当前位置:文档之家› 细胞生物学 第十章

细胞生物学 第十章

细胞生物学  第十章
细胞生物学  第十章

第十章

知识点自测

(一)选择题

1、能够稳定微丝(MF)的特异性药物是()

A.秋水仙素

B.细胞松弛素

C.笔环肽

D.紫杉醇

2、较稳定、分布具组织特异性的细胞质骨架成分是()

A.MT

B.IF

C.MF

D.以上都不是

3、细胞骨架分子装配中没有极性的是()

A.微丝

B.微管

C.中间纤维

D.以上全是

4、用细胞松弛素处理细胞可阻断下列()的形成

A.胞饮泡

B.吞噬泡

C.分泌小泡

D. 包被小泡

5、下列属于微管永久结构的是()

A.收缩环

B.纤毛

C.微绒毛

D.伪足

6、肌动踏车行为需要消耗能量,由下列哪项水解提供()

A.ATP

B.GTP

C.CTP

D.TTP

7、下列细胞骨架中,只有9+0结构的是()

A.鞭毛

B.中心粒

C.中间丝

D.纤毛

8、用适当浓度的秋水仙素处理分裂细胞,可导致()

A.姐妹染色单体不分离,细胞停滞在有丝分裂中期

B.姐妹染色单体分开,但不向两极运动

C.微管破坏,纺锤体消失

D.微管和微丝都破坏,使细胞不能分裂

9、下列蛋白质没有核苷酸结合位点的是()

A.α—微管蛋白

B.β—微管蛋白

C.肌动蛋白

D.中间丝蛋白

10、下列分子没有马达蛋白功能的是()

A.胞质动力蛋白

B.驱动蛋白

C.肌球蛋白

D.MAP2

11、下列药物能抑制胞质环流的是()

A、细胞松弛素

B、紫杉醇

C、秋水仙素

D、长春花碱

12、下列物质中,()抑制微管的解聚。

A、秋水仙碱

B、紫杉醇

C、鬼笔环肽

D、细胞松弛素B

13、微管全是以三联管的形式存在的结构()

A.纤毛

B. 中心粒

C. 鞭毛

D.动粒微管

14、在下列微管中对秋水仙素最敏感的是()

A.细胞质微管

B. 纤维微管

C. 中心粒微管

D.鞭毛微管

15、微管蛋白的异二聚体上有哪种核苷三磷酸的结合位点()。

A.UTP

B. CTP

C. GTP

D.ATP

16、下列药物中仅与已聚合微丝结合的药物是()。

A.秋水仙碱

B. 长春花碱

C.鬼笔环肽

D.紫杉醇

17、当肌肉收缩时,会发生下面哪一种变化()。

A.I带加宽

B. 肌动蛋白纤维发生收缩

C.肌球蛋白纤维收缩

D.机节变短

18. 若在显微镜下比较收缩的肌节和松弛的肌节, 下列明哪些区域宽度是不变的().

A. A带

B. I带

C. H带

D.整个肌节

19.当用秋水仙素处理细胞以后,下面哪种说法不正确( )。

A.有丝分裂与减数分裂将不能正常进行

B. 肌动蛋白纤维装配受到抑制

C. 细胞器在胞内的位置将改变

D.细胞形状将改变

20.下列哪个不是微管组织中心( )。

A.中心体

B.基体 .

C.微管蛋白二聚体

D.高尔基体的反面膜囊区域

21.下列美于微丝描述错误的是( )。

A.存在于小肠上皮细胞微绒毛内

B.由微管蛋白组装而成

C.特定情况下,能快速组装和去组装

D.存在于胞质分裂收缩环

22.依赖于微丝的分子马达是( )。

A.驱动蛋白

B.马达蛋白

C.肌球蛋白

D. A和 B都是

(二)判断题

l.细胞中的所有微丝均为动态结构。( )

2.胞质骨架的3种结构都具有极性和踏车行为。( )

3.微管的极性是指其正、负两端分别带有不同的电荷。()

4.胞质分裂时,收缩环是由微管形成的。( )

5.驱动蛋白家族中,既有介导转运膜泡向微管( +)端运动的成员,也有介导转运

膜泡向微管(-)端运动的成员。( )

6.微管蛋白单体和肌动蛋白单体都有一个 GTP结合位点。()

7.中间丝是一个杆状结构, 其头尾是不可变的, 中间杆部是可变的。()

8.微管蛋白由α、β微管蛋白两个亚基组成。在这两个亚基上各有一个 GTP 结

合位点,但α亚基上的 GTP不可交换,β亚基上的 GTP是可以交换的。( )

9.动物皮肤和鳞片中含有色素细胞,它改变皮肤颜色的原理是:细胞内的色素颗

粒沿微管在细胞内转运,由于色素颗粒分布不同导致颜色的变化。( )

10.应力纤维由大量平行的微丝组成,主要在胞质分裂方面起作用。( )

11.细胞伪足的形成依赖于肌动蛋白的聚合,并由此产生推动细胞运动的力。()

12.真核细胞与原核细胞都具有鞭毛这一特化结构,真核细胞的鞭毛结构复杂,而

核细胞的鞭毛相对简单。( )

13.秋水仙素可同微丝的(+)端结合,并阻止新的单体加入。

() ,

l4.微管的负极指向MTOC,正极背向MTOC。( )

15.有丝分裂的药物秋水仙碱与微管蛋白单体结合后, 可以阻止二聚体的形成。

()

16. 纤毛的运动是微管收缩的结果。()

17. 细胞松弛素B是从真菌中分离的一种生物碱,它可以与微丝的末端结合,并

阻止新的单体聚合。()

18. 微管在体外组装时,受离子的影响很大,所以要尽量除去Mg离子和Ca离子

( )

19. 紫衫醇只结合到聚合的微管上,不与未聚合的微管蛋白二聚体反应。接触紫

杉醇后细胞内会积累大量微管,可使细胞分裂停止于有丝分裂期。()

20. 与微丝及微管一样,细胞质中间丝存在于所有的真核细胞。()21.

微丝末端肌动蛋白亚基ATP水解和微管末端β-微管蛋白上GTP水解导致自由能

和聚合物构象变化,更容易发生解聚。()

22. 在有丝分裂过程中,核膜的解体主要涉及核纤层蛋白的去磷酸化,核膜重建涉及核纤层蛋白的磷酸化。()

23. 向微管正极端行走的马达蛋白将货物往细胞内部运输。()

(三)名词比对

1. 中心体(centrosome)与基体(basal body)

2. 微管组织中心(microtubule organizing center)与核仁组织区(nucleolar organizing region)

3. 肌球蛋白(myosin)与驱动蛋白(kinesin)

4. 微管蛋白(microtubule)与微管结合蛋白(microtubule associated protein,MAP)

5. 应力纤维(stress fiber)与中间丝(intermediate filament)

(四)分析与思考

1. 用细胞松弛素B处理培养的动物细胞,能观察到什么现象?如何解释?

2. 单细胞绿藻的运动缺陷型或突变株,其鞭毛精细结构中可能因缺失哪些部分导致运动缺

陷或异常?原因何在?

3. 微管装配过程中的动态不稳定性造成微管快速伸长或缩短。请设想一条正处于缩短状态

的微管:

(1) 如果要停止缩短并进入伸长状态,其末端必须发生什么变化?

(2) 发生这一转换后微管蛋白的浓度有什么变化?

(3)如果溶液中只有GDP而没有GTP,将会发生什么情况?

