当前位置:文档之家› 非接触式人体温度测量仪设计论文

非接触式人体温度测量仪设计论文

非接触式人体温度测量仪设计论文
非接触式人体温度测量仪设计论文

西电“星火杯”论文

人体温度非接触式测量仪

院系: 电子工程学院

班级: 021012

作者:02101165

02101109

02101169

02101135

02101122

西安电子科技大学

摘要

红外测温技术由于其方便、快速、准确的特点而被广泛应用于医学、航空以及钢铁制造等工业中。本文介绍了一种使用51单片机作为控制器、基于红外热释电温度传感器TPS434的非接触式电子体温计的实现方法,并在此基础上给出了实现电子体温计的电路原理以及程序流程。

系统工作原理是智能电子体温计是一种典型的智能化仪表,它以单片机作为核心,在软件控制下,与其它硬件电路相结合,实现智能化的体温测量。系统硬件组成环节主要有:温度传感器、放大电路、A/D转换电路、单片机系统、液晶显示模块和语音芯片。其软件部分包括:A/D转换、数字滤波、智能功能以及显示等程序。其工作原理是:体温信号由温度传感器变换为电信号后,进入放大电路进行放大处理以满足A/D转换器的要求,然后在A/D转换程序控制下经A/D 转换器转换成数字信号。此信号送入单片机系统,利用单片机本身的软件功能进行数字滤波、线性化处理、数据存储、逻辑判断,从而实现相应的智能功能。并将最后的测量结果送人液晶显示模块,在显示程序控制下进行显示,包括显示温度数据和汉字。同时语音芯片在程序的控制下进行语音播报。从而使测温前后的各种操作更趋于智能化和人性化。

关键词: 单片机; 红外体温计; 热电堆; 热敏电阻; TPS434;

ABSTRACT

The technique of temperature measurement is widely used in iatrology, aviation,and stell manufacture because of its convenience, fast speed and high accuracy. This paper introduce a method to design an un-touched electronic thermometer which based on MS51 single chip and infared sensor TPS434. Also, it gives the principle of the electronic thermometer and the programe flow figure.

System is the principle of intelligent electronic thermometer is a typic intelligent instruments, to SCM as its core, under the control of the software, hardware and other circuits combined, and intelligent temperature measurement. System hardware links are: temperature sensors, amplifier, A / D converter circuit, SCM systems, liquid crystal display modules and voice chips. Some of its software, including: A / D converter, digital filtering, intelligent show, and other functions and procedures. Its working principle is: the temperature signals from temperature sensors to transform electrical signals, into the amplifier to zoom in processing to meet the A / D converter requirements, and then in the A / D converter controlled under the A / D converter into digital Signal. This signals into the SCM system, using their own SCM software for digital filtering, linear processing, data storage, logical judgement, thus realizing the corresponding intelligent functions. And the final survey results to give liquid crystal display modules, are displayed under the program control, including temperature data and display Chinese characters. At the same time voice chip in the process conducted under the control of voice broadcast. So that the temperature before and after various operations tend to be more intelligent and humane. Keywords: Single chip; Infared thermometer; Thermopile; Thermistor; TPS434;

目录

第一章绪论 (6)

1.1 体温计的发展与现状 (6)

1.2 红外测温技术 (6)

1.2.1 红外测温背景 (7)

1.2.2 红外测温原理 (7)

1.2.3 红外测温传感器分类 (9)

1.2.4 红外测温的优点 (9)

第二章整体方案概述 (10)

2.1 系统结构框图 (10)

2.2 核心器件简介 (10)

2.2.1 电源部分 (11)

2.2.2 8051单片机 (12)

2.2.3 红外温度传感器 (12)

2.2.4 高精度运放 (13)

2.2.5 语音芯片 (13)

2.3 本章小结 (14)

第三章系统硬件设计 (14)

3.1 电源设计 (14)

3.1.1 稳压芯片介绍 (14)

3.1.2 原理概述 (15)

3.2 信号调理电路 (18)

3.2.1 前置放大电路 (18)

3.2.2 次级调理电路 (19)

3.3 图形点阵式LCD显示电路 (20)

3.3.1 图形点阵式LCD-12232概述 (20)

3.3.2 图形点阵式LCD-12232与MCU接口设计 (21)

3.3.3 图形点阵式LCD-12232驱动方法 (21)

3.4 语音播报电路 (24)

3.4.1 ISD4003与MCU接口设计 (24)

3.4.2 ISD4003驱动方法 (25)

3.5控制核心电路 (26)

3.5.1 MCU与外部接口 (26)

3.5.2 内部A/D转换器 (26)

3.6 按键功能设计 (29)

3.6.1 测量播报按键 (29)

3.6.2 复位按键 (29)

3.6.3 待编程键 (29)

第四章系统软件设计 (30)

4.1 软件工作流程 (30)

4.2 驱动程序设计 (31)

4.2.1 液晶- 12232驱动程序设计 (31)

4.2.2 语音- ISD4003驱动程序设计 (31)

4.2.3 温度传感器- 18B20驱动程序设计 (32)

4.3 本章小结 (32)

第五章问题分析及解决方案 (33)

5.1问题的发现 (33)

5.2 方案的改进 (33)

第六章误差处理方法 (33)

6.1 影响精度的因素 (33)

6.2 处理方法 (34)

6.3 本章小结 (34)

结束语 (34)

致谢 (35)

参考文献 (35)

附录一程序代码 (36)

