当前位置:文档之家› 跨径12米贝雷钢便桥计算书

跨径12米贝雷钢便桥计算书

跨径12米贝雷钢便桥计算书

一、便桥概况

纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。单孔设计最大跨径12m,桥面宽度为6m。

钢便桥结构型式见下图:

便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。

钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。

二、计算依据及参考资料

1、《公路桥涵设计通用规范》(JTG D60-2004);

2、《公路桥涵地基与基础设计规范》(JTG D63-2007);

3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);

4、《公路桥涵施工技术规范》(JTJ 041-2000);

5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);

6、从莞高速公路惠州段第二合同段两阶段施工图设计;

7、本合同段相关地质勘探资料;

三、主要计算荷载

1、汽车-20 重车;

2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);

3、结构自重;

四、结构受力验算

(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)

1、材料相关参数:I

y =157.8㎝4,W

y

=28.2㎝3,i

y

=2.23㎝;容许抗弯应力

f=215 MPa,容许抗剪应力f

y

=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。

2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。

3、强度、刚度计算

(1)、汽车作用在跨中最大弯距M =1.3×0.25×7.0×9.8×0.75=16.7KN·m;

(2)、槽钢自重产生弯距M=0.125×24.99÷1000×9.8×0.752×3=0.05KN·m;

(3)、汽车作用在跨中槽钢最大弯曲应力σmax=(16.7+0.05)×1000÷

(1.05×28.2×3)=188.6 MPa<f=215 MPa;

(4)、汽车轮组作用在25a型工字钢横向分配梁临近支点时,槽钢受最大剪应力:

τ

max

=(1.3×7.0×9.8+24.99÷1000×9.8×0.75÷2)÷(31.84×3)×

10=9.3MPa<f

y

=125 MPa;

(5)、汽车作用在跨中槽钢产生的挠度v=5×1.3×(16.7+0.05)×106×0.752×106÷(384×206×103×157.8×104×3)=0.16㎜<[v]=750÷400=1.88㎜。

4、结论:经验算,桥面系槽钢的强度和刚度满足要求,使用安全。(二)、25a型工字钢横向分配梁(按简支计算,跨径L=3.8m)

1、材料相关参数:R

x =1.05,W

x

=401㎝3,I

x

=5017㎝4, S

x

=231.2㎝3, t

w

=8

㎜,I

x ÷S

x

=21.7;容许抗弯应力f=215 MPa,容许抗剪应力f

y

=125 MPa,E=206

×103MPa;截面积48.5㎝2,自重38.1㎏/m。

2、荷载情况:自重50吨履带式起重机+吊重15吨,履带长度530㎝,半边履带宽度70㎝;“汽-20”重载,轴距1.4m,单轴重14吨(重车),半边轮组重7吨,汽车冲击系数取1.3。

3、强度、刚度计算

(1)、22a槽钢桥面板对25a工字钢横向分配梁作用产生的弯距:

M=0.125×24.99÷0.26×0.75×9.8÷1000×3.82=1.3 KN·M;

22a槽钢对25a工字钢作用产生的剪力:

Q=23×24.99×9.8×0.75÷2÷1000=2.1 KN;

(2)、25a工字钢自重产生的弯距:

M=0.125×38.1×9.8÷1000×3.82=0.67 KN·M;

25a工字钢自重产生的剪力:

Q=3.05×38.1×9.8÷1000÷2=0.57KN;

(3)、汽车半边车轮作用在25a工字钢横向分配梁跨中产生的弯距:

M=1.3×0.25×7.0×9.8×3.8=84.7 KN·M;

半边履带作用在25a工字钢横向分配梁跨中产生的弯距(长度530㎝的半边履带与7根25a工字钢横向分配梁作用):

M=0.25×32.5×9.8×3.8÷7=43.2 KN·M<84.7 KN·M(汽车荷载作用);

半边汽车车轮作用在临近贝雷片支点,25a工字钢横向分配梁产生的剪力:Q=7.0×9.8=68.6KN;

半边履带作用在临近贝雷片支点(长度530㎝的半边履带与7根25a工字钢横向分配梁作用),25a工字钢横向分配梁产生的剪力:

Q=32.5×9.8÷7=45.5KN<68.6KN(汽车荷载作用);

(4)、在汽车荷载及恒载作用下,25a工字钢横向分配梁跨中最大弯曲应力:

σ

max

=(1.3+0.67+84.7)×1000÷(1.05×401)=205.8 MPa<f=215 MPa;

在汽车荷载及恒载作用下,25a工字钢横向分配梁产生的最大剪应力:

τ

max =(2.1+0.57+1.3×68.6)÷48.5×10=18.9 MPa<f

y

=125 MPa;

(5)、在汽车荷载及恒载作用下,25a工字钢横向分配梁跨中最大挠度:v=5×(1.3+0.67+84.7)×106×3.052×106÷(48×206×103×5017×104)=8.1㎜<[v]=12000÷400=30㎜;

4、结论: 25a工字钢横向分配梁的强度和刚度满足要求,使用安全。(三)、双排单层贝雷梁:计算跨径12m(按简支计算)

1、跨中弯距:

重车55吨:M=0.25×14×2×9.8×12=823KN·M;

履带式起重机:M=0.25×65×9.8×12=1911KN·M;

恒载:M=4×0.125×0.1×9.8×12×12+0.125×24.99×23÷1000×9.8×12×12+0.125×38.1×6÷1000×9.8÷0.75×12×12=225.7 KN·M;

履带式起重机加恒载:M =1.3×1911+225.7=2710 KN·M<[M]=975×4×0.9=3510 KN·M;

2、支点剪力:

重车处于临近支点时:Q=140+140×(10.6÷12)+120×(3.6÷12)+120×(1.2÷12)=311.7KN;

履带式起重机处于临近支点前方时:Q=9.35÷12×650=506.4KN

恒载支点处内力:Q=0.1×9.8×12×4+24.99×23÷1000×9.8×12+38.1×6÷1000×9.8÷0.75×12=150.48÷2=75.2KN;

履带式起重机加恒载在支点处内力:Qmax=1.3×506.4+75.2=733.5KN<[Q]=250×4=1000KN;