(4)如果溶液中存在不能被水解的GTP类似物,将会发生什么情况?发生这些变化的理论依据是什么?

4.小鼠驱动蛋白KIF 1B基因缺陷的纯合子在出生时就会死亡。这种基因缺陷的杂合子小鼠虽然能够存活下来,但却表现出进行性肌无力。人类2A型Charcot-Marietooth疾病患者也有一个KIF 1B基因拷贝缺失。存活下来的基因缺陷小鼠和人类的疾病患者具有相似的进行性神经性疾病。请你推测驱动蛋白一个基因拷贝的缺失为什么能对神经系统功能产生如此重大的影响?

5. 在细胞骨架蛋白研究过程中,(1)分别有哪些脊椎动物组织适于分离微管蛋白.肌动蛋白和角蛋白?(2)你推测哪种蛋白溶解度低较难分离?(3)在分离微管蛋白和肌动蛋白的过程中,分别容易混入细胞内的那些蛋白?

6. 基因组序列分析表明,某些植物细胞缺乏胞质动力蛋白(如拟南芥),然而在另一些植物细胞中又是存在的(如水稻)

(1)可以设计哪些实验来证实这一分析?(2)你推测没有胞质动力蛋白的植物细胞如何实现向微管负极的膜泡运输?

答案:

(一)选择题

1.C

2.B

3.C

4.B

5.B

6.A

7.B

8.C

9.D 10.D 11.A 12.B 13.B 14.A 15.C 16.C 17.D 18.A 19.B 20.C 21.B 22.C

(二)判断题

1.x 大多数非肌细胞中,微丝是一种动态结构。

2.X 中间丝没有。

3.X 微管蛋白二聚体在两端聚合速度不同,组装较快的一端称为正极,而另一端称为负极。

4.X 胞质收缩环由肌动蛋白/肌球蛋白Ⅱ组装而成。

5.√

6.X 肌动蛋白单体有一个ATP结合位点。

7.X 细胞质中间丝蛋白分子中部杆状区氨基酸残基组成高度保守,两侧头部和尾部高度不变。

8.√

9.√

10.X 应力纤维通过黏着斑与细胞外基质相连。

11.√

12.√

13.x 秋水仙素与微管蛋白亚基结合,具有抑制微管组装的作用。

14.√

15.X 结合秋水仙素的微管蛋白亚基组装到微管末端后,阻止其他微管蛋白亚基的组装,但并不影响微管的去组装,从而导致细胞内微管网络的解体。

16.X 纤毛运动本质是由轴丝动力蛋白所介导的相邻二联体微管之间的相互滑动。

17.√

18.X 要尽量除去Ca2+。

19.√

20.X 中间丝本不是所有真核细胞必需的结构组分。

21.√

22.X 解体涉及核纤层蛋白磷酸化,重建涉及去磷酸化。

23.X 负极端。

(三)名词对比

1. 二者都是动物细胞中的微管组织中心,同源,在某些时候可以相互转变,且都具有自我复制能力。中心体细胞间期位于细胞核附近,有丝分裂期位于纺锤体的两极。含有一对彼此垂直分布的中心粒,外面被中心粒外围物质所包围。基体位于鞭毛和纤毛根部,在结构上与中心粒基本一致。

2. 微管组织中心是细胞中微管起始组装的地方,如中心体、基体等部位。MTOC 决定了微管的极性,负极指向微管组织中心,正极背向微管组织中心。核仁组织区位于染色体的次缢痕部位,是rRNG基因所在部位(5SrRNG基因除外),与间期细胞核仁形成有关。

3. 肌球蛋白是沿微丝运动的马达蛋白。通常含有3个功能结构域:马达结构域、调控结构域与尾部结构域,其中马达结构域位于头部,包含一个肌动蛋白亚基结合位点和一个具有ATP酶活性的ATP结合位点。驱动蛋白是沿微管运动的马达蛋白。由2条具有马达结构域的重链和2条与具有“货物”结合功能的轻链组成,其中马达结构域具有ATP结合位点和微管结合位点。

4. 微管蛋白都是由α/β-微管蛋白两亚基结合而成的异二聚体。是微管组装的基本结构单位。微管结合蛋白是结合在微管表面的一类蛋白质,具有稳定微管,对微管网络的结构和功能进行调节的作用。

5. 应力纤维由肌动蛋白丝组成,还含有肌球蛋白Ⅱ、原肌球蛋白、细丝蛋白和α-辅肌动蛋白等结构成分。中间丝是直径约10nm的致密索状的细胞骨架纤维。

(四)综合分析

1.出现双核细胞,抑制微丝聚合,不能形成正常收缩环,细胞质分裂受阻或不能分裂。

2.(1)缺失轴丝中的中央鞘或中央微管,缺失放射辐,缺失动力蛋白臂,缺失外周微管。

(2)原因是中央微管与周围微管间的相互滑动受阻。

3.(1)由于失去了GTP帽,即末端的微管蛋白亚基都以结合GDP的形式存在,微管因而缩短。溶液中带有GTP的微管蛋白亚基仍会添加到末端,但是寿命很短,因为GTP可能被水解,或者围绕着的微管蛋白亚基解体使其脱落下来。但是如果足够的带有GTP的亚基以足够快的速度添加上去覆盖了微管末端带有GDP的微管蛋白亚基,这时可产生一个新的GTP帽,微管就可重新开始生长。

(2)当微管蛋白浓度较高时,GTP亚基的添加速率会比较高,因而缩短微管转变为增长为微管的频率也会随着微管蛋白浓度的升高而增加。这种调节机制使该系统达到自主平衡:较多微管的缩短可造成高浓度的游离微管蛋白,转为增长的微管也就增多;反之,增长的微管多了,游离微管蛋白浓度下降从而GTP亚基的添加速率下降,在某些部位GTP水解的速率会超过添加速率,造成GTP破坏,微管开始进入缩短状态。

(3)如果只有GTP的存在,微管会持续短缩,并最终消失,因为结合有GDP 的微观蛋白二聚体之间的亲和力十分低,不能被稳定的添加到微管上。

(4)如果有GTP类似物存在但不能被水解,那么微管将持续增长,直到所有游离的微管蛋白亚基被装配完为止。

4.KIFF1B除了运输突触小泡前体以外,很可能还运输一些和神经元生存和神经传递有关的物质,如离子通道蛋白,神经生长因子,或神经生长因子受体等。

5.(1)大脑、肌肉、皮肤。(2)角蛋白。(3)微管结合蛋白,原肌球蛋白、肌球蛋白或其他肌动蛋白结合蛋白。

6.(1)设计阴性和阳性对照,分别检测细胞内是否有胞质动力蛋白mRNA转录或蛋白表达。

(2)可能由向负端运动的驱动蛋白来实现相关膜泡的的运输。

医学细胞生物学试题集

医学细胞生物学试题集及答案 第一章细胞生物学与医学 一、单选题 1.生命活动的基本结构单位和功能单位是() A.细胞核 B.细胞膜 C.细胞器 D.细胞质 E.细胞 2.DNA 双螺旋模型是美国人J. D. Watson 和英国人F. H. C. Crick 哪一年提出的() A.1951 B.1952 C.1953 D.1954 E.1955 3. 那两位科学家最早提出了细胞学说()