附录二实物照片 (52)

第一章绪论

1.1 体温计的发展与现状

体温计是一种测量人体温度、辅助疾病诊断的常用医疗器具。随着现代科技的发展,新材料、新工艺的运用,各式各样的体温计陆续出现,探测方式在不断改进。

人们熟悉的传统的体温计是水银(汞)体温计,它是根据汞受热膨胀的原理制成的。由于受到体温的影响,水银体积的膨胀使管内水银柱的长度发生明显的变化。由于人体温度的变化一般在35℃到42℃之间,所以体温计的刻度通常是35℃到42℃,而且每度的范围又分成为10份,因此体温计可精确到0.1度。由于水银体温计使用方便、精度高,因而应用很广。但是用水银体温计进行体温监测很不方便,水银的污染也很严重等。为了正确和安全的测量局部温度,最近促使人们开发了各种不同的测温仪器和测温方法。

近几年来,电子体温计越来越多地应用在各个行业:冶金、玻璃制造以及体温测量等领域。许多医院也采用了电子体温计,虽然其性能暂不能与传统的体温计相比,但因其拥有快速、无需接触被测者等的优点而被广泛采用。

体温测试是在实际生活中经常会遇到的问题,传统的体温计也就是我们的水银体温计有其很多的不足之处,如:测温时间长,读取结果不方便,体温计易被损坏并且其材料汞有毒等。针对以上问题,本文提出一种新型的测量体温仪器,它优于传统的体温计的一个很大的特点就是测温时间相对较短,并且此智能体温计有自动播报体温、统计人数、显示日期及环境温度等功能。解决了传统体温计读数不便、用途单一的问题,无汞害,灵敏度高,清晰播报,方便携带,寿命较长,台式设计使体温计放置时不会晃动,避免温计被损坏,尤其适用于小孩与老年人,其方便性大大超越水银式体温计。

1.2 红外测温技术

测量体温的方法有很多,水银、热电偶、热敏电阻、晶体管的PN结、液晶、

石英晶体均可作为测温元件来制造体温计。这些测温技术均属接触式测温,容易产生交叉感染,并且当测温元件接触被测部位时,将影响其温度场的分布,对精度造成影响,而且响应时间也较长。若采用非接触式测温的方法,则可以较好地解决这些缺点。

1.2.1 红外测温背景

随着工农业、国防事业、医学的发展 ,对温度测量越来越迫切。在某些场合 ,温度测量逐步上升为主要矛盾 ,引起了各方面的普遍重视。例如:在不停机的情况下对机械设备、电力设备、生产设备等进行温度测量;在不能造成产品的污染或损坏的情况下对生产过程中或仓库里的产品温度进行测量;在医学领域内 ,为了了解病人的身体状况 ,需对病人身体各个部分的温度进行安全的测量。在这种背景下 ,使用方便、可快速对物体温度进行非接触、无损测量的红外测温技术得到了极大的发展。

目前,红外测温技术在已有着广泛的应用,其测量范围可从常温到达上千摄氏度。国内外非接触红外测温技术的发展极为迅速,各国均研制出了具有有较高水平的用于各类场合的红外辐射式计,例如:美国RAYTEK公司的Ranynger系列、WAHL公司的DHS系列等。国内生产红外测仪的厂家和研究所有上海自动化三厂、云南仪表厂以及中国科学自动化所等。

1.2.2 红外测温原理

红外测温法是指利用人体自身的红外辐射来测定其表面温度的一种测量温度的方法。

红外测温是非接触式测温中应用较为广泛的一种技术,它由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内目标的红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号,该电信号经过放大器和信号处理电路后可以经模数转换后,由微控制器按照内部的算法来计算目标的表面温度值。

346.6310h J s -=??

图1.1 由于分子的热运动,自然界一切温度高于绝对零度(-273.15℃)的物体都在不停地向周围空间辐射包括红外波段在内的电磁波,其辐射能量密度与物体本身的温度关系符合辐射定律。

红外体温计的测温原理是基于黑体辐射定律的,黑体是一种理想化的辐射体,它在任何温度下都能全部地吸收投射到其表面的任何波长的辐射能量,其表面吸引率为1。为了弄清和获得红外辐射分布的规律,普朗克提出了体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射定律,其表达式为:

2521(,)1hc kT hc M T e λπλλ=?- 式1-1 式中,c 为真空中的光速;k 为波尔兹曼常数,

其中

由上式可出在温度T 时黑体在全部波长范围内的辐射出度为:

40()(,)M T M T d T λλσ∞==? 式1-2

其中

由式1-2可知:黑体总的辐射出度与黑体的绝对温度T 的四次方成正比。因此,可能通过对物体辐射的测量进而求出物体的温度。 目标

物 温度 传感

器 放大器 信号调理电路 光电转换 824

5.6710W m K σ---=???