3、双排单层贝雷梁最大挠度:

v=5×2710×106×122×106÷(48×206×103×4×250500×104)=19.7㎜<[v]=12000÷400=30㎜。

4、结论:双排单层贝雷梁强度和刚度满足要求,使用安全。

(四)、20a型工字钢(双拼)下横梁

因双排单层贝雷梁下部支点位于钢管桩顶部中心,双拼20a型工字钢下横梁在钢管桩顶部仅起到传递上部荷载的过度作用,主要受力为桩顶支点的压力,故在此不再对20a型工字钢下横梁进行其它受力验算。

(五)、钢管桩基础

桩顶设计承载力:

P=325+1.3/3.5×325+75.2=400.2kN ×1.3=520.3KN

取单桩承载力600kN 按摩擦桩验算(不考虑桩端承载力),采用计算公式:

11()2n a i i ik r p rk i R u l q A q αα==+∑

钢管桩周长u=3.14×0.80=2.512m ;

1、铁场排洪渠(1#便桥):便桥位于主线左侧,桥长90m ,起点对应主线里程桩号为K19+666.8,地质资料采用桩号K19+712.6处钻探孔QSZK191,钢管桩桩底标高选取在-7.21米处;

[R]=0.5×2.512×(2.4×20×0.6+1×30×0.7+3.2×80×1.1+2.2×50×0.6+1.9×150)=824KN >[600KN];

钢管桩长度:6.569+7.21=13.779m ,取14.0m 。

2、沙河Ⅰ(2#便桥):便桥位于主线左侧,桥长60m, 起点对应主线里程桩号为K21+830.8, 地质资料采用桩号K21+884.5处钻探孔QSZK233,钢管桩桩底标高选取在-12.0米处;

[R]=0.5×2.512×(4.8×30×1.1+2.8×90×1.1+1.0×150)=735 KN >

[600KN];

钢管桩长度:4.996+12=16.996m ,取17.0m 。

3、沙河Ⅱ(3#便桥):便桥位于主线右侧,桥长114m, 起点对应主线里程桩号为K24+118.2, 地质资料采用桩号K24+171.8处钻探孔QSZK273,钢管桩桩底标高选取在-12.0米处;

[R]=0.5×2.512×(3.4×50×1.1+2.6×25×1.1+1.8×90×1.1+1.5×150)=708 KN >[600KN];

钢管桩长度:5.396+12=17.396m ,取17.5m 。

4、沙河Ⅲ(4#便桥):便桥位于主线右侧,桥长165m, 起点对应主线里程桩号为K25+151.0。

(1)、地质资料采用桩号K25+203处钻探孔QSZK291,钢管桩桩底标高选取

在-15.0米处;

[R]=0.5×2.512×(3.3×20×0.6+2.9×50×1.1+2.2×80×1.1+3.4×30×1.1+0.58×150)=743 KN>[600KN];

钢管桩长度:4.4+15=19.4m,取20m。

(2)、地质资料采用桩号K25+237.97处钻探孔ZK100,钢管桩桩底标高选取在-15.0米处;

[R]=0.5×2.512×(3.5×30×1.1+1.9×30×1.1+4.0×25×1.1+1.6×100+1.0×150)=751 KN>[600KN];

钢管桩长度:4.4+15=19.4m,取20m。

(3)、地质资料采用桩号K25+308处钻探孔QSZK292,钢管桩桩底标高选取在-9.37米处;

[R]=0.5×2.512×(3.7×50×1.1+1.5×25×1.1+0.5×55×1.1+3.0×45×1.1+1.5×100×1.1)=739KN>[600KN];

钢管桩长度:4.4+9.37=13.8m,取14m。

(4)、在K25+237.97钻探孔ZK100与K25+308钻探孔QSZK292之间,地质资料显示持力层面起伏较大,在此区间的钢管桩长度采用内插法计算,桩长分别为15m、16m、17m、18m、19m。

40米架桥机计算书

... 40 米架桥机计算书

1、架桥机概况 架桥机由主梁总装、前支腿总装、中托总装、后托总装、提升小 车总装、后支腿总装、液压系统及电控部分组成,可完成架桥机的过孔,架梁功能,架桥机的高度可由安装于前支腿、后托的液压系统调节,整个架桥机的所有功能可由电控系统控制完成。 2、架桥机的结构计算 2.1、架桥机主梁的承载力计算 计算架桥机主梁承载力,要分别考虑架桥机的三个情况。 a 过孔 过孔时计算主梁上、下弦的强度,此工况,梁中的弯矩,可能是 主梁所承担的最大弯矩,所以校核此状态时可计算主梁的强度。 b 架中梁 此工况时,前提升小车位于主梁41 米的跨中,弯矩可能出现最大值 c 架边梁 当提升小车偏移架桥机主梁一侧时,此侧主梁中的剪力最大,所 以应校核主梁腹杆的强度及稳定性。 2.1.1主梁上下弦杆的强度计算 2.1.1.1 过孔时,当架桥机前支腿达到前桥台,尚未支撑时悬臂端 根部的最大弯矩(如图)

M max =717t ·m 架中梁时,当提升小车位于主梁41 米的跨中时,梁中的最大弯矩(如图) M max =477t ·m 此较两处的弯矩可知过孔时的弯矩是主梁承受的最大弯矩,也是 控制弯矩,按此弯矩来校核主梁上、下弦的强度 M max =717t ·m 主梁截面如图: 上弦是两根工字钢32b,中间加焊 10mm芯板。 下弦是四根槽钢25a,中间加焊8mm 芯板。

- 3 -

截面几何参数如表所示: 主梁的正应力: σmax=M 4/46812866.6441 ×10-9 max /W X = 717×10 =153MP<a[σ]=170Mpa 主梁上、下弦采用Q235B 钢材其许用应力为170Mpa 所以过孔时主梁是安全的。 2.1.1.2架中梁时,主梁的最不利位置在跨中, 梁中的最大弯矩 M max =477t ·m 主梁的正应力: σmax=M 4/46812866.6441 ×10-9 max /W X =477×10 =102MPa<[σ]=170Mpa 主梁上、下弦采用Q235B 钢材其许用应力为170Mpa 工作应力小于Q235B 的许用应力,满足强度条件,所以架中梁时,弦杆是安全的。 2.1.2弦杆的接头销板及销轴的强度计算