A. Shleiden 、Schwann B.Brown 、Porkinjie C.Virchow 、Flemming D. Hertwig、Hooke E.Wanson 、Click 4. 最早观察到活细胞的学者是() A. Brown R B. Flemming W C. Hooke R D. Leeuwenhoek A E. Darvin C 5. 最早观察到有丝分裂的学者是() A. Brown R B. Flemming W C. Hooke R D. Leeuwenhoek A E. Darvin C

二、多选题 1.以下哪些是当代细胞生物学研究的热点( ) A. 细胞器结构 B.细胞凋亡 C.细胞周期调控 D.细胞通信 E.肿瘤细胞 2. 现代的细胞生物学在哪些层次上研究细胞的生命活动() A. 分子水平 B.亚细胞水平 C.组织水平 D.器官水平 E.细胞整体水平 三、是非题 1. 细胞最早于1665 年由Robert Hooke 发现。() 2. 在十八世纪Hooke 和Flemming 提出了细胞学说。() 3. 细胞生物学就是细胞学。()

细胞生物学第九章细胞骨架

第九章细胞骨架 真核细胞中由多种蛋白质纤维组成的复杂网架系统,称为细胞骨架cytoskeleton。广义的细胞骨架包括细胞核骨架(核内骨架、核纤层及染色体骨架)、细胞质骨架(微丝、微管、中间纤维)、细胞膜骨架及细胞外基质,但通常狭义的仅指细胞质骨架。目前认为细胞骨架主要功能:①维持细胞整体形态和内部结构有序的空间分布;②与细胞运动、胞内物质运输、能量转换、信息传递、细胞分裂、基因表达及细胞分化等生命活动密切相关。 一、微丝microfilament (一)组分与性质 微丝的主要成分是肌动蛋白actin,是在真核细胞中的直径为7nm的骨架纤维,肌动蛋白的单体是球型(G-肌动蛋白),两股由G-肌动蛋白联结成的单链相互螺旋缠绕形成纤维型肌动蛋白(F—肌动蛋白)。 从球型→纤维型的变化是自组装的,除肌肉细胞的细肌丝中的微丝以及肠上皮细胞微绒毛中的微丝是稳定的结构外,通常细胞中的微丝都是处在组装和解聚的动态之中,微丝装配具有极性(即有正负极),并常表现出一端装配而另一端脱落的踏车行为treadmilling ,脱落下来的单体进

入细胞质中的肌动蛋白单体库。关于微丝组装的适宜条件是:ATP、Mg2+和高浓度的Na+、K+离子;而解聚的条件是:Ca2+和低浓度的Na+、K+离子。 微丝的形态是细而长,经常成束平行排列,也有的组成疏散的网络。在不同类型细胞中,微丝还含有不同种类的微丝结合蛋白,形成各自独特的结构或特定功能。例如肌细胞中的就有肌球蛋白myosin、原肌球蛋白和肌钙蛋白等。肌球蛋白约占肌肉中蛋白总量的一半,由双股多肽链盘绕成像“豆芽”状的纤维。再由多条肌球蛋白成束构成肌原纤维中的粗肌丝,其上外露的“豆芽”头部具ATP酶活性, 是粗肌丝与细肌丝(肌动蛋白纤维)能暂时性结合的部位(“横桥”),也是导致细肌丝与粗肌丝之间相对滑动的支点。而原肌球蛋白和肌钙蛋白则是特异性附着在细肌丝(即

细胞生物学第七章总结

第七章细胞骨架与细胞的运动 第一节微管 真核细胞中细胞骨架成分之一。是由微管蛋白和微管结合蛋白组成的中空柱状结构。还能装配成纤毛、鞭毛、基体、中心体、纺锤体等结构,参与细胞形态的维持、细胞运动、细胞分裂等。微管蛋白与微观的结构 存在:所有真核细胞,脊椎动物的脑组织中最多。 直径:24-26纳米中空小管 基本构件:微管蛋白α、β异二聚体。13根原纤维合拢成一段微管。 极性:增长快的为正端,另一端为负端。(与细胞器定位分布、物质运输方向灯微管功能密切相关) γ微管蛋白:定位于微管组织中心,对微管的形成、数量、位置、极性的确定、细胞分裂有重要作用。 存在形式:单管(存在于细胞质,不稳定)、二联管(AB两根单管构成,主要分布于纤毛和鞭毛)、三联管(ABC三根单管组成,分布于中心粒、纤毛和鞭毛的基体中) 一、微管结合蛋白 碱性微管结合区域:明显加速微管的成核作用。 酸性突出区域:决定微管在成束时的间距大小 种类:MAP-1,MAP-2,MAP-4,tau 不同的微管结合蛋白在细胞中有不同的分布区域:tau只存在于轴突中,MAP-2则分布于胞体和树突中。 三,微管的装配的动力学 装配特点:动态不稳定性 装配过程:1、成核期(延迟期)α和β微管蛋白聚合成短的寡聚体结构,及核心的形成,接着二聚体再起两端和侧面增加使其扩展成片状带当片状带加宽至13根原纤维时,即合拢成一段微管。是限速过程。 2、聚合期(延长期)细胞内高浓度的游离微管蛋白聚合速度大于解聚速度,新的二聚体不断加到微管正端使其延长。 3、稳定期(平衡期)胞质中游离的微管蛋白达到临界浓度,围观的组装与去组装速度相等(一)微管装配的起始点是微管组织中心 中心体和纤毛的基体称为微管组织中心。 作用:帮助大多数细胞质微管装配过程中的成核。 γTuRC:刺激微管核心形成,包裹微管负端,阻止微管蛋白的渗入。可能影响微管从中心体上释放。 中心体:包括中心粒,中心粒旁物质。间期位于细胞核的附近,分裂期位于纺锤体的两极。星状体:新生微管从中心体发出星型结构

医学细胞生物学

线粒体与细胞的能量转换 名词解释: 1.基粒:线粒体内膜的内表面上突起的圆球形颗粒. 2.细胞呼吸:在细胞内特定的细胞器内,在氧气的参与下,分解各种大分子物质,产生二氧化碳; 与此同时,分解代谢所释放出的能量储存于ATP中. 3.转位接触点:在线粒体的内外膜上存在一些内外膜相互接触的地方,此处膜间隙变狭窄. 4.ATP合酶复合体:这种物质就是基粒,是线粒体内膜内表面上突起的圆球形颗粒. 5.热休克蛋白70:与大多数前体蛋白结合,使前体蛋白打开折叠,防止已松弛的前体蛋白聚集. 6.基质导入序列(MTS):一种N端具有一段富含有精氨酸,赖氨酸,丝氨酸,苏氨酸的氨基酸序列,介导在细胞质中合成的前体蛋白输入到线粒体基质的信号. 问答: 1.线粒体的标志酶? 内膜标志酶为细胞色素氧化酶,外膜标志酶为单胺氧化酶,基质的标志酶为苹果酸脱氢酶, 膜间腔的标志酶为腺苷酸激酶. 2.线粒体基质蛋白的转运条件及过程? (1)需要条件:基质导入序列和分子伴侣NAC和Hsp70 (2)转运过程: a.前体蛋白与受体结合 b.mthsp70可与进入线粒体腔的前导肽链交联,防止了前导肽链退回细胞质. c.定位于线粒体内膜上,切除大多数蛋白的基质导入序列. d.多肽链需在线粒体基质内在分子伴侣的帮助下,重新折叠并成熟形成其天然构象,以行 使其功能,形成有活性的蛋白质. e.跨膜运输是单向的,需水解ATP提供能量. 3.细胞内葡萄糖彻底氧化转变为能量的反应部位和主要过程? a.葡萄糖在细胞质中进行糖酵解产生丙酮酸和NADH,丙酮酸在线粒体基质中氧化脱羧生 成乙酰CoA. b. 乙酰CoA在线粒体基质中进行三羧酸循环产生NADH和FADH2. c.在线粒体内膜进行的氧化磷酸化偶联是能量转换的关键. 4.基粒的结构和功能? 结构有头部,柄部和基片;功能有催化ADP磷酸化生成ATP,控制质子流和基粒是氧化磷酸化作用的关键装置. 5.试述线粒体的超微结构基础? 外膜:外膜是一层包围在线粒体表面的单位膜,厚约6nm,仅含少量酶蛋白. 内膜:约4.5nm,折叠形成嵴,富含各种酶蛋白,内膜上有电子传递链和基粒,有转运蛋白和各种转运系统. 膜间腔:内外膜之间空隙组成的空间,宽约6~8nm,富含可溶性酶,底物和辅助因子. 基质:含有线粒体DNA,RNA,各种酶蛋白和核糖体. 基粒:每个线粒体大约有10000~100000个,在基粒的头部具有酶活性. 6.简述线粒体的化学组成特点? a.蛋白质:线粒体的主要成分,多分布于内膜和基质,又分为可溶性和不溶性,又有很多酶系. b.脂类:占线粒体干重较多,大部分为磷脂. c. DNA和完整的遗传系统. d.多种辅酶. e.含有维生素和各类无机离子.

