合材料是近几年开发研制的新型复合材料,在航空航天等高科技领域具有广阔的应用前景。其性能表征及测试方法都未形成成熟的标准,需要进一步进行研究探讨。 A .

B .Macander 等人[1]于1986进行了一组实验,结果表明,三维编织物能大幅度地提高 复合材料强度和刚度。Fukuta [2]对Carbon/epo xy 三维三向、三维四向及层合板材料冲击后的 压缩强度进行了比较研究。比较发现,三维编织复合材料的冲击压缩强度较层合材料高,说明 其具有优秀的强度保持性。L .W .Gause 等[3]通过实验证实良好的抗损坏性是复合材料三维编 织结构所具有的突出特点。F .K .Ko [4~5]用玻纤/环氧和碳纤/PEEK 完成了类似实验。佐藤等[6]对火箭喷管用石墨材料、二维C /C 复合材料、三维C /C 复合材料的热冲击强度及其断裂韧性进行了实验研究。实验结果发现,二维C/C 复合材料由于纤维强化面内和层合方向存在各向异性,导致层间剥离破坏。而三维C/C 复合材料的热冲击破坏韧性是AT J 石墨的19倍以上,显示出其具有非常卓越的抗热冲击性能。孙慧玉等[7]对编织复合材料的力学性能也进行了实验研究。 为了探讨三维四向编织复合材料力学性能与编织参数间的关系及编织复合材料力学性能的实验研究方法,以碳/环氧三维四向编织复合材料为对象进行了拉伸及压缩实验,得到了有关实验数据,并对实验结果进行了分析讨论。 1实验原理及方法 利用岛津DSS-10T 材料试验机对试件进行加载,采用汉中中原电测仪器厂BA120-5AA-C15%应变计,通过KYOW A-DPM 613A 型动态应变仪测量其变形。 (南京鑫鼎纤维材料有限公司,210044 试件材料为三维四向碳/环氧编织复合材料,由天津纺织工学院复合材料研究所研制。基体材料为T DE -85#环氧树脂,增强纤维为T 300碳纤维,纤维束规格为12K ,采用树脂传递模塑(RT M 工艺制成。

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

14-15第一学期复合材料力学卷B

中国矿业大学2014~2015学年第 一 学期 《 复合材料力学 》试卷(B )卷 考试时间:100分钟 考试方式:开卷 学院 力建学院 班级 姓名 学号 一、计算题(20分) 某复合材料的工程弹性常数为:1210GPa =E ,225GPa =E ,210.25ν=,1220GPa =G ,求刚度系数ij Q 。若材料主方向的应变状态为:10.2%ε=,20.1%ε=-,120.1%γ=,求应力1σ,2σ,12τ。

已知玻璃/环氧单层板受力后发生面内变形,0.3%ε=x ,0.1%ε=y ,0.2%γ=xy ,纤维与x 轴的夹角45θ=?。其工程弹性常数为:150GPa =E ,210GPa E =,210.30ν=, 128GPa G =,求该材料在主方向的应力1σ,2σ,12τ。

如图所示,复合材料单层板承受偏轴向压缩,纤维与x 轴的夹角60θ=?,80MPa y σ=-。强度参数为:t 1000MPa =X ,c 1000MPa =X ,t 50MPa Y =,c 200MPa Y =,70MPa S =。试用Hoffman 强度理论校核其是否安全。

已知玻璃/环氧单向复合材料,玻璃纤维的f 80GPa E =,f 0.25ν=,环氧树脂的 m 0.35ν=,纤维体积含量f 60%c =。该复合材料的纵向弹性模量150GPa E =,试用植村益 次公式计算2E 、21ν和12ν。

五、计算题(25分) 如图,正交铺设对称层合板()s 0/90 鞍,单层厚度1mm k t =,已知:单层的正轴刚度矩阵 []160505300GPa 0010骣÷?÷?÷?÷=?÷?÷?÷÷ ?桫Q 。求:(1)层合板的拉伸和耦合刚度矩阵;(2) 层合板受xy 面内剪切,100N/mm =xy N ,求0?铺层主方向的应力1σ,2σ,12τ

