当前位置:文档之家› 尼龙66挤出

尼龙66挤出

尼龙66挤出
尼龙66挤出

尼龙的反应挤出

1、反应挤出概述

反应挤出是近20年来迅速发展起来的高新技术,它应用于现有聚合物的功能化、聚合物制备、材料的高性能化改性等领域,是高分子材料反应加工学科的重要组成部分。

反应挤出是以单螺杆或双螺杆挤出机的机筒作为化学反应器进行单体聚合或对聚合物改性的一种新型工艺技术。具体地讲,它具有利用挤出机处理高粘度聚合物的独特功能,对挤出机螺杆螺筒上的各个区段进行独立的温度控制、物料停留时间控制和剪切强度控制,使物料在各个区段传输过程中,完成固体输送、增压熔融、物料混合、熔体加压、化学反应、排除副产物和未反应单体、熔体输送和泵出成型等一系列化工基本单元操作,因此它是理想的高粘度物料熔态反应方法。

与传统方法相比,反应性挤出在经济性和效率性等诸方面均具有优势。

(1)可连续大规模进行生产,生产效率高;反应原料形态可以多样化,对原料有较大的选择余地;产品转型快,一条生产线就可以进行小批量、多品种产品的生产

(2)易于实现自动化,可方便准确地进行物料温度控制、物料停留反应时间控制和剪切强度控制;未反应单体和副产物在机器内熔化状态下可以很容易地除去,节省能源和物耗;不使用溶剂,没有三废污染问题。

(3)要求的生产厂房面积小,因而工业生产投资少,操作工人数量要求少,劳动条件和生产环境好

(4)产品的成本低,但产品的技术含量高,利润高。

(5)在控制产品化学结构的同时还可以控制材料的微观形态结构

(6)反应物料除了直混外,还有一定的背混能力;物料始终处于传质传热的动态过程,螺杆使熔融物形成薄层,并且不断更新表面,这样有利于热交换、物质传递,从而能迅速精确地完成预定的变化,或很方便地除去熔体中的杂质;同时螺杆具有自清洁能力,使物料停留时间短,因而产品的质量好。

尽管反应挤出技术有上述优点,但也存在以下缺点。

(1)技术难度大:不但要进行配方和工艺条件的研究,而且要针对不同的反应设计所需的新型反应挤出机,研发资金投人大,时间长,没有几年时间难以弄明白。

(2)难以观察检测:物料在挤出机中始终处于动态、封闭的高温、高压环境中,难以观察检测物料的反应程度;物料停留时间较短,一般只有几分钟时间,因而要求所要进行的反应必须快速完成;如果反应超过20min,则用反应挤出技术就没有意义。

(3)技术含量高:反应挤出技术涉及到高分子材料、高分子物理、高分子化学、化学工程、聚合反应工程、橡塑机械、聚合物成型加工、机械加工、电子、材料等诸多学科,要取得成果需较长时间的研究和多方合作才行。

综上所述,反应挤出技术具有研发投入高、技术含量高、产品利润高的特点,在研发阶段困难多,在工业应用上优势明显,正因为如此,它才成为当前国际的热点。

反应性挤出是以现代挤出机的发展为基础的,使聚合物在挤出加工成型的同时,完成化学反应的过程。对挤出机具有以下要求:

(1)能为物料提供足够的熔化时间、反应时间,并有足够的时间在除杂段对产品进行纯化处理,即要求反应挤出机要有较大的长径比。

(2)物料的停留时间分布要窄,在保证化学反应充分完成的前提下,要防止部

分物料因停留时间长而引起降解、交联等其他副反应。

(3)优秀的排气性能,因为在反应挤出过程中,加人的反应单体不可能完全参

加反应,而要脱除那些未反应的单体、反应生成的小分子副产物、物料中夹杂的挥发性组分等,往往要求高真空度下短时间内迅速完成,但同时又不会引起反应挤出机冒料。

(4)螺杆对物料具有强输送能力和强剪切功能。由于反应混合物熔化后粘度差别大,混合输送相对困难,因而螺杆的输送能力要强化,强烈的剪切可以有助于

化学反应进行。

1.1反应挤出的发展与应用

反应挤出(ReactiveExtrusion,REX)是20世纪60年代后才兴起的一种新技术,因能使聚合物性能多样化、功能化、生产连续化、工艺操作简单经济而越来越受到重视。

埃克森化学公司早在上个世纪六十年代,就开始研究反应挤出技术并得到商业应用:1966年他们利用反应挤出技术来控制聚丙烯(PP)的降解,制得了流变性能可控制且分子量分布窄的聚丙烯:1967年埃克森化学公司开始研究将马来酸

酐(MAH)、丙烯酸以及其它单体的自由基接枝到聚烯烃上,从而改善了它们的相容性以及其它化学性能;1980~1983年他们又开发了聚烯烃的低温卤化(溴化及氯化)反应挤出技术。

1975年杜邦(DuPont)公司利用反应挤出技术进行尼龙(PA)/三元乙丙胶(EPDM)和相容剂的反应性共混,在挤出过程中完成接枝反应,成功制得了超韧尼龙合金。

国内在反应挤出技术的研究方面起步较晚,但近年来也做了大量开发研究工作,并取得了一些成果。目前反应挤出技术已应用于聚合物分子量的控制降解、聚合物的熔融接枝、聚合物的交联和偶联反应以及聚合物的合成等方面。

2、尼龙6的反应挤出

尼龙6反应挤出技术原理为:在催化剂(促使产生己内酰胺阴离子)及助催化剂(促进生成聚合反应增长中心)存在下,使己内酰胺的阴离子聚合反应可在几分钟内以90%-95%的转化率生成相对分子质量较高的尼龙6。

2.1催化剂的选择

(1)强碱。强碱易与己内酰胺单体反应生成己内酰胺阴离子,使单体引发。以NaOH作引发剂,引发反应速度快,反应温度低。

(2)碱金属的酰胺化物。通式为RCONHMe,其中R代表烷基,Me代表碱金属,常用的为Li、Na、K。聚合速度与环酰胺碱金属盐的离解程度有关。因离解度大,环酰胺阴离子浓度高,所以链引发和链增长速率按下列碱金属盐的阳离子次序而增大:Li