医学细胞生物学名词解释

《细胞生物学》名词解释 1.拟核:原核细胞仅由细胞膜包绕,在细胞质内含有DNA区域,但 无被膜包围,该区域称为拟核。 2.单位膜:电子显微镜下,生物膜呈“两暗一明”的铁轨样形态,称 为单位膜。 3.脂质体:膜脂都是两亲性分子,具有亲水的极性头部和疏水的非 极性尾部。当这些两亲性分子被水环境包围时,它们就聚集起来,使疏水的尾部埋在里面,亲水的头部露在外面与水接触,形成双分子层。为了避免双分子层两端疏水尾部与水接触,其游离端往往能自动闭合,形成自我封闭的脂质体。 4.主动运输:是载体蛋白介导的物质逆浓度梯度或电化学梯度,由 低浓度一侧向高浓度一侧进行的跨膜转运方式。 5.自由扩散:不需要跨膜运输蛋白协助,转运是由高浓度向低浓度 方向进行,所需的能量来自高浓度本身所包含的势能,不需要能量的一种跨膜转运方式。 6.易化扩散:一些非脂溶性(或亲水性)的物质不能通过简单扩散 的方式通过细胞膜,但它们在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运,称为易化扩散。 7.协同运输:是一类由Na+-K+泵(或H+泵)与载体蛋白协同作用, 间接消耗ATP所完成的主动运输方式。

8.內吞作用:又称胞吞作用或入胞作用,它是质膜内陷,包围细胞 外物质形成胞吞泡,脱离质膜进入细胞内的转运过程。分为,吞噬作用、吞饮作用及受体介导的内吞作用。 9.核孔复合体:核空上镶嵌有复杂的结构,它是由多个蛋白质颗粒 以特殊的方式排列成的蛋白分子复合物,称为核孔复合体。 10.核纤层:是附着于内核膜下的纤维蛋白网。它与中间纤维及核骨 架相互连接,形成贯穿于细胞核与细胞质的骨架体系。 11.核定位信号:亲核蛋白是一类在细胞质中合成,需要或能够进入 细胞核发挥功能的蛋白质,通常它们是4~8个氨基酸组成的特殊序列来保证整个蛋白质能够通过核孔复合体被转运到核内,该序列称为核定位序列或核定位信号。 12.常染色质:是间期核内碱性染料染色时着色较浅,螺旋化程度低, 处于伸展状态的染色质细丝。 13.异染色质:间期核中处于凝缩状态,结构致密,无转录活性,用 碱性染料染色较深。分为,结构异染色质、兼性异染色质。 14.端粒:是染色体末端特化部位,由富含G的端粒DNA和蛋白质 构成。 15.基因组:指细胞或生物体的一套完整的单倍体遗传物质,是所有 染色体上全部基因和基因间的DNA的总和,它含有一个生物体进行各种生命活动所需的全部遗传信息。 16.核型:是指一个体细胞的全部染色体在有丝分裂中期的表现,包 括染色体数目、大小的形态特征。

细胞生物学课后题

一、细胞内膜泡运输的概况、类型及其主要功能 膜泡运输是蛋白质分选的一种特有的方式,普遍存在于真核细胞中。在转运过程中不仅涉及蛋白质本身的修饰、加工和组装,还涉及多种不同的膜泡靶向运输及其复杂的调控过程。主要分为一下三种类型: COPⅠ包被小泡:负责回收、转运内质网逃逸蛋白返回内质网。 COPⅡ衣被小泡:介导内质网到高尔基体的物质运输。 网格蛋白衣被小泡:介导质膜→胞内体、高尔基体→胞内体、高尔基体→溶酶体、植物液泡的物质运输 二、试述物质跨膜的种类及其特点 主要有三种途径: (一)被动运输: 指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 1、简单扩散:也叫自由扩散(free diffusion)。特点:①沿浓度梯度(或电化学梯度)扩散; ②不需要提供能量;③没有膜蛋白的协助。 2、促进扩散:特点:①比自由扩散转运速率高;②运输速率同物质浓度成非线性关系; ③特异性;④饱和性。 (二)主动运输: 是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高的一侧进行跨膜转运的方式。 主动运输的特点是:①逆浓度梯度(逆化学梯度)运输;②需要能量;③都有载体蛋白。(三)吞排作用 真核细胞通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输。 三、试述Na+—K+泵的工作原理 Na+—K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。在膜内侧Na+与酶结合,激活ATP酶活性,使ATP分解,酶被磷酸化,构象发生变化,于是与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合。K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与K+结合的部位转向膜内侧,K+与酶的亲和力降低,使K+在膜内被释放,而又与Na+结合。总的结果是每一循环消耗一个ATP;转运出3个Na+,转进2个K+。 四、试述胞间通信的主要类型 1)、细胞间隙连接 细胞间隙连接:是一种细胞间的直接通讯方式。两个相邻的细胞以连接子相联系。连接子中央为直径1.5nm的亲水性孔道。 2)、膜表面分子接触通讯 是指细胞通过其表面信号分子(受体)与另一细胞表面的信号分子(配体)选择性地相互作用,最终产生细胞应答的过程,即细胞识别。 3)、化学通讯 细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能,这种通讯方式称为化学通讯。根据化学信号分子可以作用的距离范围,可分为以下3类:内分泌、旁分泌、自分泌

医学细胞生物学试题及答案(六)