钢便桥设计计算详解

某大桥装配式公路钢便桥工程专项施工方案之一 设计计算书 二〇一六年三月六日

目录 1、工程概况 (4) 1.1 **大桥 (4) 1.2 钢便桥 (5) 2、编制依据 (5) 3、参照规范 (5) 4、分析软件 (5) 5、便桥计算 (5) 5.1 主要结构参数 (5) 5.1.1 跨度 (6) 5.1.2 便桥标高 (6) 5.1.3 桥长 (6) 5.1.4 结构体系 (6) 5.1.5 设计荷载 (6) 5.1.6 材料 (8) 5.2 桥面计算 (8) 5.2.1 桥面板 (8) 5.2.2 轮压强度计算 (9) 5.2.3 桥面板检算 (9) 5.3 桥面纵梁检算 (10) 5.3.1 计算简图 (10) 5.3.2 截面特性 (10) 5.3.3 荷载 (11) 5.3.4 荷载组合 (13) 5.3.5 弯矩图 (14) 5.3.6 内力表 (14) 5.3.7 应力检算 (15) 5.3.8 跨中挠度 (16) 5.3.9 支座反力 (17) 5.4 横梁检算 (17) 5.4.1 计算简图 (17) 5.4.2 装配式公路钢桥弹性支承刚度 (17) 5.4.3 横梁模型 (18) 5.4.4 作用荷载 (18) 5.4.5 计算结果 (19) 5.4.6 截面检算 (20) 5.4.7 挠度检算 (20) 5.5 主桁计算 (21) 5.5.1 分配系数计算 (21) 5.5.2 计算模型 (22) 5.5.3 截面特性 (22) 5.5.4 作用荷载 (24) 5.5.5 荷载组合 (25)

5.5.6 主要杆件内力及检算 (26) 5.5.7 支座反力 (33) 5.6 桩顶横梁计算 (33) 5.6.1 上部恒载计算 (33) 5.6.2 作用效应计算 (34) 5.6.3 荷载分配系数计算 (34) 5.6.4 荷载分配效应 (37) 5.6.5 横梁计算模型 (37) 5.6.6 横梁作用荷载 (37) 5.6.7 横梁荷载组合 (38) 5.6.8 横梁弯矩图 (38) 5.6.9 横梁应力图 (38) 5.6.10 横梁挠度 (39) 5.7 钢管桩计算 (39) 5.7.1 钢管桩顶反力 (39) 5.7.2 钢管桩材料承载力检算 (40) 5.7.3 钢管桩侧土承载力检算 (40) 6、钻孔平台计算 (41) 5.8.1 桥面板计算 (41) 5.8.2 纵向分配梁计算 (42) 5.8.3 墩顶横梁 (45) 5.8.4 平台钢管桩检算 (49) 7、剪力支承设计 (50) 7.1 水平支承系 (50) 7.1.1 2.3m水平支承检算 (50) 7.1.2 2.5m水平支承检算 (50) 7.1.3 5m水平支承检算(双根对肢) (51) 7.2 斜支承系 (51)

贝雷梁钢便桥

目录 1.工程概况 ......................................... 错误!未指定书签。 2施工队伍部署和任务分工............................ 错误!未指定书签。 3施工安全、质量控制重点、难点...................... 错误!未指定书签。 4专项方案总体概况.................................. 错误!未指定书签。 4.1编制依据...................................... 错误!未指定书签。 4.2专项方案总体概况.............................. 错误!未指定书签。 5、施工工艺及施工方法 .............................. 错误!未指定书签。 5.1施工工艺流程图................................ 错误!未指定书签。 5.2施工方法...................................... 错误!未指定书签。 6、安全保证措施 .................................... 错误!未指定书签。 7、文明施工措施 .................................... 错误!未指定书签。 8、钢便桥计算书 .................................... 错误!未指定书签。 8.1、设计依据..................................... 错误!未指定书签。 8.2、主要技术参数................................. 错误!未指定书签。 8.3、荷载分析..................................... 错误!未指定书签。 8.4、下部基础承载力计算........................... 错误!未指定书签。 8.5、上部结构强度计算............................. 错误!未指定书签。

架桥机计算书..

一.ik设计规范及参考文献 (一)重机设计规范(GB3811-83) (二)钢结构设计规范(GBJ17-88) (三)公路桥涵施工规范(041-89) (四)公路桥涵设计规范(JTJ021-89) (五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》(六)梁体按30米箱梁100吨计。 二.架桥机设计荷载 (一).垂直荷载 梁重:Q1=100t 天车重:Q2=7.5t(含卷扬机) 吊梁天车横梁重:Q3=7.3t(含纵向走行) 主梁、桁架及桥面系均部荷载:q=1.29t/节(单边) 1.29×1.1=1.42 t/节(单边) 0号支腿总重: Q4=5.6t 1号承重梁总重:Q5=14.6t 2号承重梁总重:Q6=14.6t 纵向走行横梁(1号车):Q7=7.5+7.3=14.8t 纵向走行横梁(2号车):Q8=7.5+7.3=14.8t 梁增重系数取:1.1 活载冲击系数取:1.2 不均匀系数取:1.1

(二).水平荷载 1.风荷载 a.设计取工作状态最大风力,风压为7级风的最大风压: q1=19kg/m2 b. 非工作计算状态风压,设计为11级的最大风压; q2=66kg/m2 (以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》) 2.运行惯性力:Ф=1.1 三.架桥机倾覆稳定性计算 (一)架桥机纵向稳定性计算 架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机的支柱已经翻起,1号天车及2号天车退至架桥机尾部作为配重,计算简图 P4=14.6t (2#承重横梁自重)

P5= P6=14.8t (天车、起重小车自重) P7为风荷载,按11级风的最大风压下的横向风荷载,所有迎风面均按实体计算, P7=ΣCKnqAi =1.2×1.39×66×(0.7+0.584+0.245+2.25+0.3+0.7+0.8+1.5) ×12.9=10053kg=10.05t 作用在轨面以上5.58m处 M抗=43.31×15+14.8×(22+1.5)+14.8×27.5+14.6×22=1725.65t.m M倾=5.6×32+45.44×16+10.05×5.58=962.319t.m 架桥机纵向抗倾覆安全系数 n=M抗/M倾=1725.65/(962.319×1.1)=1.63>1.3 <可) (二) 架桥机横向倾覆稳定性计算 1.正常工作状态下稳定性计算 架桥机横向倾覆稳定性最不利情况发生在架边梁就位时,最不利位置在1号天车位置,检算时可偏于安全的将整个架桥机荷载全部简化到该处,计算简图如图 图2 P1为架桥机自重(不含起重车),作用在两支点中心