由于只有波长大于5um的辐射源才可以近似看成是黑体,而人体主要辐射的波长在9~10μm,因此人体皮肤不是理想的黑体,要在红外传感器上要装有一定波长才可通过的滤波器。

1.2.3 红外测温传感器分类

随着传感器的发展,温度传感器被广泛的应用,其使用范围及数量已位于传感器之首,其发展大致经历了以下3个阶段:

①传统的分立式温度传感器(含敏感元件)——热电偶传感器,主要是能够进行非电量和电量之间转换。

②模拟集成温度传感器/控制器。集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。

③智能温度传感器。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。

红外温度传感器按照测量原理可以分为两类:光电红外温度传感器和热电红外温度传感器。本红外测温仪选用热电红外温度传感器.热电红外温度传感器是利用红外辐射的热效应,通过温差电效应、热释电效应和热敏电阻等来测量所吸收的红外辐射,间接地测量辐射红外光物体的温度。

1.2.4 红外测温的优点

传统的体温计如水银体温计虽然价格便宜,但是有许多的弊端:水银体温计遇热或安置不当,容易破裂;人体若接触水后会中毒,恶心、头痛、腹泻、脱发等随之而来,严重者会造成血液凝固;测温时间长等。

红外体温计则避免了上述的缺点,它有着如下的优点:

?测量不干扰被测温场,不影响温场分布,从而具有较高的测量准确度。

?测温范围宽,在理论上无测量上限,可以测量相当高的温度。

?探测器的响应时间短,反应速度快,易于快速与动态测量;

?不必接触被测物体,操作方便;

?可以测量微小目标的温度;

第二章整体方案概述

本文旨在利用红外热释电温度传感器TPS434、STC12C5616AD单片机以及其器件设计实现非接触式测温,使之实现响应时间最长不超过1s、精度达到0.2摄氏度的手动测量方式。

2.1 系统结构框图

系统所采用的是红外热释电温度传感器TPS434以及18B20温度传感器。人体辐射出的能量由TPS434转换成微弱的电信号(只有0.7~1.5mv)。该电信号经过信号调理电路后(包括前置放大和后级放大两个功能模块)送入ADC进行模数转换,进而可以由单片机识别来计算被测物体的表面与室温的温度差。同时,通过18B20可以测量室温。被测物体表面的温度就可通过两者之和得出。

在计算完被测物体表面的温度后,有两种方式向使用者提供温度信息:第一种方式是显示在图形点阵式LCD上;第二种方式是以语音的形式播放以告知使用者温度信息。整体系统结构框图如下图所示:

图2.1

2.2 核心器件简介

在搭建实验板做相关实验的基础上,合理地选择器件可以给系统设计带来方

便。本小节就系统设计中涉及关键模块的器件作以简要介绍,并在此基础上描述了其优点。

2.2.1 电源部分

本系统由220V交流电源供电,经变压器变压后输出9V交流电,经整流桥整流(硅桥的1,3引脚接变压器的输出端,2,4为输出)后再经过电容滤波交流变为直流,再经过稳压块进行稳压。因STC12C4052AD单片机需要5V供电电源,故用78L05稳压后再给单片机供电。运算放大器需用正负6V双电源供电,用7806和7906实现,对于语音芯片,接着用LM317进行直流——直流转换后,将输出的3V电压给语音芯片ISD4003供电。液晶显示芯片、串口芯片则用5V 直流电源供电。

对于稳压器件LM317, 如图2.2,由其应用公式(2-1)

V o=1.25(1+R2/R1) (2-1)

可知, 为了得到ISD4003的3V供电电压, 应合理选取其外接电阻R1和R2的值. 这里取R2 为500Ω,R1为240Ω,可得从LM317的引脚2输出电压约为3V。易知,滑阻R2可用来调节引脚2输出电压大小。

图2.2

2.2.2 8051单片机

MCS51是指由美国INTEL公司生产的一系列单片机的总称,这一系列单片机包括了好多品种,如8031,8051,8751,8032,8052,8752等,其中8051是最早最典型的产品,该系列其它单片机都是在8051的基础上进行功能的增、减、改变而来的,人们习惯于用8051来称呼MCS51系列单片机。

INTEL公司将MCS51的核心技术授权给了很多其它公司,很多公司在做以8051为核心的单片机,STC12C2052系列单片机就是其中的一种。它是由台湾的宏晶科技有限公司开发和生产的,具有以下优点:

?超强抗干扰,轻松过 4KV 快速脉冲干扰(EFT测试)

?宽电压,抗电源抖动

?高抗静电(ESD),6KV静电可直接打在芯片管脚上

?超低功耗,Power Down < 0.1uA, 可外部中断唤醒

?8通道10位串行ADC,4路PWM也可当4路D/A使用

?ISP / IAP,在系统可编程/ 在应用可编程,无需编程器/ 仿真器

?超强加密

本系统中选用的单片机是STC12C4052AD,它具有上述全部功能,在系统可编程,通过串口现场擦写FLASH调试软件,利用内部10位ADC(兼容8位)可快速实现数字信号转化从而提高了系统的运算效率。

2.2.3 红外温度传感器

红外温度传感器是实现非接触式红外测温的关键器件,本系统中选用的是PerkinElmer Optoelectronics的TPS434红外热释电温度传感器。该传感器具有很好的重复性和较高的灵敏度,它由温差热电堆和热敏电阻丙部分构成,如图2.3所示:

图2.3

热电堆是半导体集成电路工艺和微机械电子工艺制造的,它由多个热电偶串联组成。热电偶是由两种电子密度不同的导体相连接组成的,它有冷热两个端点。在测量物体温度时,热端与被测物体接触,冷端与测量仪表接触。热电偶的同种导体会因为存在温度梯度而产生汤姆孙电动热,两种金属的连接处会因为电子密度差而产生珀而粘电动热,会在热电偶的两个端产生温差电动势。