细胞生物学试题题库第五部分 简答题 1. 根据光镜与电镜的特点,观察下列结构采用那种显微镜最好?如果用光镜(暗视野、相差、免疫荧显微镜) 那种最有效?为什么? 2. 细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系? 3. 为什么说支原体是最小、最简单的细胞? 4. 原核细胞与真核细胞差别是后者有细胞器,细胞器结构的出现有什么优点?(至少2点) 5. 简述动物细胞与植物细胞之间的主要区别。 6. 简述动物细胞、植物细胞、原生动物应付低渗膨胀的主要方式? 7. 简述单克隆抗体的主要技术路线。 8. 简述钠钾泵的工作原理及其生物学意义。 9. 受体的主要类型。 10. 细胞的信号传递是高度复杂的可调控过程,请简述其基本特征。 11. 简述胞饮作用和吞噬作用的主要区别。 12. 细胞通过分泌化学信号进行通讯主要有哪几种方式? 13. 简要说明G蛋白偶联受体介导的信号通路的主要特点。 14. 信号肽假说的主要内容。 15. 简述含信号肽的蛋白在细胞质合成后到内质网的主要过程。 16. 简述蛋白质糖基化修饰中N-连接与O-连接之间的主要区别。 17. 溶酶体膜有何特点与其自身相适应? 18. 简述A.TP合成酶的作用机制。 19. 化学渗透假说的主要内容。 20. 内共生学说的主要内容。 21. 线粒体与叶绿体基本结构上的异同点。 22. 细胞周期中核被膜的崩解和装配过程。 23. 核孔复合体的结构模型。 24. 染色质的多级螺线管模型。 25. 染色体的放射环模型。 26. 细胞内以多聚核糖体的形式合成蛋白质,其生物学意义是什么? 27. 肌肉收缩的机制。 28. 纤毛的运动机制。 29. 中心体周期。 30. 简述C.D.K1(MPF)激酶的活化过程。 31. 泛素化途径对周期蛋白的降解过程。 32. 人基因组大约能编码5万个基因,而淋巴细胞却能产生约107-109个不同抗体分子,为什么? 33. 细胞学说的主要内容。 34. 溶酶体膜有何与其自身功能相适应的特点? 35. 何为信号肽假说的? 36. 核孔复合体的结构模型。 37. 胞饮作用和吞噬作用的区别。 38. 为什么说线粒体和叶绿体是半自主性细胞器? 39. 简述核被膜的主要功能 40. 简述减数分裂的意义

细胞生物学课后练习及参考答案

细胞生物学课后练习参考答案 作业一 ●一切活细胞都从一个共同的祖先细胞进化而来,证据是什么想像地球上生命进化的很早时期。可否假设那个原始的祖先细胞是所形成的第一个仅有的细胞 1、关于一个共同祖先的假说有许多方面的证据。对活细胞的分析显示出其基本组分有着令人惊异的相似程度,例如,各种细胞的许多新陈代谢途径是保守的,在一切活细胞中组成核酸与蛋白质的化合物是一样的。同样,在原核与真核细胞中发现的一些重要蛋白质有很相似的精细结构。最重要的过程仅被“发明”了一次,然后在进化中加以精细调整去配合特化细胞的特定需要。●人脑质量约1kg并约含1011个细胞。试计算一个脑细胞的平均大小(虽然我们知道它们的大小变化很大),假定每个细胞完全充满着水(1cm3的水的质量为1g)。如果脑细胞是简单的正方体,那么这个平均大小的脑细胞每边长度为多少 2、一个典型脑细胞重10-8g (1000g/1011)。因为1g水体积为1 cm3,一个细胞的体积为10-14m3。开立方得每个细胞边长2.1 × 10-5m即21 μm。 ●假定有一个边长为100μm,近似立方体的细胞 (1)计算它的表面积/体积比; (2)假设一个细胞的表面积/体积比至少为3才能生存。那么将边长为100μm,总体积为1 000 000μm3的细胞能在分割成125个细胞后生存吗 3、(1) 如图1所示,该细胞的表面积(SA)为每一面的面积(长×宽)乘以细胞的面数,即SA=100 μm ×100 μm ×6 = 60 000 μm2。细胞的体积是长×宽×高,即(100 μm)3=1 000 000 μm3因而SA/体积的比率=SA/体积=60 000μm/ 1 000 000μm= 0. 06 μm-1。 (2) 分割后的细胞将不能存活。125个立方体细胞应有表面积300 000μm2, SA/体积的比率为0.3。如果要使总表面积/体积达到3,可以假设将立方体边长分割成n份,每个小方块的表面积为SA l,总面积为SA t则有: 分割后的小方块表面积为SA l = 6 × (100/n) 2(1) 总面积为SA t = 6 × (100/n) 2 × n3(2) 根据细胞存活要求SA t/V = 3 (3) 即: 6 × (100/n) 2 × n3 / 1003 = 3 (4) 由(4)可知n=50,即细胞若要存活必须将其分割成125000个小方块。 ●构成细胞最基本的要素是________、________ 和完整的代谢系统。 4、基因组,细胞质膜和完整的代谢系统 图1 边长为100μm的立方体与分割成125块后的立方体

细胞生物学 翟中和版 总结笔记第七章

Cell biology 细胞生物学 第七章真核细胞内膜系统、蛋白质分选与膜泡运输 细胞内被膜区分类:细胞质基质、细胞内膜系统、有膜包被的细胞器 第一节细胞质基质的含义和功能 一、细胞质基质的含义 (1)含义:在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质 主要含有: (1)与代谢有关的许多酶 (2)与维持细胞形态和物质运输有关的细胞质骨架结构

细胞质基质是一个高度有序的体系,细胞质骨架纤维贯穿在粘稠的蛋白质胶体中,多数的蛋白质直接或间接地与骨架结合,或与生物膜结合,从而完成特定的功能。细胞质基质主要是由微管、微丝和中间丝等相互联系形成的结构体系,蛋白质和其他分子以凝聚或暂时的凝聚状态存在,与周围溶液的分子处于动态平衡。 差速离心获得的胞质溶胶的组分和细胞质基质溶液成分很大不同。胞质溶胶中的多数蛋白质可能通过弱键结合在基质的骨架纤维上。 二、细胞质基质的功能 (1)蛋白质分选和转运 N端有信号序列的蛋白质合成之后转移到内质网上,通过膜泡运输的方式再转运到高尔基体。其他蛋白质的合成都在细胞质基质完成,并根据自身信号转运到线粒体、叶绿体、细胞核中,也有些蛋白驻留在细胞质基质中。

(2)锚定细胞质骨架 (3)蛋白的修饰、选择性降解 1 蛋白质的修饰 辅基、辅酶与蛋白的结合 磷酸化和去磷酸化 糖基化 N端甲基化(防止水解) 酰基化 2 控制蛋白质寿命 N端第一个氨基酸残基决定寿命 细胞质基质能够识别N端不稳定的氨基酸信号将其降解,依赖于泛素降解途径 3 降解变性和错误折叠的蛋白质 4 修复变性和错误折叠的蛋白

热休克蛋白的作用 第二节细胞内膜系统及其功能 细胞内膜系统是指在结构、功能乃至发生上相互关联、由膜包被的细胞器或细胞结构。 研究方法:电镜技术免疫标记和放射自显影离心技术和遗传突变体分析 一、内质网的形态结构和功能 内质网是由封闭的管状或扁平囊状膜系统及其包被的腔形成的互相沟通的三维网络结构。 (一)内质网的两种基本类型 糙面内质网和光面内质网。 糙面内质网:扁囊状整齐附着有大量核糖体 功能:合成分泌性蛋白和膜蛋白光面内质网:分支管状,小