钢便桥计算书正文(最终)

一、验算内容 本计算内容为针对沭阳县新沂河大桥拓宽改造工程钢便桥上、下部结构验算。 二、验算依据 1、《沭阳县新沂河大桥拓宽改造工程施工图》; 2、《沭阳县新沂河大桥拓宽改造工程钢便桥设计图》; 3、《装配式公路钢桥使用手册》; 4、《公路钢结构桥梁设计规范》JTGD64-2015; 5、《钢结构设计规范》GBJ50017-2003; 6、《路桥施工计算手册》; 7、《公路桥涵地基与基础设计规范》JTG D63-2007; 8、《沭阳县新沂河大桥拓宽改造工程便道便桥工程专项施工方案》。 三、结构形式及验算荷载 3、1、结构形式 北侧钢便桥总长60m,南侧钢便桥总长210m,上部均为6排单层多跨贝雷梁简支结构,跨径不大于9m;下部为桩接盖梁形式,盖梁采用45A双拼工字钢,桩基采用单排2根采用529*8mm钢管桩。见下图: 立 面形式横断面形式 3、2、验算荷载 钢便桥通行车辆总重600KN,重车车辆外形尺寸为7×2、5m,桥宽6m,按要求布置一个车道。

横向布载形式 车辆荷载尺寸 四、结构体系受力验算 4、1、桥面板 桥面板采用6×2m定型钢桥面板,计算略。 4、2、25a#工字钢横梁(Q235) 横梁搁置于6排贝雷梁上,间距1、5m。其中:工字钢上荷载标准值为1、18KN/m;25a#工字钢自重标准值0、38KN/m。计算截面抗弯惯性矩I、截面抗弯模量分别为:I =50200000mm4;W =402000mm3。 (1)计算简图:

(2) 强度验算: 抗弯强度σ=Mx/Wnx=46580000/402000 =115、9Mpa<[f]=190Mpa;满足要求! 抗剪强度τ=VSx/Ixtw=167362×232400/(50200000×8)=96、8Mpa<ft =110Mpa;满足要求! (2) 挠度验算: f=M、L2/10 E、I =35、8*1、32/10*2、1*5020*10-3 =0、57mm

施工临时贝雷梁钢便桥计算书

施工临时贝雷梁钢便桥 计算书

目录 1.工程概况 (1) 2.参考规范及计算参数 (3) 2.1. ................................................................................................................... 主要规范标准3 2.2. ................................................................................................................... 计算荷载取值4 2.3. ...................................................................................................... 主要材料及力学参数5 2.4. ............................................................................................................... 贝雷梁性能指标6 3.上部结构计算 (6) 3.1. ........................................................................................................................桥面板计算6 3.2. ....................................................................................................... 16b槽钢分布梁计算7 3.3. ............................................................................................................... 贝雷梁内力计算8 4.杆系模型应力计算结果 (12) 4.1. ............................................................................................................................ 计算模型12 4.2. ................................................................................................................... 计算荷载取值12 4.3. ............................................................................................................... 贝雷梁计算结果14 4.4墩顶工字横梁计算结果 (22) 4.5钢立柱墩计算结果 (24) 5.下部结构验算 (27) 6.稳定性验算 (29) 7.结论 (29)

架桥机计算书.doc

架桥机计算书.d o c -CAL-FENGHAI.-(YICAI)-Company One1

DF30/70Ⅲ型架桥机 稳 定 性 计 算 书 计算单位:郑州大方桥梁机械有限公司校核单位:湖南对外建设有限公司张花高速28标 2011 年 6 月 10 日

1 主参数的确定: DF30/70Ⅲ型架桥机依据“DF30/70型架桥机设计任务书”而设计的混凝土预制梁架设安的专用设备,起吊能力 70 吨;适应桥梁跨径≤30 米,并满足斜(弯)桥梁的架设要求。主要技术参数如下: 起吊能力:70t 适用桥梁跨径:≤30m 适用最大桥梁纵坡:±3% 适用斜桥角度:0-450 适用弯曲半径:250m 小车额定升降速度:min 小车额定纵向行走速度:min 主梁空载推进速度:min 大车横向行走速度:min 运梁平车轨距:2000mm 运梁平车空载速度:17m/min 运梁平车重载速度:min 本架桥机的设计是依据 Q/ZDF010-1999《安装公路桥梁用架桥机通用技术条件》 [1],并参照 GB3811-83 《起重机设计规范》 [2]、GBJ17-88《钢结构设计规范》[3]及起重机设计手册[4]进行。 2 整机稳定性计算: 架桥机纵向稳定性分析 架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机的支柱已经翻起,1号天车及2号天车退至架桥机尾部作为配重,整机稳定系数Kw≥。 架桥机受力如下图所示: 其中导梁前支腿Q 前腿=,导梁重量简化至其结构中心,Q 导梁 =,主梁支点中心前 一段重Q 主梁=,支点中心后一段Q 主梁 =。两天车重心相距3m,Q 车 =6t。 PW=CKhqA , C —风力系数查[4]表1-3-11,C取 Kh —风压高度变化系数查[4]表1-3-10,Kh取1 q —计算风压查[4]表1-3-9,q 取25kg/m2 A —迎风面积A=7 m2

钢便桥计算书正文(最终)

本计算内容为针对沭阳县新沂河大桥拓宽改造工程钢便桥上、下部结构验算。 二、验算依据 1、《沭阳县新沂河大桥拓宽改造工程施工图》; 2、《沭阳县新沂河大桥拓宽改造工程钢便桥设计图》; 3、《装配式公路钢桥使用手册》; 4、《公路钢结构桥梁设计规范》JTGD64-2015; 5、《钢结构设计规范》GBJ50017-2003; 6、《路桥施工计算手册》; 7、《公路桥涵地基与基础设计规范》JTG D63-2007; 8、《沭阳县新沂河大桥拓宽改造工程便道便桥工程专项施工方案》。 三、结构形式及验算荷载 3.1、结构形式 北侧钢便桥总长60m,南侧钢便桥总长210m,上部均为6排单层多跨贝雷梁简支结构,跨径不大于9m;下部为桩接盖梁形式,盖梁采用45A双拼工字钢,桩基采用单排2根采用529*8mm钢管桩。见下图: 立 面形式横断面形式