热电堆输出端的电压信号是反映热电偶冷热两端的温度差,也就是被测物体与热电堆冷端的温度差,而不是反映被测物体的真实温度。因此,还需要环境温度补偿,也就是要测出热电堆冷端温度。环境温度补偿是通过红外传感器中负温度系数的热敏电阻完成的,它的阻值随着温度的升高而降低,由此通过测量其阻值就可得知环境温度。

2.2.4 高精度运放

本系统中所采用的前置运算放大器是ADI公司的仪用运算放大器AD620。该器件是低功耗、高精度运算放大器,它只需一个外接电阻即可实现1到1000倍的增益。AD620在内部噪声、功耗、输入偏置电压以及输入漂移电压等诸多方面有着出色的性能,特别适合用于微弱信号的放大。

2.2.5 语音芯片

ISD系列语音芯片因其应用方便、接口电路简单等特点而被广泛采用,本系统采用的是ISD4003语音芯片,它有连续录音4分钟的能力,片内信息存于闪烁存贮器中,可在断电情况下保存100年(典型值),反复录音10万次。

芯片采用多电平直接模拟量存储技术, 每个采样值直接存贮在片内闪烁存贮器中,因此能够非常真实、自然地再现语音、音乐、音调和效果声,避免了一般固体录音电路因量化和压缩造成的量化噪声和"金属声",特别适用于移动电话及其他便携式电子产品中。

2.3 本章小结

本章就实现非接触式红外体温计的方法作了简要的介绍,着重对方案设计中涉及的核心器件,如单片机、红外温度传感器、运算放大器等作以概述,以便读者对方案更进一步地了解。

第三章系统硬件设计

3.1 电源设计

任何一部电子产品,电源的设计是首当其冲的,它是使电子产品正常、稳定工作的必要前提。

本系统中所涉及的器件多,电源有很多种:+5V,+6V,-6V以及+3V。由于考虑到系列功耗和其他方面的原因,电源方案中采用的是传统的由市电经变压器后,再通过直流稳压芯片实现以上各类电压。在这种电源设计方案中,主要由变压器、硅桥、稳压芯片以及外围器件来实现,在下面章节将作详细的介绍。

3.1.1 稳压芯片介绍

为满足系统电源方案的需要,我们选用了输出电流大于1A的LM7805、LM7806以及LM7906稳压芯片,此外还有输出电压可调的LM317,这三种芯片的封装均为TO-220,如图3.1所示:

图3.1

?LM7805、LM7806

LM78××系列的稳压芯片的输出的都是正电压,它能够实现压差超过5V的电压变换(大于5V则会使芯片发热,必须加散热片)。这种系列的稳压芯片可提供超过1A的输出电流,无需外部电路,内部有短路、过载保护电路等。经其稳压后的电压在标准电压的4%左右,可满足一般系统的要求。

?LM7906

LM79××系列稳压芯片输出的是负电压,实现的是负电压到负电压的变换,压差一般不超5V(超过5V则会致使芯片发热,必须加散热片)。这种系列的稳压芯片可提供超过1A的输出电流,无需外部电路,内部拥有短路、过载保护电路等。经其稳压后的电压在标准电压的4%左右,可满足一般系统的要求。

?LM317

LM317是一个三端稳压芯片,能够提供大于1.5A的负载电流,输出电压可调:1.2~37V,内部有过载保护、短路电流限制等电路。

3.1.2 原理概述

电源的电路方案中,使用了三个硅桥完成整流,经变换后的电压有三种,其

电路形式如下:

?+5V电源设计

图3.2

其中,AC9_5VB、AC9_5VA是变压器的交流输出,经硅桥整流、滤波、稳压后输出+5V电压。因所用变压器为中心抽头式变压器,全波整流只需两个二极管,所以整流桥的4脚悬空。

?+6V、-6V电源设计

这两路电源设计中,硅桥的使用方法与+5V电源稍有不同,它使用一个硅桥整流输出两个路直流电压,经LM7806和7906后稳压到+6V和-6V。电路形式如下图所示:

图 3.2

需要说明的一点是,这里使用了变压器的三根线:两根是输出的交流电, 另一根是中心抽头,也即地线,它与电路板中的地线共地。

+3V 电源设计

LM317的输出电压是由两个电阻来决定的,输出电压与这两个电阻间的关系表达式为:

2211.25(1)O ADJ R V V I R R =++ 式3-1

图 3.3

其中,R4代表公式中的R1,RT1代表R2,RT1这里选用的是可变电阻,通

I十分小,因过改变RT1的阻值即可调节输出电压的大小。在式3-1中,由于ADJ

此在计算时可忽略此项。

3.2 信号调理电路

非接触式电子体温计的关键电路莫过于信号调理电路,TPS434的输出电压一般在0.7~1.5mV,十分的小。因此,如何在有噪声干扰的环境下来放大微弱信号成了信号调理要解决的关键问题。

3.2.1 前置放大电路

系统方案设计中选用了AD620这款高精度、性能优越的运算放大器,使这一

问题得到了很好的解决,其引脚分布如下图所示:

图3.4

TPS434有四引脚,其中引脚3、引脚4与AD620共地,引脚1与AD620的正向输入端相连,引脚2与AD620的负向输入端相连。电路原理如下:

图 3.5

其中,R1是用于调整AD620的增益,增益与R1的关系如下:

149.41k G R Ω=+ 式3-2

3.2.2 次级调理电路

微弱的电信号经过前置放大电路大概50倍放大处理后,该信号大概有35~75mV 。经次级调理电路放大后,该信号最大值应不超过ADC 的电源电压,也即+5V 。因此次级放大电路中,要合理地选择外围器件参数,以使信号放大到最佳状态,供ADC 转换,进而由单片机内部的算法来获取温度值。