复合材料试题B卷及答案精编版

复合材料试题B卷及答 案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2014学年度第 一 学期课程考试 《复合材料》本科 试卷(B 卷) 注意事项:1. 本试卷共 六 大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题(30 分,每题2分) 【得 分: 】 1.复合材料中的“碳钢”是( ) A 、玻璃纤维增强Al 基复合材料。 B 、玻璃纤维增强塑料。 C 、碳纤维增强塑料。 D 、氧化铝纤维增强塑料。 2.材料的比模量和比强度越高( ) A 、制作同一零件时自重越小、刚度越大。 B 、制作同一零件时自重越大、刚度越大。 C 、制作同一零件时自重越小、刚度越小。 D 、制作同一零件时自重越大、刚度越小。 3.在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料( ) A 、前者成本低 B 、前者的拉伸强度好 C 、前者原料来源广泛 D 、前者加工更容易

4、Kevlar纤维() A、由干喷湿纺法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到1000℃以上。 D、由化学沉积方法制成。 5、碳纤维() A、由化学沉积方法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到3000℃以上。 D、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在:() A、120℃以下 B、180℃以下 C、250℃以下 D、250℃以上 7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是() A、环氧树脂吸湿变脆。 B、水起增塑剂作用,降低树脂玻璃化温度。 C、环氧树脂发生交联反应。 D、环氧树脂发生水解反应。 8、玻璃纤维() A、由SiO 玻璃制成。 B、在所有纤维中具有最高的比弹性模量。 2 C、其强度比整块玻璃差。 D、价格贵、应用少。 9、生产锦纶纤维的主要原料有() A、聚碳酸酯。 B、聚丙烯腈。 C、尼龙。 D、聚丙烯。 10、晶须() A、其强度高于相应的本体材料。 B、长径比一般小于5。 C、直径为数十微米。 D、含有很少缺陷的长纤维。 11、对玻璃纤维和聚酰胺树脂构成的复合材料命名不正确的是()。 A.玻璃纤维聚酰胺树脂复合材料 B.玻璃纤维/聚酰胺树脂复合材料

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

复合材料力学考试要求和复习要点

考试要求 1、考试要求:笔试,主要包括概念、主要公式及推导、原理图和计算题等形式问题;可带计算器,计算和推导要求有必要的过程; 2、看清题的每个问题,概念要清晰、计算要准确; 3、请给助教留好联系方式,以便通知考试时间和地点。 复习要点 一、基本概念和理论 1、非均匀性、各向异性以及正交各向异性的含义。 2、复合材料层合板的典型力学特点,能否举例说明,复合材料的高比强度、高比刚度的优势。 3、掌握几种典型纤维的力学性能。 4、用工程常数表示正交各向异性材料的柔度矩阵。 6、简单层板在任意方向上的应力-应变关系 6、正交各向异性简单层板的最大应力、最大应变、蔡-希尔、霍夫曼准则等强度理论表达式及其特点。 7、等强度纤维模型(强度-纤维体积分数示意图、公式及相应的解释)。 8、经典层合理论的基本假设及其A、B、D刚度矩阵表达式。 9、层合板强度分析程序的主要步骤。 10、层间应力产生的原因及危害。 11、复合材料层合板的弯曲、屈曲和振动问题主要解决什么,哪些问题值得关注。

12、Halpin-Tsai计算公式及特点。 二、重点复习题 1、利用最小余能原理,证明复合材料弹性模量的下限 2、利用材料力学分析方法,推导简单层板弹性模量E1、E2的细观力学表达式 3、对每一层性质和厚度都相同,按[0,45,-45,90]s 铺设的层合板来说,下面三个刚度矩阵哪些项为零? 4、判断: ●层合板层数的增加总会提高X方向或Y方向的轴向刚度 ●对于力学载荷,A矩阵与叠层顺序无关 ●对平衡铺层的层合板,刚度矩阵中D16和D26项总是零(平衡 铺层:对每一个+α铺层,总存在一个具有相同厚度和材料性质的-α铺层) ●[90]10 层合板的轴向刚度Ex比[90]4 层合板的大 ●对称层合板的D11 和D22具有相同的值 5、对于下面铺层的层合板,选择每组正确的一项