钢便桥通行车辆总重600KN,重车车辆外形尺寸为7×2.5m,桥宽6m,按要求布置一个车道。 横向布载形式 车辆荷载尺寸 四、结构体系受力验算 4.1、桥面板 桥面板采用6×2m定型钢桥面板,计算略。 4.2、25a#工字钢横梁(Q235) 横梁搁置于6排贝雷梁上,间距1.5m。其中:工字钢上荷载标准值为1.18KN/m;25a#工字钢自重标准值0.38KN/m。计算截面抗弯惯性矩I、截面抗弯模量分别为:I =50200000mm4;W =402000mm3。

(1)计算简图: (2) 强度验算: 抗弯强度σ=Mx/Wnx=46580000/402000 =115.9Mpa<[f]=190Mpa;满足要求! 抗剪强度τ=VSx/Ixtw=167362×232400/(50200000×8)=96.8Mpa<ft =110Mpa;满足要求! (2) 挠度验算: f=M.L2/10 E.I =35.8*1.32/10*2.1*5020*10-3 =0.57mm

30米贝雷梁便桥计算书

贝雷梁便桥设计及荷载验算书 一、概况 为保证施工便道畅通,经研究决定在YDK236+0131曲河1#大桥处修建一座跨河便桥,本验算书以最大跨度30米为计算依据。 从施工方便性、结构可靠性、使用经济性及施工工期要求等多方面因 素综合考虑,便桥采用2榀6片贝雷纵梁作为主梁,桥面系横梁采用25a 型工字钢,间距为1.08m,工字钢之间满铺24*16*200cm枕木。 二、荷载分析 根据现场施工需要,便桥承受荷载主要由桥梁自重荷载q,及车辆荷载 P两部分组成,其中车辆荷载为主要荷载。如图1所示: D 图1 为简便计算方法,桥梁自重荷载按均布荷载考虑,车辆荷载按集中荷载考虑。以单片贝雷梁受力情况分析确定q、P值。 1、q值确定

由资料查得贝雷梁每片重287kg,即97Kg/m; 工字钢自重:30-1.08 X 4.5 X 38.105 - 6- 30=26.46 Kg/m ; 枕木自重:61.44 X 6X 28-3-30=114.688 Kg/m; 合计:q=97+26.46+143.36=238.14 Kg/m ; 2、P值确定

根据施工需要,并通过调查,便桥最大要求能通过后轮重 45吨的大型 车辆,压力为450KN 由6片梁同时承受,可得到f max =F/6,单片工字钢受 集中荷载为f max /6=75KN 。 便桥设计通过车速为5km/小时,故车辆对桥面的冲击荷载较小,故取 冲击荷载系数为0.2,计算得到 P 75KN (1 0.2) 90KN 三、结构强度检算 已知q=2.4KN/m, P=90KN 贝雷梁计算跨径l =30m 根据设计规范,贝 雷梁容许弯曲应力 w =273MPa 容许剪应力[Q] 980kN 。 1、计算最大弯矩及剪力 最大弯距(图1所示情况下): 最大剪力(当P 接近支座处时) 2、验算强度 正应力验算: M max /w 945KN m. 3578.8cm 3 264.05MPa (w 为贝雷梁净截面弹性抵抗矩,查表得到为 3578.8cm 3) 剪力验算: V max 126 KN [Q] 980kN 3、整体挠度验算 max ql 2 P l 2.4KN/m (30m)2 8 90KN/m 30m 4 945KN m V max 2.4KN/m 30m 2 90KN 126KN 273MPa

架桥机计算书

目录 一、设计规范及参考文献 (2) 二.架桥机设计荷载 (2) 三.架桥机倾覆稳定性计算 (3) 四.结构分析 (5) 五.架桥机1号、2号车横梁检算 (7) 六.架桥机0号立柱横梁计算 (9) 七、1号车横梁及0号柱横梁挠度计算 (11) 八.150型分配梁:(1号车处) (13) 九、0号柱承载力检算 (14) 十、起吊系统检算 (15) 十一 .架桥机导梁整体稳定性计算 (16) 十二.导梁天车走道梁计算 (18) 十三.吊梁天车横梁计算 (18)

一、设计规范及参考文献 (一)重机设计规范(GB3811-83) (二)钢结构设计规范(GBJ17-88) (三)公路桥涵施工规范(041-89) (四)公路桥涵设计规范(JTJ021-89) (五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》 (六)梁体按30米箱梁100吨计。 二.架桥机设计荷载 (一).垂直荷载 =100t 梁重:Q 1 单个天车重:Q =20t(含卷扬机、天车重、天车横梁重) 2 主梁、桁架及桥面系均部荷载:q=0.67t/m×1.1=0.74t/m =4t 前支腿总重: Q 3 中支腿总重:Q =2t 4 =34t 1号承重梁总重:Q 5 2号承重梁总重:Q =34t 6 =12t 2#号横梁Q 7 梁增重系数取:1.1 活载冲击系数取:1.2 不均匀系数取:1.1 (二).水平荷载 1.风荷载 a.设计取工作状态最大风力,风压为7级风的最大风压: =19kg/m2 q 1 b. 非工作计算状态风压,设计为11级的最大风压; q =66kg/m2 2 (以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》) 2.运行惯性力:Ф=1.1

贝雷梁钢便桥

目录 1.工程概况 (2) 2施工队伍部署和任务分工 (3) 3施工安全、质量控制重点、难点 (3) 4专项方案总体概况 (3) 4.1编制依据 (3) 4.2专项方案总体概况 (4) 5、施工工艺及施工方法 (7) 5.1施工工艺流程图 (7) 5.2施工方法 (8) 6、安全保证措施 (14) 7、文明施工措施 (15) 8、钢便桥计算书 (17) 8.1、设计依据 (17) 8.2、主要技术参数 (17) 8.3、荷载分析 (18) 8.4、下部基础承载力计算 (19) 8.5、上部结构强度计算 (22)