(3)格利雅化合物。在乙醚(无水、无醇)的存在下,脂肪烃或芳香烃的一卤化物可与金属镁反应,生成格利雅化合物,通式RMgX,格利雅化合物化学性质非常活泼。

(4)碱金属。在己内酰胺聚合中多数使用金属钠。实际操作中,由于钠易氧化,而且它的溶解速度慢,直接用固体钠作引发剂不方便,故钠一般在有机溶剂(如四氢呋喃、苯、甲苯)中获得均相催化剂,但仍存在金属溶解度低,溶液不稳定的缺点。为克服以上缺点,可在制备引发剂(己内酰胺钠)后期,用减压法将溶剂除去,并能增加碱金属浓度。

2.2、助催化剂的选择

为了提高环酰胺的阴离子聚合速度,为了使一些难于聚合的环酰胺进行开环聚合,除加入引发剂外,还要加一些助引发剂如酰氯、异氰酸酯。因助引发剂一般是使环酰胺酰化而形成N-酰基环酰胺,所以助引发剂有时又叫酰化剂。

而所使用的活化剂主要有乙酰基己内酰胺、各种异氰酸酯、氨基甲酸酯衍生物、碳酸酯、磺酸酯、羧酸酯、磷酰亚胺化合物、氯化磷腈等,目前使用较多的是乙酰基己内酰胺和各种异氰酸酯。

(1)N-乙酰基己内酰胺CAS:1888-91-1

价格:约400元/Kg

(2)六亚甲基异氰酸酯(HDI) CAS:822-06-0

价格:100元/Kg

HDI在使用过程中易蒸发,对人体的伤害很大

2.3、尼龙6的反应挤出工艺流程

反应尼龙6的反应挤出工艺流程为:己内酰胺熔化后,加入一定量的碱进行脱水,然后与催化剂一起进入双螺杆挤出机进行反应挤出,经拉条、水冷、风冷、切粒、萃取、干燥得到成品。

2.4、工艺的影响因素

(1)配方

在其它工艺参数保持不变的情况下,随着引发剂(或助引发剂)浓度的增加,聚合速度加快,单体转化率上升,分子量呈先升后降的趋势。增加助引发剂浓度,

一方面可加快反应速度,使转化率上升,有利于分子量增加;另一方面增加了活性增长中心的数目,又使分子量下降。在引发剂浓度很低时,前者占主导地位,随着助引发剂浓度的提高,分子量上升。助引发剂浓度较高时,后者起决定作用,分子量又会下降。

(2)螺杆转速

转速不仅影响产率,而且还影响产物的分子量。在其它工艺参数保持不变的情况下,随转速增加,单体在机内平均停留时问缩短,转化率下降,分子量呈先升后降趋势,与此相反产物中残留单体含量先降后升。当转速较低时,一方面物料的机内平均停留时间较长,热降解严重;另一方面物料混合不充分,所以此时单体转化率较低,产物分子量较小。当采用较高的转速时,机械剪切降解严重,所以此时产物分子量也较小。只有选用某一合适的转速(介于较低和较高转速之间),才能制得分子量最高,分子量分布较窄的PA6产品。

(3)挤出机机筒温度

尼龙6的熔点在225℃左右,分解温度约290℃,故挤出机机筒温度应在225-290℃范围内。己内酰胺阴离子聚合的速度是由相对较慢的引发反应速度所决定的,适度的提高前三段温度可加快引发速度,使聚合反应加速,产物的转化率、分子量均呈上升趋势。但提高过多,则降解反应占主导地位,产物分子量会下降。

(4)螺杆原件的构型及分布

螺杆元件构型及其排布实际上决定了挤出机中的反应环境,对反应过程有重要影响并控制着熔体的流动行为,是决定产量的重要因素。所采用的螺杆元件构型只要能在其它工艺参数保持不变的情况下适度延长物料的平均机内停留时问,一方面增加物料间的混合程度,另一方面为聚合反应(尤其是链增长反应)的进行提供了充分的时间,就能使聚合反应进行更充分,产物分子量更高。

2.5、初步实验方案

原料采用己内酰胺,催化剂拟采用氢氧化钠,助催化剂采用N-酰基环酰胺。己内酰胺:氢氧化钠:助催化剂=1000:5:4(物质的量之比)。

(1)己内酰胺的脱水

脱水温度设置为135~140℃,真空度为-0.1MPa,脱水时间为2~3h。

(2)挤出机参数设置

挤出温度230~250℃,螺杆转速:250~300r/min(结合实验室螺杆长径比实际情况作出修改)。

(3)力学性能测试

拉伸性能按GB/T 1040-1992测试;

弯曲性能按GB/T 9341-2000测试;

缺口冲击强度按GB/T 1043-1993测试。

(4)实验过程

将己内酰胺和碱置于熔化釜中进行脱水,脱水完毕后,物料放人贮罐内,然后由输送器直接注入双螺杆挤出机进反应挤出,同时添加催化剂。经拉条、水冷、风冷、切粒、萃取、干燥得到成品。如果挤出机和成型设备连接可以直接生产各种产品。

3、其他型号尼龙

(1)通常的做法是在反应器中根据常规方法预先生成预聚物,然后将预聚物引入到挤出机中减压生成缩聚物,这些方法都是基于后缩聚步骤的优化,在没有任何预先反应和没有任何相应盐的预先制备下将所选单体引入双螺杆挤出机中进行反应性挤出,在反应过程中需要进行至少两次的排除缩聚反应副产物的操作以实现缩聚反应。

例如,在反应器中生成低粘度(17000g/mol)的预聚物,利用存在惰性气体的且减压条件下的挤出机获得高粘度(39000g/mol)的聚酰胺。

这种方法需要具有足够粘度的预聚物引入到挤出机中,该预聚物需要预先在反应器中生成。这种方法冗长,需要转移和处理操作,大规模生产较困难。

(2)种是将尼龙盐引入挤出机,在催化剂的存在下,进行反应挤出得到聚酰胺。此种方法一般是在反向双螺杆挤出机中利用尼龙盐制备聚酰胺预聚物,再将预聚物引入到同向双螺杆挤出机进行基础制备聚酰胺。