此部分电路采用了TL082,它是一个拥有双运放的运算放大器,其性能足以满足次级调理电路的需求,电路原理如下图所示:

图 3.6

3.3 图形点阵式LCD显示电路

3.3.1 图形点阵式LCD-12232概述

12232液晶显示模块是122×32点阵型液晶显示模块,可显示各种字符及图形,可与MCU直接相连,具有8位标准数据总线、6条控制线以及电源线,其性能参数如下表所示:

参数范围

工作电压 4.5V~5.5V

工作温度 -20~70 ℃

保存温度-30~80℃

图表 3.10

数字式温度计的设计毕业设计

摘要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温X围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该高精度数字式温度计采用了由DALLAS公司生产的单线数字温度传感器DS18B20,它具有独特的单线总线接口方式。本毕业论文详细的介绍了单线数字温度传感器DS18B20的测量原理、特性以及在温度测量中的硬件和软件设计,该温度计具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 二、总体方案设计 1、数字温度计设计方案论证 2.1.1方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。 2.1.2 方案二 进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.2方案二的总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 2、硬件设计 1.1 工作原理及硬件框图 基于DS18B20的温度测量装置电路图如图1所示,包括单片机最小系统、温度传感器、和显示电路。温度传感器DS18B20将被测环境温度转化成带符号的数字信号(以十六位补码形式,占两个字节),单片机对接收到的数字信号进行标度变换,转换成实际的温度值并送数码管显示。DS18B20传感器可置于离装置150米以内的任何地方。STC89C51是整个电路装置的控制核心,STC89C51内带4K字节的FlashROM,用户程序存放在此。 图2 系统硬件框图 3、系统分析: 本设计主要的任务是单片机软件的设计,而软件中的核心在于单片机与集成温度传感器DS18B20接口程序的设计,另外一点便是对数码管扫描显示的理解与运用。由于DS18B20集成了温度数据采集、模数转换

非接触式数字温度计体温仪的设计

基于单片机的非接触式数字体温仪 摘要:人体温度相对恒定是维持人体正常生命活动的重要条件之一,当体温高于41度或低于35度时将严重影响人体各系统的机能活动,甚至危害生命。很多疾病都可使体温正常调节机能发生障碍而使体温发生变化,如非典型肺炎的首要症状就是发烧。临床上对病人检查体温,观察其变化对诊断疾病或判断某些疾病的预防有重要意义。 在大型集会或各类活动中,由于参加人数众多,如果再入场时能对体温进行检测,则能有效控制各类传染病的交叉传播。非接触式体温计所需测温时间短,不需要与体肤接触,避免了病菌交叉感染,并且可以进行数据记录与判断,非常适合这种情况下使用。 本设计采用STC89C52作为核心,集合非接触式温度传感器OTP-538U,集成运放LM324,ADC转换芯片ADC0809,液晶显示器LCD1602实现一个带报警功能的可分类记录的非接触式体温记录系统。 关键词:MCU STC89S52 非接触式温度传感器 OTP-538U 集成运放LM324 数模转换芯片ADC0809 液晶显示器LCD1602

Mcu-based Non-contact Digital Body Temperature Meter Abstract:Maintain relatively constant body temperature is a major life activity of human normal condition , when the body temperature above 41 degrees or below 35 degrees will severely affect the functioning of various body systems , or even life-threatening. Many diseases can occur so that the regulatory function of temperature barriers in the normal body temperature changes, such as the first symptoms of SARS is fever. Check the body temperature of patients in clinical observed changes in the diagnosis of certain diseases or to judge the importance of prevention of disease. In large meetings or various activities, the over-whelming, if re-admission testing temperature can be effective in controlling spread of various infectious diseases cross. Required for non-contact thermometer temperature time is short, do not need to skin and body contact to avoid cross infection, and the data can be recorded with the judge, very suitable for such use. This design uses STC89C52 as a core, a collection of non-contact temperature sensor OTP-538U, integrated operational amplifier LM324, ADC conversion chip ADC0809, LCD1602 LCD with alarm function to achieve a record can be classified non-contact temperature recording system Keywords: MCU STC89C52 non-contact temperature sensor OTP-538U integrated operational amplifier LM324 ADC0809 LCD1602

电子技术基础数字温度计课程设计

课程设计(论文) 题目名称数字温度计 课程名称电子技术课程设计 学生姓名屈鹏 学号1141201112 系、专业电气工程系电气工程及其自动化 指导教师李海娜 2013年12月17日

邵阳学院课程设计(论文)任务书 年级专业11级电气工程及其自动化学生姓名屈鹏学号1141201112 题目名称数字温度计设计设计时间2013.12.9—2013.12.20 课程名称电子技术课程设计课程编号121202306 设计地点电工电子实验室408、409 一、课程设计(论文)目的 电子技术课程设计是电气工程及自动化专业的一个重要的实践性教学环节,是对已学模拟电子技术、数字电子技术知识的综合性训练,这种训练是通过学生独立进行某一课题的设计、安装和调试来完成,着重培养学生工程实践的动手能力、创新能力和进行综合设计的能力,并要求能设计出完整的电路或产品,从而为以后从事电子电路设计、研制电子产品奠定坚实的基础。 二、已知技术参数和条件 用中小规模集成芯片设计并制作一数字式温度计,具体要求如下: 1、温度范围0-100度。 2、测量精度0.2度。 3、三位LED数码管显示温度。 三、任务和要求 1.按学校规定的格式编写设计论文。 2.论文主要内容有:①课题名称。②设计任务和要求。③方案选择与论证。④方案的原理框图,系统电路图,以及运行说明;单元电路设计与计算说明;元器件选择和电路参数计算的说明等。 ⑤必须用proteus或其它仿真软件对设计电路仿真调试。对调试中出现的问题进行分析,并说明解决的措施;测试、记录、整理与结果分析。⑥收获体会、存在问题和进一步的改进意见等。 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