跨xx、xx镇xx乡排洪槽 钢便桥专项施工方案 1.工程概况 xx特大桥(DK115+960-DK132+509.42)施工便道需经过xx和xx 镇与xx乡的排洪槽,需要设置便桥。 在DKxx+xx跨xx处设置一处便桥,长度42m,宽度5m,在DKxx+xxx 跨xx镇与xx乡排洪槽设置一处便桥长度21m,宽度5m。 跨xx便桥全长42米,净宽5米,跨径2-21m。该便桥两头桥台为C30钢筋混凝土,中间桥墩采用3根直径1.0m,桩长5m的人工挖孔桩,桩顶上设置7*2*1.5m钢筋混凝基础,在基础上预埋20mm钢板,然后安装直径630*10单排钢管桩,呈1*3排列,横向2米+2米,;上部为八排单层上下加强上承式贝雷结构,断面呈0.45米+0.9米+0.45米+0.9米 +0.45米+0.9米排列;贝雷弦杆上横向放置12#工字钢然后在上面铺设钢板,便桥两侧焊接直径48毫米钢管护栏。 xx镇与xx乡排洪槽设置一处便桥,便桥全长21米,净宽5米,跨径为1-21m。该桥两头桥台为钢筋混凝土基础,锥体护坡采用沙袋挡护,防止流水冲刷桥台。上部为八排单层上下加强上承式贝雷结构,断面呈0.45米+0.9米+0.45米+0.9米+0.45米+0.9米排列;贝雷弦杆上横向放置14#工字钢然后在上面铺设钢板,便桥两侧焊接直径48毫米钢管护栏。 钢桥设计有效荷载150T,限速15KM/h,便桥使用时间为2年。

贝雷梁便桥设计检算书

贝雷梁便桥设计检算书 一、工程概况 xx河道湍急,项目桥梁工程多为跨江桥。故设在xx1#、2#和3#、4#桥之间分别设置一座施工便桥,桥长均为21m 、净宽均为3.75m、 限载50t 。 二、检算书 (一)基本数据及说明 1、便桥允许通行能力及载重 在同一时间只允许一辆车位于便桥上,车辆自重加装载重量总计不超过50t ,限速5 km/ h ,严禁在便桥范围内急刹车,取Q 1 =500kN 。 2、便桥基本数据 (1)自重: 贝雷片纵梁: p 1 = 4.73kN /m?21m =99.33kN 横向连接及钢板桥面: p2=[(14.71 cm2 ?12 +187.5 cm2)×21 m + 46.48 cm2×5.20 m×15?]×7.85=106.13kN 桥台及及基础: p3 = 12.4 m3?ρ C25混凝土+26.5m 3?ρ浆砌片石= 86kN (2)跨度:便桥采用贝雷片纵梁四排下加强的组拼形式,两桥台支点中 心距20.6m,纵梁总长21m,采用7节贝雷架拼装成 4 排加强型,其容许弯矩[W]= 4729.0kN.m ,容许剪力[Q]= 980.8kN ,自重荷载集度q1 = 4.73kN /m。

(3)桥面系荷载集度: () /m kN 63.1018 21q =+=p p (二)便桥检算 1、横向连接强度检算 最不利状况:当满载车行于跨中时 荷载 P max = kQ 1=1.2×500kN = 600kN 式中 k 动载系数,取1.2 Q 1满荷载总重 计算图式(按最不利情况并结合现场实际情况组合)及结果如下: q=10.625kN P=600kN (弯矩最大) R=96KN(剪力) R=396KN(弯矩) P=600kN (剪力最大) R=396KN(弯矩) R=696KN(剪力) 注:图中红色表示活载移到端部剪力最大组合情况。 Q max = p max +=?2 q L 600+10.63×21/2=711.56kN < [Q ]=4×24.52×0.9=882.7kN M max = p ·8 q 22 L L + = 3735.7kN /m <[M ]= 4×1687.5×0.9 = 5323kN ·m 满足要求! 2、横向连接挠度检算 f = f 1+ f 2 + f 3 式中: f 1 自重W 引起的挠度; f 1=X4 7200X10384X2.1X5715X10.625X2384q 53-4 4=EI L = 5.5493mm

40米架桥机计算书

40米架桥机计算书 1、架桥机概况 架桥机由主梁总装、前支腿总装、中托总装、后托总装、提升小车总装、后支腿总装、液压系统及电控部分组成,可完成架桥机的过孔,架梁功能,架桥机的高度可由安装于前支腿、后托的液压系统调节,整个架桥机的所有功能可由电控系统控制完成。 2、架桥机的结构计算 、架桥机主梁的承载力计算 计算架桥机主梁承载力,要分别考虑架桥机的三个情况。 a过孔 过孔时计算主梁上、下弦的强度,此工况,梁中的弯矩,可能是主梁所承担的最大弯矩,所以校核此状态时可计算主梁的强度。 b架中梁 此工况时,前提升小车位于主梁41米的跨中,弯矩可能出现最大值 c架边梁 当提升小车偏移架桥机主梁一侧时,此侧主梁中的剪力最大,所以应校核主梁腹杆的强度及稳定性。 =717t·m M m ax

架中梁时,当提升小车位于主梁41米的跨中时,梁中的最大弯矩(如图) =477t·m M m ax 此较两处的弯矩可知过孔时的弯矩是主梁承受的最大弯矩,也是控制弯矩,按此弯矩来校核主梁上、下弦的强度 =717t·m M m ax 主梁截面如图: 上弦是两根工字钢32b,中间加焊 10mm芯板。 下弦是四根槽钢25a,中间加焊8mm 芯板。 截面几何参数如表所示: 主梁的正应力: /W X=717×104×10-9 σmax=M m ax =153MPa<[σ]=170Mpa 主梁上、下弦采用Q235B钢材其许用应力为170Mpa 所以过孔时主梁是安全的。 梁中的最大弯矩 M =477t·m m ax 主梁的正应力: σmax=M /W X=477×104×10-9 m ax =102MPa<[σ]=170Mpa