(3)直接将聚合生成聚酰胺的二胺和二酸单体引入到同向双螺杆挤出机中,在催化剂存在下反应挤出制备聚酰胺。

使用的催化剂是:五价磷酸基化合物,如磷酸、亚磷酸、苯基次磷酸;多磷酸酐如磷酸酐,四聚磷酸、焦磷酸等。优选磷酸酐和焦磷酸,二者效果是双重的,一是可吸收反应生成的水或者单体中含有的水,另一方面可以起到催化作用。优选磷酸酐,添加量为0.01~1pcr。

制备的聚酰胺聚合物的平均聚合度基本大于100,反应温度250~300℃,挤出时间优选6~20分钟,单体的含水量小于5%。

对挤出机要求:

混合区域需要有脱气装置,至少两个用于排除水等副产物的装置。

挤出机的长径比大于40D较好。

尼龙66的性质

尼龙66的基本性质 热性质 (1)熔点(Tm) 熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来: 尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。 如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。接近理论熔解温度259℃。 (2)玻璃化温度(Tg) 高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。 尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度[ ]。 结晶和结晶度 (1)结晶构造 Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形[ ]。 Bunn等确定了尼龙-66α型的结晶构造[ ],如图01-72所示,其晶胞的晶格常数列于表01-73。从图01-72可见,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。相邻的分子以氢键连成平面的片状,其模型如图01-68所示。 表01-68尼龙-66稳定晶形的晶格常数 晶体 a b c(纤维轴) αβγ α型结晶(三斜晶系) 4.9×10-4μm 5.4×10-4μm 17.2×10-4μm48?° 77°63?° 计算密度=1.24g/cm3 图01-44尼龙-66的α晶型结构[ ] 图01-45尼龙-66分子中晶片排列模型[ ] 线条:链状分子;○:氧原子 从图01-45可以看出,尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。 (2)球晶 熔融状态的尼龙-66缓慢冷却时,在235~245℃急剧生成球晶。球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%。 球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶[ ]。尼龙-66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶[ , ]。球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响。(3)结晶度 一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度。在很大程度上,结晶度可以左右尼龙-66的物理、化学和机械性质。结晶度可以用X-射线、红外吸收光谱、熔融热、密度和体积膨胀率等求得,其中以密度法最为简单方便。 分子量和分子量分布 综合考虑尼龙-66的可应用性和可加工性,通常将其分子量调整为15000~30000(聚合度约150~300),若分子量太大,成型加工性能变差。已经开发了一系列方法测定聚酰胺的分子量,如粘度法(溶液粘度法和熔融粘度法)、末端基定量法(中和滴定法、比色法、电位滴定法、电导滴定法)、光散射法、渗透压法、熔融电导法等,其中溶液粘度法在实验室条件较为容易进行。 热分解和水解反应 与其它聚酰胺相比,尼龙-66最容易热降解和三维结构化。当尼龙-66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物。其机理尚未完全阐明,但相信主要原因是尼龙-66本质造成的,与己二酸残基容易形成环戊酮衍生物密切相关。 在惰性气体氛围中,尼龙-66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的分解,产生氨和二氧化碳等。在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2)。

PA66(聚酰胺66)塑料基本特征及介绍

PA66(聚酰胺66)基本介绍 基本介绍 英文:Polyamide66,为五大工程塑料中产量最大、品种最多、用途最广的品种,半透明或不透明乳白色结晶形聚合物,受紫外线照射发紫白光或蓝白光。 项目非增强玻纤增强高冲击增韧 密度(kg/cm3) 1.06-1.19 1.23-1.58 1.06-1.09 1.14 硬度(R干燥/吸水)120/100M83-103114/-118/99 水中吸水率(%)8-9 3.7-7.36-78 空气中吸湿率(%) 1.2-3.1 1.0-2.5 1.1-1.5 1.2 成型收缩率(%)0.8-0.90.2-1.40.8-0.9 熔融指数(275°C/5kg)40-11515-60 简支梁有缺口冲击 4/23.5(6-15)/(5-17)(21-130)/(57-130)4/-(ISO179干燥/吸水) 热变形温度(1.8MPa)60-75240-25060-70 热变形温度(0.45MPa)200-220243-263180-220 熔点252-265252-265252-265245 生产厂家 1939年由杜邦公司实现工业化,目前全球主要品牌有美国杜邦的zytel、日本旭化成的leona、德国巴斯夫的ultramid、美国首诺的vydyne、日本东丽的amilan、美国苏威罗地亚的Technyl,中国国内主要的生产厂家有河南神马、浙江华峰、辽宁兴家化工、漳州长春、台湾南亚等。 常用牌号 美国首诺21SPC非增强通用本色 日本旭化成1300S未增强刚性,良好;良好的流动性;韧性良好 美国杜邦101L未增强 美国杜邦70G33L GF33 美国杜邦101F未增强 河南神马尼龙EPR27有光中等粘度产品主要用于注塑或改性的基料。 美国杜邦ST801未增强,超韧 德国巴斯夫A3X2G5GF25阻燃良好的电气性能耐油 德国巴斯夫A3EG6GF30尺寸稳定刚性好耐油电子绝缘 深圳杜邦70G33HS1L GF33热稳定 日本旭化成1300G GF33刚性,高;高强度;良好的抗蠕变性;耐疲劳性能 美国杜邦FR50GF25阻燃 美国杜邦70G13L GF13 美国杜邦103HSL未增强热稳定 美国杜邦103FHS未增强热稳定 日本东丽CM3006未增强耐热 德国巴斯夫A3EG3GF15刚性好耐油电子绝缘 日本东丽CM3001G30GF30

尼龙66的主要牌号与性能讲诉

尼龙66的主要牌号与性能 01.3.6.1国产尼龙66的主要性能指标 国内生产尼龙66的厂家有:黑龙江省尼龙厂、上海塑料制品十八厂、辽阳化纤工业总公司、太原合成纤维厂、神马集团、浙江衢州化工厂、宜兴太湖尼龙厂、江苏海安化工厂。其产品主要用制造各种机械、汽车、化工、电子电气装置的零部件,特别适合用于高强度或耐磨部件,如各种齿轮、滑轮、辊轴、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、衬套、各种壳体、工具手柄、支撑架、电缆包层、汽车灯罩等。在电子仪器设备、继电器等电气设备中制造零件、电梯导轨、建筑装饰扶手等。在医疗器械、体育用品和日用品上也有广泛应用,如棒球棒、滑雪板等。也可制成薄膜后与铝箔等形成复合膜用于食品包装,如软包装饮料、罐头等。表01-73列出了几家企业的尼龙66产品指标。 表01-73 国产尼龙66的性能指标 01.3.6.2阻燃增强尼龙66的主要性能指标