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

复合材料力学教学大纲

《复合材料力学》课程教学大纲 课程编码:S1180240 课程中文名称:复合材料力学 课程英文名称:MECHANICS OF COMPOSITE MATERIALS 总学时:30讲课学时:30实验学时:0 习题学时:0上机学时: 0 学分:2.0 授课对象:航天学院,航天科学与力学系,工程力学专业学生;机电学院、材料学院及其它有关专业学生。 先修课程:高等数学、材料力学、弹性力学 教材及参考书: 教材:《复合材料力学》 R.M.琼斯著,上海科学技术出版社,1975 参考书:《复合材料力学》沈观林编, 清华大学出版社。 课程教学目的 通过复合材料力学课程的学习,使学生了解和掌握现代复合材料的力学性能及其在工程中的应用。学会根据结构的受力分析,正确地设计和选取复合材料,达到优化结构性能的目的。要求学生掌握复合材料的宏观性能和微观结构之间的关系,了解复合材料的各种破坏机理及破坏准则,并能正确地应用于复合材料层合板的弯曲、屈曲和振动分析中去。该课程是对一般弹性力学和振动力学等课程的延续和拓宽,是学生掌握现代力学知识和进行结构设计的必修课程。 二、教学内容及基本要求 本课程的主要内容包括复合材料力学的应力-应变关系,强度理论,层合板的刚度和强度理论,热应力分析和层间应力分析,复合材料层合板的弯曲,屈曲和振动问题等。 本课程的主要章节有:

?绪论。复合材料及复合材料力学的发展历史和现状,复合材料的分类、应用及发展前景(1学时)。 ?单层板的宏观力学性能:引言、五种常见各向异性复合材料的本构方程,正交各向异性复合材料的工程常数(1学时)。 弹性常数的约束方程:各向同性、正交异性复合材料;正交异性材料应力-应变关系;任意坐标下的应力-应变关系;正交异性材料的不变量(2学时)。 正交异性单层板的强度,强度和刚度的实验确定方法(2学时)。 正交异性材料双向应力强度准则:最大应力准则、最大应变准则、Tsai-Hill 准则、Tsai-Wu准则(2学时)。 第三章复合材料单层板的微观力学性能:引言、用材料力学方法确定力学常数(2学时)。 用弹性力学方法确定力学常数:引言、弹性力学下限法、弹性力学上限法、精确解、总结(2学时)。 复合材料的强度:引言、纤维方向的拉伸强度(2学时)。 复合材料的强度:纤维方向的压缩强度,横向屈曲模型、剪切模型(2学时)。 第四章层合板的宏观力学性能:引言、经典层合板理论、应力与应变、合力与弯矩、偶合矩阵方程(2学时)。 层合板刚度矩阵的特例:对称层合板、反对称层合板、非对称层合板、总结(2学时)。 层合板的强度:引言、层合板的强度分析过程、层合板的强度准则;热应力分析:热应力刚度矩阵;正交铺设层合板的强度;角铺设层合板的强度;总结(2学时)。 层间应力:经典层合板理论、弹性力学方程、弹性力学求解过程和结果、实验确定方法和结论(2学时)。 第五章层合板的弯曲、屈曲和振动:控制方程、求解方法、层合板的弯曲变形(2学时)。层合板的屈曲和振动,主要结果和结论(2学时)。 总结复习(2学时) 三、课程负责人示范性教学设计 1内容体系:

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

复合材料力学行为研究实验(有试件图)