细胞生物学 第八章 细胞核 知识点

第八章细胞核 粗面内质网(rER)相连; 核纤层),决定细 胞核形态; : 内、外膜相互融合形成的环状开口,嵌有核孔复合体 2.核孔复合物 (1)结构 环:胞质环、核质环(核篮); 辐:柱状亚单位、腔内亚单位、环带亚单位; 中央栓 (2)功能------双向选择性亲水通道 被动运输:孔径10nm,≤60kDa 主动运输:孔径20nm >亲核蛋白的核输入信号:核定位信号(NLS) ;10个氨基酸的短肽,指导亲核蛋白完成核输入后并不切除 (NLS 、NES、信号肽和信号斑) (importinα/β、nucleoporin、Ran—GTP/GDP) >亲核蛋白的入核转运:①亲核蛋白通过NLS识别importin α,与可溶性NLS 受体importinα/β异二聚体结合,形成转运复合物; ②在importinβ的介导下,转运复合物与核孔复合体的胞质纤维结合; ③转运复合物通过改变构象的核孔复合体从胞质面被转移到核质面; ④转运复合物在核质面与Ran-GTP结合,并导致复合物解离,亲核蛋白释放;

⑤受体的亚基与结合的Ran并与importinβ解离,Ran-GDP返回核内再转换成Ran-GTP状态。 >mRNA 、tRNA和核糖体亚基的核输出:核输出信号nuclear export signal (NES)>请说明Ran在亲核蛋白的核输入过程中所起的作用。 ①在细胞质内, 受体(importin)与cargo protein的NLS结合 ②受体/亲核蛋白复合物和Ran-GDP 穿过核孔进入细胞核 ③在核质内,在GEF作用下Ran-GDP 转变为Ran-GTP,并与受体importin结合 ④构象改变导致受体释放出cargo protein ⑤受体-Ran-GTP complex 被运回细胞质, 在GAP 作用下Ran-GTP被水解为Ran-GDP, Ran与受体importin分离 3.核纤层lamina 是位于细胞核内层核膜下的纤维蛋白片层或纤维网络 (1)结构和组成:由核纤层蛋白laminA、B、C组成 (2)功能 在间期细胞中,核纤层为核膜提供一个支架; 在分裂细胞中,核纤层的可逆性解聚调节核膜的崩解和重建; 核纤层蛋白磷酸化时,核膜崩解;核纤层蛋白去磷酸化时,核膜重建; 在间期细胞中,核纤层为染色质提供核周锚锭部位,维持和稳定间期染色质高度有序的结构; 调节基因表达,调节DNA修复 二.染色质和染色体 1.组蛋白和非组蛋白 与染色质DNA结合的蛋白质负责DNA分子遗传信息的组织、复制 (1)组蛋白·构成真核生物染色体的基本结构蛋白 富含Arg和Lys的碱性蛋白质,等电点在pH10.0以上, 可以和酸性DNA紧密结合,分为H1, H2A, H2B, H3, H4五种。H2A, H2B, H3, H4为核小体组蛋白,在进化上十分保守,没有种属和组织特异性。H1的种族保守性低,有一定的种属和组织特异性。 Histone在维持染色体结构和功能的完整性上起着关键性的作用。 Histone与DNA在细胞周期的S期合成。DNA复制停止,Histone合成也立即停止。 (2)非组蛋白·主要指导与特异DNA序列结合的蛋白质 富含天冬氨酸、谷氨酸和色氨酸的酸性蛋白质。 占染色体蛋白质的60—70%,在不同组织细胞中的种类和数量都不相同。在整个细胞周期中都有不同类型的非组蛋白合成。 能识别并结合在特异的DNA序列上,识别和结合靠氢键和离子键。 非组蛋白在调节真核生物基因表达,染色体高级结构的形成等方面起着重要的作用。 α螺旋-转角-α螺旋模式 锌指模式 Cys2/His2 锌指单位和Cys2/ Cys2锌指单位

细胞生物学第六章总结

第六章线粒体与细胞能量转换 一、基本特征 1.詹纳斯绿Janus Green B 一种活体染色剂,专一用于线粒体的染色。它可以和线粒体中的细胞色素C氧化酶结合,从而出现蓝绿色。 2.结构 1)外膜(outer membrane):线粒体最外层所包绕的一层单位膜,厚约5~7nm,光滑平整。 在组成上,外膜的脂质和蛋白质成分各占1/2。 2)内膜向基质折叠形成特定的内部空间内膜(inner membrane)比外膜稍薄,平均厚 4.5nm,也是一层单位膜。内膜的化学组成中20%是脂类,80%是蛋白质。(基粒分为头 部、柄部和基片三部分,是由多种蛋白质亚基组成的复合体。基粒头部具有酶活性,能催化ADP磷酸化生成ATP,因此,基粒又称ATP合酶复合体) 3)基质为物质氧化代谢提供场所线粒体中催化三羧酸循环、脂肪酸氧化、氨基酸分 解、蛋白质合成等有关的酶都在基质中。还含有线粒体独特的双链环状DNA、核糖体,这些构成了线粒体相对独立的遗传信息复制、转录和翻译系统。 4)内外膜转位接触点:核编码蛋白质进入线粒体的通道 3.相对独立的遗传体系 1)线粒体基因的转录 i.线粒体mRNA不含内含子,也很少有非翻译区 ii.每个mRNA5ˊ端的起始密码为AUG(或AUA),起始氨基酸为甲酰甲硫氨酸 iii.线粒体的遗传密码也与核基因不完全相同 iv.UAA的终止密码位于mRNA的3ˊ端。某些情况下,一个碱基U就是mtDNA体系中的终止密码子 v.线粒体与核密码子编码氨基酸三联体密码有差异 2)线粒体DNA的复制 mtDNA的复制起始点被分成两半,个是在重链上,称为重链复制起始点(O H),位于环的顶部,顺时针合成;一个是在轻链上,称为轻链复制起始点(O L),位于环L的“8点钟”位置,逆时针合成。D型复制。mtDNA复制不受细胞周期影响。 4.线粒体靶序列引导核编码蛋白质向线粒体转运 1)核编码蛋白在进入线粒体需要分子伴侣蛋白的协助 线粒体含有4个蛋白质输入的亚区域:

医学细胞生物学名词解释

医学细胞生物学名词解释重点 医学细胞生物学名词解释 1. 细胞( cell )是组成包括人类在内的所有生物体的基本单位,这一基本单位的含义即包括结构上的,也包括功能上的。 2. 细胞生物学( cell biology )是在细胞水平上研究生物体的生长、运动、遗传、变异、分化、衰老、死亡等生命现象的学科。 3. 医学细胞生物学( medical cell biology )以人体或医学为对象的细胞生物学研究或学科。 4. 原核细胞( prokaryotic cell )是组成原核生物的细胞,这类细胞主要特征是细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜,且遗传信息量小,因此进化地位较低。 5. 真核细胞( eukaryotic cell )指含有真核(被核膜包围的核)的细胞,主要特征是有细胞膜、发达的内膜系统和细胞骨架体系。 6. 生物大分子( biological macromolecules )也称多聚体,由许多小分子单体通过共价键连接而成,相对分子质量比较大,包括蛋白质、核酸和多糖等。 7. 多肽链( polypeptide chain )多个氨基酸通过肽键组成的肽称为多肽链。 8. 细胞蛋白质组( proteome )将细胞内基因活动和表达后所产生的全部蛋白质作为一个整体,研究在个体发育的不同阶段,在正常或异常情况下,某种细胞内所有蛋白质的种类、数量、结构和功能状态,从而阐明基因的功能。 9. 拟核( nucleoid )原核细胞没有核膜包被的细胞核,也没有核仁,DNA 位于细胞中央 的核区就称为拟核。 10. 质粒( plasmid )很多细菌除了基因组DNA 外,还有一些小的双链环形DNA 分子,称为质粒。 11. 细胞膜( cell membrane )又称质膜,是指围绕在细胞最外层,由脂质、蛋白质和糖类所组成的生物膜。 12. 生物膜(biological membrane) 人们把生物膜和细胞内各种模性结构统称为生物膜。 13. 单位膜(unit membrane) 生物膜在电镜下呈现出较为一致的3 层结构,即电子致密度高的内、外两层之间夹着电子密度较低的中间层。 14. 脂质体(liposome) 脂质体是脂质分子在水相中形成的一种自我封闭的稳定的脂质双层膜。 15. 细胞外被(cell coat) 细胞外被即为细胞膜中糖蛋白和糖脂伸出细胞外表面分支或不分支的寡糖链,其蛋白质和脂质部分参加了细胞膜本身的构造。 16. 细胞表面(cell surface) 细胞膜、细胞外被、细胞内面的胞质溶胶、各种细胞连接结构和细胞膜的一些特化结构统称为细胞表面。 17. 内膜系统( endomembrane system )指真核细胞内在结构、功能及发生上有一定联系的有膜构成的细胞器。 18. 初级溶酶体( primary lysosome )只含水解酶而没有底物的溶酶体称为初级溶酶体。 19. 次级溶酶体( secondary lysosome )初级溶酶体与底物结合后的溶酶体称为次级溶酶体。 20. 残质体( residue body )吞噬溶酶体到达终末阶段,水解酶活性下降,还残留一些未被消化和分解的物质,形成在电镜下电子密度高、色调较深的残余物,这时的溶酶体称为残质体。 21. 类核体 (nucleoid )有的过氧化物酶体中央含有电子密度高、呈规则形的结晶状结构,称类核体,实质是尿酸氧化酶的结晶。 22. 微粒体( microsome )利用蔗糖密度梯度离心法得到的由内质网碎片组成的封闭小泡。 23. 线粒体( mitochondrion )是细胞进行生物氧化和能量转换的主要场所,被称为能量 转换器,细胞生命活动所需能量的80 %由线粒体提供,所以线粒体被比喻为细胞的动力工厂”。 24. 基粒( elementary particle )又称ATP 合酶复合体,是产生ATP 的部位,形态上分为三部分:

《细胞生物学》复习题第七章

第七章细胞骨架与细胞的运动 1.名词解释:细胞骨架、微管组织中心(MTOC)、γ-微管蛋白环形复合体(γ-TuRC)、中心体、踏车运动、驱动蛋白、动力蛋白。 ※细胞骨架:真核细胞质中的蛋白质纤维网架体系,由3种不同的蛋白纤维结构组成——微管、微丝、中间丝。 ※微管组织中心:微管的聚合从特异性核心形成位点开始,主要是中心体、纤毛的基体。帮助微管装配的成核。 ※γ-微管蛋白环形复合体:可形成10~13个γ-微管蛋白分子的环形结构(螺旋花排列),组成一个开放的环状模板,与围观具有相同直径。可刺激微管核心形成,包裹微管负端,阻止微管蛋白渗入。还能影响微管从中心粒上释放。 ※中心体:是动物细胞中决定微管形成的一种细胞器,包括中心粒和中心粒旁物质。两个桶状、垂直排列的中心粒,包埋在中心粒旁物质中。在细胞间期,中心体位于细胞核附近,在有丝分裂期,位于纺锤体的两极。 ※踏车运动:微管的聚合与解聚持续进行,经常是一端聚合,为正端;另一端解聚,是负端,这种微管装配方式,称“踏车运动”。 ※细胞内各细胞器和所有的物质转运都与微管密切相关;微管的物质运输由微管动力蛋白(或马达蛋白)完成,共有几十种,可分为三大家族:驱动蛋白kinesin,动力蛋白dynein和肌球蛋白myosin家族(肌球蛋白以肌动蛋白纤维为运行轨道) 驱动蛋白与动力蛋白的两个球状头部是与微管专一结合,具有

ATP酶活性,水解ATP供能完成与微管结合、解离、再结合的动作。 驱动蛋白:由两条重链和两条轻链组成。一对与微管结合的球状头部——ATP水解酶,水解ATP产生能量进行运动;将货物由负端运输向正端。 动力蛋白:目前已知的最大的、最快的分子运输蛋白。由两条重链和几种中等链、轻链组成,头部具有ATP水解酶活性。沿着微管的正端向负端移动。为物质运输,也为纤毛运动提供动力。在分裂间期,参与细胞器的定位和转运。 2.三种骨架蛋白的分布如何? 微丝:主要分布在细胞质膜的内侧。 微管:主要分布在核周围,并呈放射状向胞质四周扩散。 中间纤维:分布在整个细胞中。 3.微管由哪三种微管蛋白组成?各有什么结构功能特点? α管蛋白,β管蛋白,γ管蛋白。 α-微管蛋白和β-微管蛋白各有一个GTP结合位点。 α-微管蛋白的GTP不进行水解也不进行交换;β-微管蛋白的GTP 可水解呈GDP,而此GDP也可换成GTP,这一变换对微管的动态性有重要作用。 γ管蛋白定位于微管组织中心,对微管的形成、数量、位置、极性、细胞分裂有重要作用。 4.哪一种微管蛋白有GTP酶活性? β-微管蛋白。

细胞生物学第六章试题

细胞生物学第六章试题 一.填空题 1.原核细胞的呼吸链定位在()上,而真核细胞则位于()上。 2.线粒体内膜上参与电子传递的四个复合物分别称之为(),琥珀酸—辅酶Q还原酶,()。()。 3.线粒体和叶绿体一样,都是具有()层膜结构的细胞器,都能传递()并产生(),不过二者产生能量的动力不同,前者称为(),能源来自(),后者称为(),能源来自()。从产生能量的部位来看,线粒体是发生在()上,而叶绿体是发生在()上。能量的储存,都需要借助偶联因子,但线粒体偶联因子的取向是(),所以H+是顺浓度梯度回流的方向从(),而叶绿体的偶联因子的取向是(),故H+是顺浓度梯度回流的方向从(),从产生ATP所需的质子来说,线粒体只需要()个H+即可产生一个ATP,而叶绿体则需要()个H+。4.线粒体中蛋白质的合成类似于(),其实氨基酸为()。 5.线粒体的增殖,大约有()()()几种方式。 6.光合作用的过程可分为四大步骤:()()()() 7.有三类原核生物可进行光合作用,它们是()()()。 8.线粒体外膜的标志酶是(),内膜的标志酶是(),膜间隙的标志酶是(),基质的标志酶是()。 9.叶绿体有三种不同的膜,它们分别是()()()。 10.实验证明组成叶绿体的蛋白质有()()()三种合成方式。 二.名词解释 1.生物氧化 2.暗反应 3.电子传递链 4.光反应 5.氧化磷酸化 6.光合作用 7.质体 8.呼吸链 9.卡尔文循环 10.细胞色素 三.简答题 1.简述F0-F1ATP酶复合体各部分结构及其功能。 2.线粒体的遗传密码与通用遗传密码的基本区别。 3.怎样解释含有氯霉素的培养液中线粒体内的RNA聚合酶活力比对照组高? 4.列表比较氧化磷酸化与光合磷酸化的异同。 5.什么是进化假说或称经典假说,分化假说? 6.简述光合系统Ⅱ的结构及其功能. 四.综合题 1.为什么线粒体和叶绿体是半自主性细胞器? 2.比较叶绿体与线粒体结构和功能的异同.