目前,国内尚有许多厂家从事改性尼龙66树脂的生产。生产阻燃尼龙66和阻燃增强尼龙66的主要厂家有:黑龙江省尼龙厂、黑龙江省化工研究所、上海赛璐珞厂、广州莲花山工程塑料厂、江阴市永建化工有限公司等。阻燃尼龙66主要用于低压电器、机床电器、广播电视工业中,制造各种阻燃零件如调压器开关、仪器仪表外壳和电子电气连接器等;生产玻纤增强尼龙66的主要厂家有:黑龙江省尼龙厂、上海德胜塑料厂、广州莲花山工程塑料厂、苏州塑料一厂等。产品主要应用于低压电器工业,如交流接触器底座、线圈骨架、行程开关等各种要求耐火性能的介电零件中。黑龙江省化学研究所还生产防老化尼龙。其主要指标列于表01-74中。 表01-74 国产改性尼龙66树脂的主要性能指标 01.3.6.3杜邦公司系列尼龙66产品的基本性能指标 杜邦公司是主要的尼龙66生产厂家之一,其产品型号齐全,覆盖面广,满足各行各业对尼龙66树脂的不同性能要求,见表01-75。 表01-75 杜邦公司Zytel?66树脂型号与用途

PA66物理性能

PA66又称尼龙66;聚己二酸己二胺;nylon 66,缩写NY66。化学式:[-NH (CH2)6-NHCO(CH2)4CO]n-性状半透明或不透明乳白色结晶形聚合物,具有可塑性。密度1.15g/cm3。熔点252℃。脆化温度-30℃。热分解温度大于350℃。连续耐热80-120℃,平衡吸水率2.5%。能耐酸、碱、大多数无机盐水溶液、卤代烷、烃类、酯类、酮类等腐蚀,但易溶于苯酚、甲酸等极性溶剂。具有优良的耐磨性、自润滑性,机械强度较高。但吸水性较大,因而尺寸稳定性较差。外观白包或带黄色颗粒状密度(g/cm3)1.10-1.14 拉伸强度(MPa) 60. 0-80.0 络氏硬度118 冲击强度(kJ/m2)60-100 静弯曲强度 (MPa) 1 00-120 马丁耐热(℃) 50-60 弯曲弹性模星(MPa) 2000~3000 体积电阻率(Ωcm)×1015 介电常数 1.63 应用广泛用于制造机械、汽车、化学与电气装置的零件,如齿轮、滚子、滑轮、辊轴、泵体中叶轮、风扇叶片、高压密封围、阀座、垫片、衬套、各种把手、支撑架、电线包层等。亦可制成薄膜用作包装材料。此外,还可用于制作医疗器械、体育用品、日用品等。 物理性能 玻璃化转变温度55-58°C 密度-cm3 机械性能 弹性(弯曲模量)-3GPa 低温韧性(低温缺口冲击强度)27-35J/m 断裂伸长率150-300% 拉伸强度50-95MPa 拉伸屈服强度45-85MPa 洛氏硬度30-80 屈服伸长-30% 韧性(室温缺口冲击强度)50-150J/m 肖氏硬度D80-95 杨氏模量1- 硬度(弯曲模量)-3GPa 尺寸稳定性 24小时吸水性1-3% 收缩-3% 线性热膨胀系数5-14 10-5°C-1

尼龙66的基本性质

聚合过程与工艺 己二酸和己二胺发生缩聚反应即可得到尼龙-66。工业上为了己二酸和己二胺以等摩尔比进行反应,一般 先制成尼龙-66盐后再进行缩聚反应,反应式如下: 在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。所以体系内水的扩散速度决定了反应速度, 因此在短时间内高效率地将水排出反应体系是尼龙-66制备工艺的关键所在。上述缩聚过程既可以连续进 行也可以间歇进行。 在缩聚过程中,同时存在着大分子水解、胺解(胺过量时)、酸解(酸过量时)和高温裂解等使尼龙66 的分子量降低的副反应。 尼龙-66盐的制备 尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2,分子量262.35, 结构式:[+H3N(CH2)6NH3+ -OOC(CH2)4COO-]。 尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。室温下,干燥或溶液中的尼 龙-66盐比较稳定,但温度高于200℃时,会发生聚合反应。其主要物理性质列于表01-63中。 表01-63 尼龙-66盐的主要物理性质 (1)水溶液法 以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%的尼龙-66盐溶液。其工艺流程图如图01-40所示。 图01-40 水溶液法生产尼龙-66盐工艺流程 1—己二酸配制槽 2—己二胺配制槽 3—中和反应器 4—脱色罐 5—过滤器 6、9、11、12—贮槽 7—泵 8—成品反应器 10—鼓风机 13—蒸发反应器 将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50℃、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH值在7.7~7.9。在反应结束后,用0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66盐水溶液。成盐反应为放热反应,为此必须将反应热以外循环水冷却除去,同时为防止尼龙-66盐与空气接触而被氧化,在生产系统中充以氮气保护。在真空状态下,将50%的尼龙-66盐水溶液经蒸发、脱水、浓缩、结晶、干燥,即可得到固体尼龙-66盐。一般每吨尼龙-66盐(100%)消耗己二胺(99.8%)522.64 kg,己二酸(99.7%)561.9kg。 本法的特点是不采用甲醇或乙醇等溶剂,方便易行,安全可靠,工艺流程短,成本低。但对原料中间体质量要求高,远途运输费用也较高。美国孟山都公司、杜邦公司和法国罗纳-普朗克公司采用本法生产。(2)溶剂结晶法 以甲醇或乙醇为溶剂,经中和、结晶、离心分离、洗涤,制得固体尼龙-66盐。氨基和羧基经中和后形成