复合材料力学行为研究实验 一般材料力学研究的是均匀分布、各向同性的材料,但是现在又出现了并且在工程上越来越广泛使用的一种材料叫复合材料。它是一种各向异性材料。复合材料是两种或两种以上不同性能的材料用物理或化学方法制成的具有新性能的材料,一般复合材料的性能优于其组分材料的性能。复合材料在力学行为上有什么特点,各向异性表现在哪些方面?各向异性材料如何测量它的弹性常数,不同纤维铺层方向和不同加载方向的力学性能有何差别,什么是沿轴性态和离轴性态?… 为了便于学生研究探讨这些问题,我们专门加工了一种增强材料沿单向铺层的复合材料板(如图1所示)。由于是单向增强,所以回避了许多复合材料研究上的复杂问题。 图1 单层复合材料构造形式 图2 坐标定义 本试验主要研究的具体材料是玻璃纤维单向增强复合材料。玻璃纤维的弹性模量约为80~85GPa, 基体是环氧树脂,其弹性模量约为3~5Gpa 。其纤维与环氧树脂的体积比约为1: 1。同时还提供了双向增强复合材料(正交增强),其两个方向纤维的比例为18:14和部分金属材料。 一.实验原理和试验方法 材料的弹性常数是描述材料力学性能的一项基本参数。作为衡量材料的刚度和弹性变形行为的特征值,它是理论计算和工程设计中一项非常重要的指标。我们熟知的材料,比如金属材料都是各向同性材料,独立的弹性常数是两个,即扬氏弹性模量E 和泊松比υ(或剪切弹性模量G)。而复合材料,由于其突出的各向异性的性质,独立的弹性常数增加了。为了测定复合材料的弹性常数, 将被测材料加工为纤维与加载方向成0°、45°和90°的三种试件。每种试件的三个方向的应变即纵向应变、横向应变和45゜方向的应变均采用粘贴电阻片的方法测量。应变片信号按一定的组桥方式接到测量电桥上,可利用数字静态应变仪直接定点读取应变信号或利用数据采集系统自动纪录载荷、应变数据。对实验数据进行线性回归的处理,按下列公式计算出复合材料的弹性常数: 0°试件: 111εσ= E 1212εε-=μ X σX X Y 2 3

复合材料试题B卷及答案

2014学年度第 学期课程考试 注意事项:1.本试卷共 六 大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 4. (30分,每题2分) 1.复合材料中的“碳钢”是( ) A 、玻璃纤维增强Al 基复合材料。 B 、玻璃纤维增强塑料。 2.材料的比模量和比强度越高( A 、制作同一零件时自重越小、刚度越大。 《复合材料》 本科试卷(B 卷) 【得分: C 碳纤维增强塑料。 、氧化铝纤维增强塑料。

B、制作同一零件时自重越大、刚度越大。 C、制作同一零件时自重越小、刚度越小。 D制作同一零件时自重越大、刚度越小。 3. 在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料( A、前者成本低 、前者的拉伸强度好C前者原料来源广泛、前者加工更容易 4、Kevlar 纤维( A、由干喷湿纺法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到1000C以上。 D、由化学沉积方法制成。 5、碳纤维() A、由化学沉积方法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到3000C以上。 D、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在: A、120C以下 B、180C以下 C、250 r以下 D、250 r以上 7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是( A、环氧树脂吸湿变脆。 B、水起增塑剂作用,降低树脂玻璃化温度。 C、环氧树脂发生交联反应。 D、环氧树脂发生水解反应。 8、玻璃纤维() A、由SiO2玻璃制成。 B、在所有纤维中具有最高的比弹性模量。