数字温度计设计

数字温度计 摘要:温度计在实际生产和人们的生活中都有广泛应用。该设计是数字温度计,首先是对总体方案的选择和设计;然后通过控制LM35进行温度采集;将温度的变化转为电压的变化,其次设计电压电路,将变化的电压量通过放大系统转化为所需要的电压;再通过TC7107将模拟的电压转化为数字量后直接驱动数码管LED对实时温度进行动态显示。最后在Proteus仿真软件中构建了数字温度计仿真电路图,仿真结果表明:在温度变化时,可以通过电压的变化形式传递,最终通过3位十进制数显示出来。 关键词:温度计;电路设计;仿真

目录 1 设计任务与要求 (1) 2 方案设计与论证 (1) 3 单元电路的设计及仿真 (2) 3.1传感器 (2) 3.2放大系统 (2) 3.3 A/D转换器及数字显示 (4) 4 总电路设计及其仿真调试过程 (6) 4.1总电路设计 (6) 4.2仿真结果及其分析 (7) 5 结论与心得 (9) 6 参考文献 (11)

1 设计任务与要求 温度计是工农业生产及科学研究中最常用的测量仪表。本课题要求用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。具体要求如下:(1)测量范围0~100度。 (2)测量精度0.1度。 (3)3位LED数码管显示。 掌握线性系统的根轨迹、时域和频域分析与计算方法; (2)掌握线性系统的超前、滞后、滞后-超前、一二阶最佳参数、PID等校正方法;(3)掌握MATLAB线性系统性能分析、校正设计与检验的基本方法。 2 方案设计与论证 数字温度计的原理是:通过控制传感器进行温度采集,将温度的变化转化为电压的变化;然后设计电压电路,将变化的电压通过放大系统转化为需要的电压;再通过A/D转换器将模拟的电压转换为数字量后驱动数码管对实时温度进行动态显示。 原理框图如图2-1所示: 传感器放大系统A/D转换显示 图2-1 数字温度计原理框图 由设计任务与要求可知道,本设计实验主要分为四个部分,即传感器、放大系统、模数转换器以及显示部分。经过分析,传感器可以选择对温度比较敏感的器件,做好是在某参数与温度成线性关系,比如用温敏晶体管构成的集成温度传感器或热敏电阻等;放大系统可以由集成运放组成或反相比例运算放大器;A/D转换器需要选择有LED 驱动显示功能的,而可供选择的参考元件有ICL7107,ICL7106,MC14433等;显示部分用3位LED数码管显示。 方案一:用一个热敏电阻,通过热敏电阻把温度转化为电压,再得到每一度热敏电

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

非接触温度计)

成绩评定: 传感器技术 课程设计 题目非接触温度计 院系电子工程学院

摘要 人体温度相对恒定是维持人体正常生命活动的重要条件之一,当体温高于41度或低于35度时将严重影响人体各系统的机能活动,甚至危害生命。很多疾病都可使体温正常调节机能发生障碍而使体温发生变化,如非典型肺炎的首要症状就是发烧。临床上对病人检查体温,观察其变化对诊断疾病或判断某些疾病的预防有重要意义。 在大型集会或各类活动中,由于参加人数众多,如果再入场时能对体温进行检测,则能有效控制各类传染病的交叉传播。非接触式体温计所需测温时间短,不需要与体肤接触,避免了病菌交叉感染,并且可以进行数据记录与判断,非常适合这种情况下使用。 当今世界,随着科学与技术的不断提高,各个领域对方便快捷的自动化的要求不断提高。而本文所研究的红外测温系统由于对被测物体的辐射进行的是非接触无损测量,测量过程中不会扰乱被测部分的温度场,响应快、温度分辨率高。温度测量主要有两种方法:一种是传统的接触式测量,另一种是以红外测温为代表的非接触式测量。传统的温度测量不仅反应速度慢,而且必须与被测物体接触。在人们的日常生活中,测量温度普遍使用水银温度计,反应比较慢,而且水银一旦泄露会产生污染并且有毒。红外测温以红外传感器为核心进行非接触式测量,克服了传统测温的不足,得到了广泛的应用。 自然界一切温度高于绝对零度的物体,都在不停地向外发出红外线。物体发出的红外线能量大小及其波长分布同它的表面温度有密切关系,物体的辐射能量与温度4次方成正比,其辐射能量密度与物体本身的温度关系符合普朗克定律。因此如果通过测量物体辐射出的红外能量的大小就能测定物体的表面温度。微小的温度变化会就会引起明显的辐射能量变化,因此利用红外辐射测量温度的灵敏度很高。 关键词:红外传感器单面机非接触温度计