PA66性能概述

PA66性能概述 物化性能 PA66,聚酰胺66或尼龙66。PA66在聚酰胺材料中有较高的熔点。它是一种半晶体-晶体材料。PA66在较高温度也能保持较强的强度和刚度。PA66在成型后仍然具有吸湿性,其程度主要取决于材料的组成、壁厚以及环境条件。在产品设计时,一定要考虑吸湿性对几何稳定性的影响。为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是最常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将收缩率降低到0.2%~1%。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的抵抗力较弱。 注塑工艺 干燥处理:如果加工前材料是密封的,那么就没有必要干燥。然而,如果储存容器被打开,那么建议在85C的热空气中干燥处理。如果湿度大于0.2%,还需要进行105C,12小时的真空干燥。 熔化温度:260~290C。对玻璃添加剂的产品为275~280C。熔化温度应避免高于300C。模具温度:建议80C。模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于薄壁塑件,如果使用低于40C的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进行退火处理。 注射压力:通常在750~1250bar,取决于材料和产品设计。 注射速度:高速(对于增强型材料应稍低一些)。流道和浇口:由于PA66的凝固时间很短,因此浇口的位置非常重要。浇口孔径不要小于0.5*t(这里t为塑件厚度)。如果使用热流道,浇口尺寸应比使用常规流道小一些,因为热流道能够帮助阻止材料过早凝固。如果用潜入式浇口,浇口的最小直径应当是0.75mm。典型用途PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。 应用范围 PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。 常见问题 溢料飞边、气泡、缩痕、熔接痕、烧焦及黑纹、银丝及斑纹、表面划痕、表面雾状及花纹、烧焦变色及杂质、烧黑、光泽不良、龟裂泛白、颜色不均、脆弱、分层剥离、翘曲变形、脱模不良、模具严重腐蚀。

尼龙材料的性能及PA6, PA66等的区别

与PS、PE、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,温度一旦达到就出现流动。 一、 PA性能的主要优点有: 1. 机械强度高,韧性好,有较高的抗拉、抗压强度。抗拉强度接近于屈服强度,比ABS高一倍多。对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。 2. 耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。常见的自动扶梯扶手、新型的自行车塑料轮圈等周期性疲劳作用极明显的场合经常应用PA。 3. 表面光滑,摩擦系数小,耐磨。作活动机械构件时有自润滑性,噪声低,在摩擦作用不太高时可不加润滑剂使用;如果确实需要用润滑剂以减轻摩擦或帮助散热,则水油、油脂等都可选择。 4. 耐腐蚀,十分耐碱和大多数盐液,还耐弱酸、机油、汽油等溶剂,对芳香族化合物呈惰性,可作润滑油、燃料等的包装材料。 5. 对生物侵蚀呈惰性,有良好的抗菌、抗霉能力。 6. 耐热,使用温度范围宽,可在-450C至+1000C下长期使用,短时耐受温度达120-1500C。 7. 有优良的电气性能。在干燥环境下,可作工频绝缘材料,即使在高湿环境下仍具有较好的电绝缘性。 8. 制件重量轻、易染色、易成型。因有较低的熔融粘度,能快速流动。易于充模,充模后凝固点高,能快速定型,故成型周期短,生产效率高。 二、 PA性能的主要缺点; 1. 易吸水。吸水会在一定程度上影响制件尺寸和精度,特别是薄壁件增厚影响较大;吸水亦会大大降低塑料的机械强度。在选材时,应顾及使用环境及与别的元件的配合精度的影响。 2. 耐光性较差。在长期偏高温环境下会与空气中的氧发生氧化作用,开始时颜色变褐,继面破碎开裂。 3. 注塑技术要求较严:微量水分的存在都会对成型质量造成很大损害;因热膨胀作用使制品尺寸稳定性较难控制;制品中尖角的存在会导致应力集中而降低机械强度;壁厚如果不均匀会导致制件的扭曲、变形;制件后加工时设备精度要求高。 4. 会吸收水、醇而溶胀,不耐强酸及氧化剂,不能作耐酸材料使用。 PA的品种很多,如今已有几十种,以PA6、PA66、PA610最为常用。

PA66与PA6的区别

PA66与PA6的区别 2009/04/13 21:37 PA6的化学物理特性和PA66很相似,然而,它的熔点较低,而且工艺温度范围很宽。 它的抗冲击性和抗溶解性比PA66要好,但吸湿性也更强。因为塑件的许多品质特性 都要受到吸湿性的影响,因此使用PA6设计产品时要充分考虑到这一点。为了提高 PA6的机械特性,经常加入各种各样的改性剂。玻璃就是最常见的添加剂,有时为了 提高抗冲击性还加入合成橡胶,如EPDM和SBR等。 对于没有添加剂的产品,PA6的收缩率在1%到1.5%之间。加入玻璃纤维添加剂可以使 收缩率降低到0.3%(但和流程相垂直的方向还要稍高一些)。成型组装的收缩率主要 受材料结晶度和吸湿性影响。 注塑模工艺条件: 干燥处理:由于PA6很容易吸收水分,因此加工前的干燥特别要注意。如果材料是用防水材料包装供应的,则容器应保持密闭。如果湿度大于0.2%,建议在80C以上的热空气中干燥16小时。如果材料已经在空气中暴露超过8小时,建议进行105C,8小时以上的真空烘干。 熔化温度:230~280C,对于增强品种为250~280C。 模具温度:80~90C。模具温度很显著地影响结晶度,而结晶度又影响着塑件的机械特性。对于结构部件来说结晶度很重要,因此建议模具温度为80~90C。对于薄壁的,流程较长的塑件 也建议施用较高的模具温度。增大模具温度可以提高塑件的强度和刚度,但却降低了韧性。如果壁厚大于3mm,建议使用20~40C的低温模具。对于玻璃增强材料模具温度应大于80C。注射压力:一般在750~1250bar之间(取决于材料和产品设计)。 注射速度:高速(对增强型材料要稍微降低)。 流道和浇口:由于PA6的凝固时间很短,因此浇口的位置非常重要。浇口孔径不要小于0.5*t (这里t为塑件厚度)。如果使用热流道,浇口尺寸应比使用常规流道小一些,因为热流道能够帮助阻止材料过早凝固。如果用潜入式浇口,浇口的最小直径应当是0.75mm。 PA66在聚酰胺材料中有较高的熔点。它是一种半晶体-晶体材料。PA66在较高温度也能保持较强的强度和刚度。PA66在成型后仍然具有吸湿性,其程度主要取决于材料的组成、壁厚以及环境条件。在产品设计时,一定要考虑吸湿性对几何稳定性的影响。 为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是最常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。 PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。 它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将 收缩率降低到0.2%~1% 。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的抵抗力较弱。 注塑模工艺条件: 干燥处理:如果加工前材料是密封的,那么就没有必要干燥。然而,如果储存容器被打开,那么建议在85C的热空气中干燥处理。如果湿度大于0.2%,还需要进行105C,12小时的真空干燥。 熔化温度:260~290C。对玻璃添加剂的产品为275~280C。熔化温度应避免高于300C。 模具温度:建议80C。模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于