复合材料力学课程测试

工程力学专业复合材料力学课程报告应回答以下问题: 1.什么是复合材料? 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 2. 复合材料力学的任务是什么? 同常规材料的力学理论相比,复合材料力学涉及的范围更广,研究的课题更多。 首先,常规材料存在的力学问题,如结构在外力作用下的强度、刚度,稳定性和振动等问题,在复合材料中依然存在,但由于复合材料有不均匀和各向异性的特点,以及由于组分材料几何(各组分材料的形状、分布、含量)和铺层几何(各单层的厚度、铺层方向、铺层顺序)等方面可变因素的增多,上述力学问题在复合材料力学中都必须重新研究,以确定那些适用于常规材料的力学理论、方法、方程、公式等是否仍适用于复合材料,如果不适用,应怎样修正。 其次,复合材料中还有许多常规材料中不存在的力学问题,如层间应力(层间正应力和剪应力耦合会引起复杂的断裂和脱层现象)、边界效应以及纤维脱胶、纤维断裂、基体开裂等问题。 最后,复合材料的材料设计和结构设计是同时进行的,因而在复合材料的材料设计(如材料选取和组合方式的确定)、加工工艺过程(如材料铺层、加温固化)和结构设计过程中都存在力学问题。 当前,复合材料力学的研究工作主要集中在纤维增强复合材料多向层板壳结构的改进和应用上。这种结构是由许多不同方向的单向层材料叠合粘结而成的,因此叫作多向层材料结构。单向层材料中沿纤维的方向称为纵向;而在单向层材料子面内垂直于纤维的方向称为横向。

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

复合材料力学性能的试验评价方法及其标准化动向

复合材料力学性能的试验评价方法及其标准化动向 王瑞杨连贺王建坤 (天津纺织工学院 300160) 摘要:复合材料力学性能的试验评价方法及其标准化是关系到加速复合材料的发展和扩大应用领域的重要课题。本文综述了复合材料力学性能的试验评价方法及其标准化的现状,分析了现行试验方法及标准中存在的问题和国际研究动向,提出了我国今后对复合材料试验方法及标准化研究和开发方向的建议。 关键词:复合材料力学特性试验方法标准化 1 前言 树脂基复合材料作为一种新型材料,以其轻量、耐腐蚀及良好的力学性能等而倍受青睐。由于其优良的特性,复合材料的研究和应用得到了广泛的关注,目前已被广泛应用于航空航天、电子、超导、汽车及建筑等领域。为了进一步扩大复合材料的应用领域,作为材料性能和安全可靠性保证的手段,试验技术和评价方法的研究是必不可少的。 复合材料力学性能的试验与评价在复合材料的开发与应用中发挥着极其重要的作用,尤其是在材料设计中。试验与评价在优化加工工艺、分析组分材料性能对复合材料整体性能的影响及降低材料成本等方面均具有十分重要的意义。高性能复合材料的设计与加工,需要充分把握复合材料的力学性能,从而明确开发目标与既用材料的差别,以确立高性能复合材料的开发方针。同时,为了根据使用条件和环境合理准确地设计复合材料,需要可靠和真实的复合材料力学性能数据、设计数据,来源于可靠的测试评价方法,因而复合材料力学性能的测试与评价方法的确立是正确设计复合材料,确保力学性能和使用质量、扩大应用范围的重要研究课题。在制定复合材料的试验方法与标准时,特别需要考虑的是与国际标准的接轨,以促进复合材料产品的市场发展,将我国的标准化运作同国际组织的标准化研究逐步衔接起来,使测试标准更加规范,消除贸易上的技术障碍,有效地促进信息交流和共享。实验方法的标准化也是复合材料发展和应用中必须解决的问题,具有重要的经济效益和社会效益。 2 试验、评价方法与标准化现状 2.l 特性评价的物理意义 与通常的金属材料及其它结构材料相比,复合材料具有无延伸性和异向性显著的特点,因此与通常的金属材料不同,存在三个问题:(1)在夹持部无因塑性变形而引起的缓和应力集中作用;(2)在测试部难以获得均匀的应力分布;(3)在应力传递部容易引起破坏等问题。目前,复合材料的力学特性试验与评价方法作为既定标准已不鲜见,但多数都存在上述问题。其中有些已历经修改而成为具有较高水平的“标准”,但同样存在不尽人意之处。理想的情况下,力学特性试验法应该是评价材料某一物理特性值的,但许多情况下都由于应力集中等影响而只能获得表现值,得不到材料的真实数据,因此在应用这些试验方法和标准时,必须充分理解和认识它们的物理意义。 2.2 评价方法存在的问题 关于复合材料力学性能的评价,迄今已有许多实验方法,其中有些方法比较简单,而且已经制定了标准。有些实验方法涉及复合材料固有的复杂性,尚不够

相关主题
文本预览
相关文档 最新文档