72米钢便桥计算书

实用 文案钢便桥受力计算书 (1) 1.1概述 (1) 1.2计算围 (1) 1.3主要计算荷载 (1) 1.4便桥主要控制计算工况 (1) 1.5计算过程(手算) (1) §1.5.1活载计算 (2) §1.5.2桥面板计算 (2) §1.5.3 I12.6工字梁纵梁计算 (2) §1.5.4 I25a工字梁横梁计算 (3) §1.5.5 贝雷主梁计算 (5) §1.5.6 2根I32b桩顶横梁计算 (6) 6电算复核 (7)

钢便桥受力计算书 1.1概述 根据本便桥施工荷载要求,参照《公路桥涵设计通用规》(JTG D60-2004)及《港口工程荷载规》(JTJ254一98)。由于本便桥使用时间较短,受自然条件影响较小,所以直接计算工作状态下荷载,风、雨等影响条件忽略。便桥承受的荷载为自重、车辆荷载。 1.2计算围 计算围为便桥的基础及上部结构承载能力,主要包括:桥面板→I12.6工字梁纵梁→I25a工字梁横梁→顺桥向贝雷梁→横桥向I32b工字钢→钢管桩。 1.3主要计算荷载 恒载:结构自重; 活载:9立方混凝土罐车荷载; 冲击系数:汽车(1.1) 荷载组合:1、恒载+汽车荷载

1.4便桥主要控制计算工况 ①跨径为12m钢便桥在活载工况下的整体刚度、强度和稳定性; 1.5计算过程(手算) 本便桥主要供混凝土罐车、各种小型农用车走行,因而本便桥荷载按9立方米混凝土罐车荷载分别检算。 本便桥恒载主要为型钢桥面系、贝雷梁及墩顶横梁等结构自重。并按以下安全系数进行荷载组合:恒载1.2,活载1.3。根据《公路桥涵钢结构及木结构设计规》规定:临时结构容许应力可提高1.3(组合Ⅰ)、1.4(组合Ⅱ~Ⅴ)。本便桥弯曲容许应力取MPa ?,容许剪应力取 4.1= 145 203 ?。 4.1= MPa 119 85 §1.5.1活载计算 活载控制设计为9m3砼运输车(按车与载总重35t计),参考国混凝土运输车生产厂家资料及规汽车-20级荷载布置,单辆砼运输车荷载为3个集中荷载70kN、140kN和140kN,轮距为4.0m、1.4m,计入冲击系数1.1后,其集中荷载为77kN、154kN和154kN。 §1.5.2桥面板计算 (1)结构型式 本平台面板为10mm厚花纹A3钢板,焊接在中心间距300mm的I12.6工字钢纵梁上。

某贝雷梁钢便桥计算书 (2)

精心整理 峃口隧道钢栈桥计算书 1、工程概况 本施工便桥采用321型单层上承式贝雷桁架,栈桥0#桥台与老56省道相连,6#桥台位于峃口隧道起点位置,横跨泗溪。便桥孔跨布置为10m+5*15m,全长85米,桥面净宽6米,人行道宽度1.2m,纵向坡度+3%,桥面至河床面净高10米,至水面净空为8.5米(图1为钢栈桥截面图)。钢栈桥桥面系主体结构由δ=10mm花纹钢板、I10工字钢纵梁(间距0.3m)、I20工字钢横梁(长7.2m,间距0.75m)组成。桥面板与工字钢采用手工电弧焊焊接连接,桥面系布置于贝雷桁梁之上,与贝雷桁梁之间用U型螺栓固定。贝雷桁梁由贝雷片拼制而成,横向设置6片,间距0.9m,贝雷片之间采用角钢支撑花架连接成整体。 本桥基础为明挖基础,基础为7×2.6×1.2m的钢筋砼,扩大基础必须坐落于河床基岩上,且基础顶标高低于河床。基础上部墩身均采用φ630mm(δ=8mm)钢管,采用双排桩横桥向各布置2根,钢管桩之间由平联、斜撑连接。钢管桩顶设双I32工字钢分配梁。 本桥基础设计为明挖基础,基础采用C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算。 图1钢栈桥截面图(单位:mm) 2、计算目标 本计算的计算目标为: 1)确定通行车辆荷载等级; 2)确定各构件计算模型以及边界约束条件; 3)验算各构件强度与刚度。 3、计算依据 本计算的计算依据如下: [1]黄绍金,刘陌生.装配式公路钢桥多用途使用手册[M].北京:人民交通出版社,2001 [2]《钢结构设计规范》(GB50017-2003) [3]《公路桥涵设计通用规范》(JTGD60-2004) [4]《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 4、计算理论及方法

40-160II(A)架桥机设计计算书

目录 1.前言--------------------------------------------------------------------------------1 2.设计规范及参考文献------------------------------------------------------------------1 3.设计指标--------------------------------------------------------------------------1 3.1 安全系数----------------------------------------------------------------------1 3.2 材料许用应力----------------------------------------------------------------1 4.设计载荷--------------------------------------------------------------------------1 4.1 竖直载荷---------------------------------------------------------------------1 4.2 水平载荷---------------------------------------------------------------------2 5.水平惯性载荷与风载荷对桥机横桥稳定性的影响------------------------------3 6.主梁的设计计算-----------------------------------------------------------------3 7.导梁的设计计算-----------------------------------------------------------------4 8.架桥机的稳定性计算------------------------------------------------------------------5

施工临时贝雷梁钢便桥计算书

目录 1. 工程概况 (2) 2.参考规范及计算参数 (4) 2.1.主要规范标准. (4) 2.2.计算荷载取值 (5) 2.3.主要材料及力学参数 (6) 2.4.贝雷梁性能指标 (8) 3.上部结构计算 (8) 3.1.桥面板计算 (8) 3.2.16b槽钢分布梁计算 (9) 3.3.贝雷梁内力计算 (10) 4.杆系模型应力计算结果 (15) 4.1.计算模型 (15) 4.2.计算荷载取值 (15) 4.3.贝雷梁计算结果 (17) 4.4.墩顶工字横梁计算结果 (25) 4.5.钢立柱墩计算结果 (28) 5.下部结构验算 (30)

6.稳定性验算 (32) 7.结论 (32)