数字式温度计的设计与制作

数字式温度计的设计与制作 10级电子1班 一项目提出 1.1 任务 为某温室大棚设计一个数字式温度计,以便当棚内温度变化时,能及时提醒工作人员进行处理,保证温室温度变化在较小范围。 1.2 要求 (1)能实现温度数据的采集与记录。 (2)能实现各测量值的显示,精度为0.1摄氏度,温度范围在-55到+55摄氏度。 (3)能实现上、下限报警。 二项目分析 2.1 任务意义 一些温室大棚常常需要有较好的恒温性,即当温度变化达到一定数值时,需要及时调整,以保持温度恒定,保证作物的品质。现某大棚希望设计一个数字式温度计,能实时测量和显示大棚温度。当温度发生较大变化时,能及时做出报警提示。 2.2 系统方案设计 根据醒目的需求,本系统使用STC89C52单片机,DS18B20数字温度传感器等,监测大棚的温度变化。具体功能如下: *温度检测:系统能够实时检测大棚温度,温度分辨率为0.1摄氏度,温度范围为—55到+55摄氏度。 *温度显示:系统能实时显示大棚温度值,显示到小数点后一位,在设置上、下限报警时,显示上、下限提醒标志。 *温度报警:系统能够设置大棚温度范围,当棚内温度超出设定范围时发生报警。 *报警设置:系统能够设置上、下限报警温度值,设定精度为0.1摄氏度。 根据以上功能分析,数字温度计基本结构如图1所示,由单片机最小系统、按键模块、温度采样模块、显示模块和报警模块等组成。

图1:数字温度计的基本结构 三项目相关知识 3.1 数字温度传感器DS18B20的使用 可以测量温度的器件很多,但DS18B20是一种无须进过其它变换电路,直接输出被测温度数字量的传感器。它采用单总线专用技术,可通过串口线或其它I/O口线与计算机接口相连,支持多器件扩展,使用相当方便,测温范围为-55到+125摄氏度,其分辨率为0.5摄氏度,最高可达0.0625摄氏度。 3.1.1 DS18B20的外观及内部结构 DS18B20采用3脚TO-92A封装,外形如同普通的半导体三极管,除此之外,DS18B20也有8脚的SOIC封装及6脚的TSOC封装等形式,如图2所示。 图2:DS18B20封装形式

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

接触式和非接触式温度传感器详细说明

接触式和非接触式温度传感器区别是什么?它们都有哪些共同点?产品型号表示方法和说明书哪里有下载?温度传感器选择重点考虑哪些方面?(1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。(3)测温元件大小是否适当。(4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。(5)被测对象的环境条件对测温元件是否有损害。(6)价格如保,使用是否方便。温度传感器的选择主要是根据测量范围,当测量范围预计在总量程之内,可选用铂电阻传感器。较窄的量程通常要求传感器必须具有相当高的基本电阻,以便获得足够大的电阻变化。热敏电阻所提供的足够大的电阻变化使得这些敏感元件非常适用于窄的测量范围。如果测量范围相当大时,热电偶更适用。最好将冰点也包括在此范围内,因为热电偶的分度表是以此温度为基准的。已知范围内的传感器线性也可作为选择传感器的附加条件。 接触式温度传感器详细说明:接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。 非接触式温度传感器详细说明:它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常

数字式温度计设计课程设计

课程设计说明书 课程设计名称:单片机课程设计 课程设计题目:数字式温度计的设计学院名称:电气信息学院 专业班级:15电力(3)班 学生学号:1504200623 学生姓名:曾高 学生成绩: 指导教师:易先军 课程设计时间:2017.10.30 至2017.11.5

格式说明(打印版格式,手写版不做要求) (1)任务书三项的内容用小四号宋体,1.5倍行距。 (2)目录(黑体,四号,居中,中间空四格),内容自动生成,宋体小四号。 (3)章的标题用四号黑体加粗(居中排)。 (4)章以下的标题用小四号宋体加粗(顶格排)。 (5)正文用小四号宋体,1.5倍行距;段落两端对齐,每个段落首行缩进两个字。 (6)图和表中文字用五号宋体,图名和表名分别置于图的下方和表的上方,用五号宋体(居中排)。(7)页眉中的文字采用五号宋体,居中排。页眉统一为:武汉工程大学本科课程设计。 (8)页码:封面、扉页不占页码;目录采用希腊字母Ⅰ、Ⅱ、Ⅲ…排列,正文采用阿拉伯数字1、2、3…排列;页码位于页脚,居中位置。 (9)标题编号应统一,如:第一章,1,1.1,……;论文中的表、图和公式按章编号,如:表1.1、表1.2……;图1.2、图1.2……;公式(1.1)、公式(1.2)。

课程设计任务书 一、课程设计的任务和基本要求 (一)设计任务(从“单片机课程设计题目”汇总文档中任选1题,根 据所选课题的具体设计要求来填写此栏) 1. 用DS18B20设计一款能够显示当前温度值的温度计; 2. 通过切换按钮可以切换华氏度和摄氏度显示; 3. 测量精度误差在正负0.5摄氏度以内。 (二)基本要求 1.有硬件结构图、电路图及文字说明; 2.有程序设计的分析、思路说明; 3.有程序流程框图、程序代码及注释说明; 4.完成系统调试(硬件系统可以借助实验装置实现,也可在Proteus 软件中仿真模拟); 5.有程序运行结果的截屏图片。

非接触式温度传感器

非接触式温度传感器 非接触式温度传感器 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 温度传感器 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。 非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温 温度传感器 逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。 温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样