PA66塑料特性、成型工艺及用途

书山有路勤为径;学海无涯苦作舟 PA66塑料特性、成型工艺及用途 PA66 聚酰胺66或尼龙66化学和物理特性PA66在聚酰胺材料中有较高的熔点。它是一种半晶体-晶体材料。PA66在较高温度也能保持较强 的强度和刚度。PA66在成型后仍然具有吸湿性,其程度主要取决于材料的 组成、壁厚以及环境条件。在产品设计时,一定要考虑吸湿性对几何稳定 性的影响。为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是最常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM 和SBR等。PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将收缩率降低到0.2%~1% 。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的抵抗力较弱。 注塑模工艺条件 干燥处理:如果加工前材料是密封的,那幺就没有必要干燥。然而, 如果储存容器被打开,那幺建议在85C的热空气中干燥处理。如果湿度大 于0.2%,还需要进行105C,12小时的真空干燥。 熔化温度:260~290C。对玻璃添加剂的产品为275~280C。熔化温度应 避免高于300C。模具温度:建议80C。模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于薄壁塑件,如果使用低于40C的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进 行退火处理。 注射压力:通常在750~1250bar,取决于材料和产品设计。 专注下一代成长,为了孩子

尼龙66

尼龙66 化工本1202班18号冯旭楞 Ⅰ简介 中文别名:锦纶66短纤维;聚己二酰己二胺;尼龙-66;尼龙66树脂;聚酰胺-66; 聚已二酰己二胺;锦纶-66。尼龙66疲劳强度和钢性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。通常应用于中等载荷,使用温度<100-120度无润滑或少润滑条件下工作的耐磨受力传动零件。 Ⅱ热性质 熔点(Tm) 熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来: 尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。 如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。接近理论熔解温度259℃。 玻璃化温度(Tg) 高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。

结晶构造 Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形。 Bunn等确定了尼龙-66α型的结晶构造,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。相邻的分子以氢键连成平面的片状。 表01-68 尼龙-66 稳定晶形的晶格常数 晶体 a b c(纤维轴) αβγ α型结晶(三斜晶系)4.9×10-4μm 5.4×10-4μm 17.2×10-4μm 48½° 77° 63½° 计算密度=1.24g/cm3 图01-44 尼龙-66的α晶型结构图01-45尼龙-66分子中晶片排列模型 线条:链状分子;○:氧原子 尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。

尼龙66

尼龙66(聚己二酰己二胺) 1.2 高分子:也叫聚合物分子或大分子,具有高的相对分子量,其结构必须是由多个重复单元所组成,并且这些重复单元实际上或概念上是由相应的小分子衍生而来。 高分子化合物:或称聚合物,是由许多单个高分子(聚合物分子)组成的物质。 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子。 链原子:构成高分子主链骨架的单个原子。 链单元:由链原子及其取代基组成的原子或原子团。 结构单元:构成高分子主链结构一部分的单个原子或原子团,可包含一个或多个链单元。 重复结构单元:重复组成高分子分子结构的最小的结构单元。 单体单元:聚合物分子结构中由单个单体分子生成的最大的结构单元。 聚合度:单个聚合物分子所含单体单元的数目。(DP ) 末端基团:高分子链的末端结构单元。 I.聚合物的多分散性 :聚合物是由一系列分子量(或聚合度)不等的同系物高分子组成,这些同系物高分子之间的分子量差为重复结构单元分子量的倍数,这种同种聚合物分子长短不一的特征称为聚合物的多分散性。 II. 平 均 分 子 量:聚合物的分子量或聚合度是统计的,是一个平均值,叫平均分子量或平均聚合度。 平均分子量的统计可有多种标准,其中最常见的是重均分子量和数均分子量。 假设某一聚合物样品中所含聚合物分子总数为n ,总质量为w ,其中,分子量为M i 的分子 有n i 摩尔,所占分子总数的数量分数为N i ,则N i = n i /n ,其质量为w i = n i M i ,其质量分数为 W i = w i /w ,∑n i = n,∑w i = w ,∑N i =1,∑W i =1。 数 均 分 子 量 按分子数统计平均,定义为聚合物中分子量为M i 的分子的数量分数N i 与其分子量M i 乘积 的总和, 以M n 以表示。

PA66(聚酰胺66或尼龙66)介绍

PA66(聚酰胺66或尼龙66),同PA6相比,PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。 编辑本段基本资料 PA66又称尼龙66;聚己二酸己二胺;nylon 66,缩写 NY66。 化学式:[-NH(CH2)6-NHCO(CH2)4CO]n- 外观白包或带黄色颗粒状 密度(g/cm3) 1.10-1.14 拉伸强度(MPa) 60. 0-80.0 洛氏硬度 118 冲击强度(kJ/m2) 60-100 静弯曲强度 (MPa) 1 00-120 马丁耐热(℃) 50-60 弯曲弹性模量 (MPa) 2000~3000 体积电阻率(Ωcm) 1.83×1015 介电常数 1.63 编辑本段性状 半透明或不透明乳白色结晶形聚合物,具有可塑性。密度1.15g/cm3。熔点252℃。脆化温度-30℃。热分解温度大于350℃。连续耐热80-120℃,平衡吸水率2.5%。能耐酸、碱、大多数无机盐水溶液、卤代烷、烃类、酯类、酮类等腐蚀,但易溶于苯酚、甲酸等极性溶剂。具有优良的耐磨性、自润滑性,机械强度较高。但吸水性较大,因而尺寸稳定性较差。 编辑本段应用 广泛用于制造机械、汽车、化学与电气装置的零件,如齿轮、滚子、滑轮、辊轴、泵体中叶轮、风扇叶片、高压密封围、阀座、垫片、衬套、各种把手、支撑架、电线包层等。亦可制成薄膜用作包装材料。此外,还可用于制作医疗器械、体育用品、日用品等。 编辑本段注塑模工艺条件