医学细胞生物学

医学细胞生物学 第一章绪论 1. 简述细胞生物学形成与发展经历的阶段(1)细胞的发现与细胞学说的建立:R.Hook最早发现细胞并命名为cell,施莱登和施旺建立细胞学说。(2)细胞学的经典时期:细胞学说的建立掀起了对多种细胞广泛的观察和描述的热潮,主要的细胞器和细胞分裂活动相继被发现。(3)实验细胞学时期:人们广泛的应用实验的手段研究细胞的特性、形态结构和功能。(4)分子生物学的兴起和细胞生物学的诞生:各个学科相互渗透,人们对细胞结构与功能的研究达到了新的高度。 第二章细胞的统一性与多样性 1.比较原核细胞和真核细胞的差别

第三章细胞膜与细胞表面 1.细胞膜的流动性有什么特点,膜脂有哪些运动方式,影响膜脂流动性的因素有哪些?(1)膜脂既具有分子排列的有序性,又有液体的流动性;温度对膜的流动性有明显的影响,温度过低,膜脂转变为晶态,膜脂分子运动受到影响,温度升高,膜恢复到液晶态,此过程称为相变。(2)膜脂的运动方式有:侧向扩散、旋转运动、摆动运动、翻转运动,其中翻转运动很少发生,侧向扩散是主要运动方式。(3)影响流动性的因素:脂肪酸链的长短和饱和程度,胆固醇的双重调节作用,卵磷脂/鞘磷脂比值越大膜脂流动性越大,膜蛋白与周围脂质分子作用也会降低膜流动性。此为环境因素(如温度)也会影响膜的流动性,温度在一定范围内升高,流动性增强。 2.简述膜蛋白的种类及其各自特点,并叙述膜的不对称性有哪些体现 (1)膜蛋白分为膜外在蛋白、膜内在蛋白、脂锚定蛋白。膜外在蛋白属于水溶性蛋白,分布在膜的两侧,与膜的结合松散,一般占20%-30%;膜内在蛋白属于双亲性分子,嵌入、穿膜,是膜功能的主要承担者,与膜结合紧密,占70%-80%。脂锚定蛋白通过共价键与脂分子结合,分布在膜两侧,含量较低。(2)膜的内外两侧结构

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学试题

细生大礼包第三弹 第六章.线粒体与细胞的能量转换 PART1 教学大纲 1.教学内容 第一节线粒体的基本特征 第二节细胞呼吸与能量转换 第三节线粒体与疾病 2.教学基本要求 掌握:线粒体是由双层单位膜套叠而成的封闭性膜囊结构,线粒体的化学组成(尤其是各区间标志酶),细胞呼吸的概念和特点,细胞能量的转换分子——ATP,丙酮酸在线粒体内生成乙酰辅酶A,三羧酸循环是各种有机物进行最后氧化的过程,也是各类有机物相互转化的枢纽,呼吸链概念,氧化过程中伴随磷酸化的藕联,1分子葡萄糖完全氧化释放的能量,化学渗透假说。 熟悉:线粒体的形态数量与细胞的类型和生理状态有关,线粒体的遗传体系,核编码蛋白质向线粒体的转运,葡萄糖在细胞质中的糖酵解,三羧酸循环,一分子葡萄糖经过三羧酸循环的总反应式,呼吸链和ATP合酶复合体是氧化磷酸化的结构基础,根据结合变构机制A TP的合成。 了解:线粒体的起源与发生,NADH+ H+ 通过线粒体内膜的穿梭机制,F0基片在A TP合成中的作用,与细胞死亡有关的线粒体机制,线粒体控制细胞死亡的假说,疾病过程中的线粒体变化,mtDNA突变与疾病。 3.重点与难点 重点:线粒体的组成结构,细胞呼吸与能量转换。 难点:电子传递链,氧化磷酸化,ATP生成。 Part 2 题库 一.填空题 1.线粒体是细胞的基地,其主要功能是。(七) 2.线粒体的嵴由向内腔突起而成,其上面的带柄结构是, 由、和三部分组成,该结构具有活性。功能是。(七) 3.线粒体各部分结构中有各自特殊的标记酶,它们分别在外膜是________,外腔是___________,内膜 是__________,膜间腔是______________。(七) 4.线粒体基因组共由个碱基组成,含个基因,可分别编码rRNA、tRNA和蛋白质。(七)

细胞生物学和医学遗传学

第二章细胞的基本概念和分子基础 1.蛋白质是生命活动的体现者。 2.蛋白质的一级结构:多肽链中的氨基酸的种类,数目,排列顺序形成的线性结构。主键为肽键。 3.翻白眼的二级结构:在一级结构的基础上多肽链中主碳原子的局部空间排列,即构象。有α—螺旋和β-折叠。主键为氢键。 4.蛋白质的三级结构:多肽链在各种二级结构的基础上再进一步盘曲和折叠形成具有一定规律的结构。主键为氢键,离子键,疏水键。 5.蛋白质的四级结构:具有两条或者两条以上的独立三级结构的多肽链间通过次级键相互结合形成的空间结构。主键为次级键。 6.核酸有两大类:核糖核酸和脱氧核糖核酸。 7.核酸的基本组成单位是核苷酸,一个核苷酸分子由磷酸,戊糖和碱基三部分组成。 8.脱氧核糖核苷酸的双螺旋结构:①两条反向平行的脱氧核苷酸链围绕同一中心轴以右手方向盘绕成螺旋结构。②两条脱氧核苷酸链之间的碱基严格遵守碱基互补配对原则。③脱氧核苷酸链中的磷酸和脱氧核糖排列在两条链的外侧,碱基排列在内侧。④双螺旋结构的直径为2.0nm螺距为3.4nm相邻碱基对之间的距离0.34nm。 9.DNA的主要功能是遗传,表达,进化。10.原核细胞和真核细胞最主要的区别是:真核细胞有核膜包围的细胞核,而原核一般没有。11.原核细胞内没有细胞骨架体系。12.真核细胞与原核细胞的区别 。 第三章细胞膜 1.人们把细胞膜和细胞内膜统称为生物膜。 2.细胞膜的化学成分主要有脂类,蛋白质和糖类。 3.细胞膜上的脂类称为膜脂,主要有磷脂,胆固醇和糖脂构成。其中以磷脂的含量最高。并且这三种物质均具有双亲性。 4.膜蛋白分为外在蛋白和内在蛋白。其中外在蛋白约占20%-30%并且与膜的结合力较弱;内在蛋白约占70%-80%,与膜的结合机较强。 5.流动镶嵌模型:①以膜脂双分子层构成膜的基本骨架。②蛋白质分子以不同程度镶嵌于脂质双分子层③膜的内外两侧具有不对称性。④膜具有流动性。 6.细胞膜具有两个明显的特征:不对称性和流动性。 7.不对称性包括①膜脂的不对称性②膜蛋白的不对称性③膜糖类的不对称性 8.细胞膜的流动性包括膜脂的流动性和膜蛋白的流动性 9.膜脂的流动性包括①侧向移动②旋转运动③左右摆动④翻转运动10.膜蛋白的流动性包括①旋转运动②侧向运动。11.影响膜流动性的因素:①胆固醇的含量越高,流动性越慢,反之则越快②脂肪酸链越短,流动性越快;越长,流动性越慢。并且饱和的脂肪酸链流动性降低,不饱和的脂

相关主题
文本预览
相关文档 最新文档