1.工程概况 根据现状道路控制条件,李家花园隧道拓宽改造工程钢便桥跨径布置为6m+9m+24m (27m)+12m。桥面宽度每跨等宽,第一跨为12.629m,第二跨15.4m,第三跨20.4m(23.4m),第四跨28.673m。第三跨20.4m宽度跨径为24m,另外3m范围跨径27m。钢便桥上部结构选用贝雷梁,27m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+2×0.45m,24m 跨径选用单排单层加强型贝雷梁,布置间距为0.25m+0.9m,其余跨径均选用双排单层标准贝雷梁,梁高均为1.5m;贝雷梁上等间距布置横向连接工字钢,型号I25b;工字钢以上等间距布置桥面板支撑槽钢;桥面板采用8mm厚花纹钢板,上铺9cm沥青混凝土。钢便桥下部结构为横梁立柱接桩(板)基础。横梁根据受力情况由3片或2片梁高1.0m的工字钢拼接而成。立柱为直径1.0m的钢管柱,与横梁、基础栓接,方便安装与拆卸。钢管柱之间采用横向钢管连接,加强横向稳定。基础分为承台桩基和板式扩大基础两种形式,平面位置受限位置用承台桩基础,桩基直径Ф1.2m;其他位置采用板式扩大基础。钢便桥桥型平面布置图、立面布置图及横断面图如图1-1至图1-4所示。

施工临时贝雷梁钢便桥计算书

目录 1. 工程概况 (1) 2.参考规范及计算参数 (3) 2.1.主要规范标准 (3) 2.2.计算荷载取值 (3) 2.3.主要材料及力学参数 (4) 2.4.贝雷梁性能指标 (5) 3.上部结构计算 (6) 3.1.桥面板计算 (6) 3.2.16b槽钢分布梁计算 (6) 3.3.贝雷梁内力计算 (7) 4.杆系模型应力计算结果 (11) 4.1.计算模型 (11) 4.2.计算荷载取值 (12) 4.3.贝雷梁计算结果 (13) 4.4.墩顶工字横梁计算结果 (21) 4.5.钢立柱墩计算结果 (24) 5.下部结构验算 (26) 6.稳定性验算 (28) 7.结论 (28)

1.工程概况 根据现状道路控制条件,李家花园隧道拓宽改造工程钢便桥跨径布置为6m+9m+24m(27m)+12m。桥面宽度每跨等宽,第一跨为12.629m,第二跨15.4m,第三跨20.4m(23.4m),第四跨28.673m。第三跨20.4m宽度跨径为24m,另外3m范围跨径27m。钢便桥上部结构选用贝雷梁,27m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+2×0.45m,24m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+0.9m,其余跨径均选用双排单层标准贝雷梁,梁高均为1.5m;贝雷梁上等间距布置横向连接工字钢,型号I25b;工字钢以上等间距布置桥面板支撑槽钢;桥面板采用8mm厚花纹钢板,上铺9cm沥青混凝土。钢便桥下部结构为横梁立柱接桩(板)基础。横梁根据受力情况由3片或2片梁高1.0m的工字钢拼接而成。立柱为直径1.0m的钢管柱,与横梁、基础栓接,方便安装与拆卸。钢管柱之间采用横向钢管连接,加强横向稳定。基础分为承台桩基和板式扩大基础两种形式,平面位置受限位置用承台桩基础,桩基直径Ф1.2m;其他位置采用板式扩大基础。钢便桥桥型平面布置图、立面布置图及横断面图如图1-1至图1-4所示。 图1-1 钢便桥平面布置图(单位:mm)

贝雷梁钢便桥修订稿

贝雷梁钢便桥 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

目录

跨xx、xx镇xx乡排洪槽 钢便桥专项施工方案 1.工程概况 xx特大桥(DK115+960-DK132+)施工便道需经过xx和xx镇与xx乡的排洪槽,需要设置便桥。 在DKxx+xx跨xx处设置一处便桥,长度42m,宽度5m,在DKxx+xxx跨xx镇与xx乡排洪槽设置一处便桥长度21m,宽度5m。 跨xx便桥全长42米,净宽5米,跨径2-21m。该便桥两头桥台为C30钢筋混凝土,中间桥墩采用3根直径,桩长5m的人工挖孔桩,桩顶上设置7*2*钢筋混凝基础,在基础上预埋20mm钢板,然后安装直径630*10单排钢管桩,呈1*3排列,横向2米+2米,;上部为八排单层上下加强上承式贝雷结构,断面呈米+米+米+米+米+米排列;贝雷弦杆上横向放置12#工字钢然后在上面铺设钢板,便桥两侧焊接直径48毫米钢管护栏。 xx镇与xx乡排洪槽设置一处便桥,便桥全长21米,净宽5米,跨径为1-21m。该桥两头桥台为钢筋混凝土基础,锥体护坡采用沙袋挡护,防止流水冲刷桥台。上部为八排单层上下加强上承式贝雷结构,断面呈米+米+米+米+米+米排列;贝雷弦杆上横向放置14#工字钢然后在上面铺设钢板,便桥两侧焊接直径48毫米钢管护栏。 钢桥设计有效荷载150T,限速15KM/h,便桥使用时间为2年。

2施工队伍部署和任务分工 该便桥计划采用2支施工队伍施工,分别为桥台基础施工队、桥面施工队。 桥台基础施工小组主要负责便桥基础及桥台身施工;桥面施工小组主要负责贝雷梁结构安装及桥面铺装、护栏安装等工作。 3施工安全、质量控制重点、难点 施工难点是:在桥墩基础施工前要及时水利部门联系,办理相关施工手续。 安全控制重点是:纵梁为整体组装完成后吊装,吊装时候要注意起重机吊装安全,吊装过程中纵梁两端安装缆绳,下端人工拉拽,保证纵梁平稳落梁。 质量控制重点是:墩台身的轴线必须在同一条线上,桥台顶面标高及顶面预埋钢板表面应控制一致,梁体部位的各连接螺栓必须安装牢固。 4专项方案总体概况 编制依据 1、《装备式公路钢桥多用途使用手册》; 2、《钢结构设计规范》GB50017-2003; 3、《路桥施工计算手册》; 4、《公路桥梁施工技术规范》(JTJ041-2004); 5、《公路桥涵地基与基础设计规范》(JTJ024-85); 6、《装备式公路钢桥》设计制造标准JT/T728-2008

相关主题
文本预览
相关文档 最新文档