干燥处理:如果加工前材料是密封的,那么就没有必要干燥。然而,如果储存容器被打开,那么建议在85℃的热空气中干燥处理。如果湿度大于0.2%,还需要进行105℃,12小时的真空干燥。 熔化温度:260~290℃。对玻璃添加剂的产品为275~280℃。熔化温度应避免高于300℃。 模具温度:建议80℃。模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于薄壁塑件,如果使用低于40℃的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进行退火处理。 注射压力:通常在750~1250bar,取决于材料和产品设计。 注射速度:高速(对于增强型材料应稍低一些)。 流道和浇口:由于PA66的凝固时间很短,因此浇口的位置非常重要。浇口孔径不要小于0.5*t(这里t为塑件厚度)。如果使用热流道,浇口尺寸应比使用常规流道小一些,因为热流道能够帮助阻止材料过早凝固。如果用潜入式浇口,浇口的最小直径应当是 0.75mm。 编辑本段化学和物理特性 PA66在聚酰胺材料中有较高的熔点。它是一种半晶体-晶体材料。PA66在较高温度也能保持较强的强度和刚度。PA66在成型后仍然具有吸湿性,其程度主要取决于材料的组成、壁厚以及环境条件。在产品设计时,一定要考虑吸湿性对几何稳定性的影响。为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是最常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将收缩率降低到0.2%~1% 。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的抵抗力较弱。

尼龙66的合成实验报告.

尼龙66的合成实验报告 班级:应131-1 组别:第七组 组员:

尼龙66的合成 一、实验目的 1、学习由环己醇(醇氧化物)制备环己酮(酮氧化物)原理、方法、实验操作。 2、学习由环己酮制备己二酸的原理、方法、实验操作。 3、学习尼龙66的制造工艺,应用,发展前途。 4、熟练准确的掌握有机实验的基本操作。 二、实验原理 (一)尼龙66的性质 尼龙66名为聚己二酸己二胺,为半透明或不透明的乳白色的热塑性结晶形聚合物,相对密度1.14,熔融温度255℃ ,热分解温度大于370℃ ,连续使用温度大于105℃,因分子主键中含有强极性的酰胺基,而酰胺基间的氢键使分子间的结合力较强,易使结构发生结晶化,具有较高的刚性、韧性(良好的力学性能)和优良的耐磨性、自润滑性、染色性、耐油性及耐化学药品性和自熄性 ,其力学强度较高,耐热性优良,耐寒性好 ,使用温度范围宽[1]。因此,尼龙66为热塑性树脂中发展最早、产量最大的品种,其性能优良,也是化学纤维的优良聚合材料,应用范围最广,因此产量逐年增长 ,已位居五大工程塑料之首。 (二)主要有关物质介绍 1.环己酮 环己酮(cyclohexanone),有机化合物,是六个碳的环酮,室温下为无色油状液体,有类似薄荷油和丙酮的气味,久置颜色变黄。微溶于水,可与大多数有机溶剂混溶。不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。易燃,与高热、明火有引起燃烧的危险,与氧化剂接触猛烈反应,与空气混合爆炸极与开链饱和酮相同。环己酮在工业上被用作溶剂以及一些氧化反应的触发剂,也用于制取己二酸、环己酮树脂、己内酰胺以及尼龙。 2.己二酸 己二酸(Adipicacid)又称肥酸,是一种白色的结晶体,有骨头烧焦的气味。微溶于水,易溶于酒精、乙醚等大多数有机溶剂。当己二酸中的氧气含量高于14%时,易产生静电引起着火。己二酸是脂肪族二元酸中最有应用价值的二元酸,能发生成盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物,其对眼睛、皮肤、粘膜和上呼吸道有刺激作用。己二酸是工业上具有重要意义的二元羧酸,在化工生产、有机合成工业、医药、润滑剂制造等方面都有重要作用,也是医药、酵母提纯、杀虫剂、香料等的原料,产量居所有二元羧酸中的第二位。中国对己二酸的需求量极大,国内生产不能满足市场需求,因而每年都从国外大量进口。

尼龙PA66性能概述

尼龍PA66性能概述 物化性能 PA66,聚酰胺66或尼龙66。PA66在聚酰胺材料中有较高的熔点。它是一种半晶体-晶体材料。PA66在较高温度也能保持较强的强度和刚度。PA66在成型后仍然具有吸湿性,其程度主要取决于材料的组成、壁厚以及环境条件。在产品设计时,一定要考虑吸湿性对几何稳定性的影响。为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是最常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将收缩率降低到0.2%~1%。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的抵抗力较弱。 注塑工艺 干燥处理:如果加工前材料是密封的,那么就没有必要干燥。然而,如果储存容器被打开,那么建议在85C的热空气中干燥处理。如果湿度大于0.2%,还需要进行105C,12小时的真空干燥。 熔化温度:260~290C。对玻璃添加剂的产品为275~280C。熔化温度应避免高于300C。模具温度:建议80C。模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于薄壁塑件,如果使用低于40C的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进行退火处理。 注射压力:通常在750~1250bar,取决于材料和产品设计。 注射速度:高速(对于增强型材料应稍低一些)。流道和浇口:由于PA66的凝固时间很短,因此浇口的位置非常重要。浇口孔径不要小于0.5*t(这里t为塑件厚度)。如果使用热流道,浇口尺寸应比使用常规流道小一些,因为热流道能够帮助阻止材料过早凝固。如果用潜入式浇口,浇口的最小直径应当是0.75mm。典型用途PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。 应用范围 PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。