易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。 二.硬件设计 1.DS18B20 DS1820 单线数字温度计特性 ? 独特的单线接口仅需一个端口引脚进行通讯 ? 简单的多点分布应用 ? 无需外部器件 ? 可通过数据线供电 ? 零待机功耗 ? 测温范围-55~+125℃,以 0.5℃递增 ? 温度以 9 位数字量读出 ? 温度数字量转换时间 200ms (典型值) ? 用户可定义的非易失性温度报警设置 ? 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件 ? 应用包括温度控制、工业系统、消费品、温度计或任何热感测系统 DS1820温度传感器外观图(a )和引脚图(b ) ①引脚1接地 ②引脚2数字信号输入/输出 ③引脚3接高电平5V 高电平

非接触式电子体温计说明书

178(RC001)型非接触式电子体温计 专用于人体测温.抗击流感专业非接触体温检测仪. 适用于:甲型H1N1流感患者排查。 精确:测量偏差±0.2度。测量时间0.5秒钟。 高温报警:可自由设定报警温度。 存储数据:可存储32个测量数据,便于分析对比。可进行温度修正. 医疗器械生产许可证号:食药监械生产许可证20081646号。 一、新版测温仪产品参数: 精确:测量偏差≤±0.2度。(采用进口红外线探测系统) 快速:测量时间<0.5秒钟。 易用:一键测量,操作方便。 非接触:对人体额头测量,不接触人体皮肤。 长寿命:装2节5号电池,可使用超过10万次,产品使用寿命>300万次。 测量距离:在5~15CM之内都可以适应,无需固定测量距离。 大屏显示:大屏幕液晶显示,白色背光,任何光线下都可以清晰显示。 温度报警:自由设定报警温度。 存储数据:存储32个测量数据,便于分析参考对比。 设置修改:可以修改设置参数,以适应不同肤色的人种(白人、黑人、黄色人种等) 单位转换:使用摄氏度、华氏度可相互转换。 产品用途:

人体体温测量:准确的测量人体体温,替代传统的水银体温计。 皮肤温度测量:测量人体皮肤表面温度,比如可用于断肢再植手术时需要测量皮肤的表面温度。 物体温度测量:测量物体的表面温度,比如可用于茶杯外表的温度的测量。 液体温度量:测量液体的温度,如婴儿洗澡水的温度、奶瓶内牛奶温度等。 技术性能: 1.正常使用条件温度:环境温度:10℃-40℃ 2.电源:DC3V(2粒AA电池) 3.尺寸:196×150×50㎜(长×宽×高) 4.重量:220g 5.测量范围:体温模式:32℃--42.9℃ 表面模式:0℃~60℃ 6.精度:0.2℃ 7.功率:≤50Mw 8.测量距离:5CM-15CM 9.自动关机:5秒 二、图片展示: 三、使用方法: 注意事项: - 遵循此说明书中的保养建议 - 此产品适合于专业用途或是家庭用途 - 产品使用的环境温度一定是在10~40℃. - 产品必须保持干净以及放在干燥的地方. - 请勿将额温枪放在有电击的地方. - 请勿将额温枪放置在极端的温度环境:高于50℃或低于-20℃.

数字式温度计的设计和制作

数字式温度计的设计和制作 时间:周一下 姓名:何安珣 学号:0930*******

一、实验目的 1.研究AD590集成电路温度传感器和NTC热敏电阻的温度特性; 2.利用AD590制作量程为0~100℃范围的数字式温度计;利用NTC热敏电阻制作量程为35~42℃范围的数字体温计。 二、实验原理 1.AD590集成温度传感器的基本特性 ?AD590是一个电流型的集成温度传感器(详见实验原理补充),其温度测量灵敏度高且线性好,测量中不需要设置恒定的稳定参考点。 ⑴测温范围:-55~+150℃. ⑵电源电压范围:4~30V. ⑶输出电阻:710MΩ. ⑷输出为电流变化,温度变化1℃,引起1μA的电流变化. ?有AD590的温度特性可知,其输出电流与温度呈线性关系: B I+ A =θ 其中I(单位为μA)为输出电流,θ为温度,A为0℃时的输出电流,B值约为1。 ?根据其温度特性,采用非平衡电桥电路,可以制作一台数字温度计。 图1AD590数字温度计设计电路

由A B I +=θ,可得: 3 2211R R R AR BR U +? +=εθ其中ε为电源电压,U 单位为μV 。 令?? ???=+?=010*******R R R AR BR ε,即可使电压表毫伏挡示数为AD590所处环境的温度。根据设计原理可知,R 1决定U-θ曲线的斜率,R 2、R 3决定U 、θ的差值。 2.NTC 热敏电阻基本特性 ? NTC 是Negative Temperature Coefficient 的缩写。NTC 热敏电阻即负温度系数热敏电阻, 以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和空穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。 ⑴热敏电阻的零功率电阻值: )1 1(00 T T B e R R ?=R:周围温度T(K)时的电阻值(K:绝对温度)R 0:周围温度T 0(K)时的电阻值B:热敏电阻的B 常数 ⑵B 常数 0ln /1/11R R T T B ?= B 值也是温度的函数,因此热敏电阻零功率电阻值的公式为经验公式,仅在温度变化范围有限时才具有一定的精度。在本次实验中,35~42℃温度范围小,B 为常数。 ? 由于体温计的温度变化范围较小,可对)11(00 T T B e R R ?=式右边进行Taylor 展开:

相关主题
文本预览
相关文档 最新文档