尼龙66基本知识入门

尼龙66基本知识入门 中文别名:锦纶66短纤维;尼龙-66;尼龙66树脂;聚酰胺-66;聚己二酰己二胺;锦纶-66。尼龙66疲劳强度和钢性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。通常应用于中等载荷,使用温度<100-120度无润滑或少润滑条件下工作的耐磨受力传动零件。尼龙66为聚己二酰己二胺,工业简称PA66。常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。各种聚酰胺的共同特点是耐燃,抗张强度高(达104千帕),耐磨,电绝缘性好。 中文别名:锦纶66短纤维;聚己二酰己二胺;尼龙-66;尼龙66树脂;聚酰胺-66;聚已二酰己二胺;锦纶-66。尼龙66疲劳强度和钢性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。通常应用于中等载荷,使用温度<100-120度无润滑或少润滑条件下工作的耐磨受力传动零件。 熔点(Tm) 熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来: 尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃。 如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。接近理论熔解温度259℃。 玻璃化温度(Tg) 高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。 尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃,而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度。 物理性能 比重:PA6 1.14克/立方厘米,PA66 1.15克/立方厘米,PA1010 1.05克/立方厘米成型收缩率:PA6 0.8-2.5% ,PA66 1.5-2.2% 干燥条件:100-110℃/12小时 坚韧、耐磨、耐油、,耐水、抗酶菌、但吸水大 燃烧鉴别方法:火焰上端黄色,下端蓝色,燃烧后塑料熔滴落,起泡,离火后特殊的羊毛,指甲烧焦味和带芹菜味 尼龙6:弹性好,冲击强度,吸水较大 尼龙66:性能优于尼龙6,强度高,耐磨性好 尼龙610:与尼龙66相似,但吸水小,刚度低 尼龙1010:半透明,吸水小。耐寒性较好。适于制作一般机械零件、减磨耐磨零件、传动零件以及化工、电器、仪表等零件。

PA66物理性能

P A66物理性能 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

PA66又称尼龙66;聚己二酸己二胺;nylon 66,缩写 NY66。化学式:[-NH (CH2)6-NHCO(CH2)4CO]n-性状半透明或不透明乳白色结晶形聚合物,具有可塑性。密度1.15g/cm3。熔点252℃。脆化温度-30℃。热分解温度大于350℃。连续耐热80-120℃,平衡吸水率2.5%。能耐酸、碱、大多数无机盐水溶液、卤代烷、烃类、酯类、酮类等腐蚀,但易溶于苯酚、甲酸等极性溶剂。具有优良的耐磨性、自润滑性,机械强度较高。但吸水性较大,因而尺寸稳定性较差。外观白包或带黄色颗粒状密度(g/cm3) 1.10-1.14 拉伸强度(MPa) 60. 0-80.0 络氏硬度118 冲击强度(kJ/m2) 60-100 静弯曲强度 (MPa) 1 00-120 马丁耐热(℃) 50-60 弯曲弹性模星 (MPa) 2000~3000 体积电阻率(Ωcm)1.83×1015 介电常数 1.63 应用广泛用于制造机械、汽车、化学与电气装置的零件,如齿轮、滚子、滑轮、辊轴、泵体中叶轮、风扇叶片、高压密封围、阀座、垫片、衬套、各种把手、支撑架、电线包层等。亦可制成薄膜用作包装材料。此外,还可用于制作医疗器械、体育用品、日用品等。 物理性能 玻璃化转变温度55-58°C 密度 1.13-1.15g/cm3 机械性能 弹性(弯曲模量)0.8-3GPa 低温韧性(低温缺口冲击强度)27-35J/m 断裂伸长率150-300% 拉伸强度50-95MPa 拉伸屈服强度45-85MPa 洛氏硬度30-80 屈服伸长 3.4-30% 韧性(室温缺口冲击强度)50-150J/m 肖氏硬度D80-95 杨氏模量1-3.5GPa 硬度(弯曲模量)0.8-3GPa 尺寸稳定性 24小时吸水性1-3% 收缩0.7-3% 线性热膨胀系数5-14 10-5°C-1

PA66 46 6T 9T 10T的性能及应用 (2)

P A66/46/6T/9T/10T的性能及应用 电子、电气等设备的小型化、高性能化对材料的要求越来越高。特别是表面贴装技术(SMT)的出现和发展,促进了电子元件小型化、密集化并降低了成本。但采用SMT技术对材料的耐回流焊性和尺寸稳定性提出了更高的要求,如承受短期约260℃的回流焊的峰值温度。汽车的轻量化、高性能化促进和深化了金属部件的塑料化,也同时对塑料提出了更高的要求,如发动机周边部件的耐热、耐久性等。PA6、PA66等通用工程塑料,性能优异,价格适中,用途广泛,在工程塑料中占有重要的地位,但也存在不足,如容易吸湿、耐高温性能有待提高等。为进一步提高耐热性,满足汽车、电子电气等行业越来越高的要求,耐高温PA应运而生,与PA66相比,它是一类熔点和使用温度更高的均聚或共聚树脂及其增强改性材料。常见的耐高温PA主要有PA46、PA6T、PA9T、PA10T、聚对苯二甲酰对苯二胺(PPTA)等,其中,PA6T、PA9T、PA10T等半芳香族聚酰胺因其耐热高、力学性能优异、不易吸湿、加工灵活方便等特点,在电子、电气+汽车等领域具有广阔的应用前景,成为争相研究的热点。 1耐高温聚酰胺的结构与性能 聚合物的耐热性与其熔点(Tm)、玻璃化温度(Tg)密切相关。表1列出了PA66及主要耐高温PA的化学结构、熔点及玻璃化温度。 1.1耐热性 耐高温PA的主要特点之一就是熔点比通用PA如PA66高,但熔点太高,难以加工,所以一般多在320℃以下。PA46玻璃化转变温度低,模量开始下降的温度低,但由于其结晶度高,因此在高温下物性下降小。PA6T、PA9T、PA10T等半芳香族聚酰胺,玻璃化温度高,模量降低起始温度高。PPTA玻璃化温度太高,难以用通用塑料加工方法加工。 1.2加工性 注射成型要求材料具有较高的流动性及较宽的加工窗口。一般情况下,PA的熔融成型加工温度在320℃左右,分解温度在350℃附近。PA6T均聚物熔点在370℃左右,熔融温度超过了分解温度,难以加工成型,因此需要改性,使成型温度降到320℃以下。与PA6T相比,PA9T、PA10T含有较长的碳链,因此熔点较低,适合于常规的塑料加工方法。 1.3吸水性 PA因为特有的酰胺结构而易于吸水,容易引起尺寸变化、力学性能降低、膨胀、起泡等现象,导致应用受到很大的限制。PA46的饱和吸水率很高,PA6T次之,PA9T、PA10T因为较长的碳链,酰胺基的浓度低,吸水率低。PA的饱和吸水率和酰胺基浓度的关系如图1所示。 1.4结晶性 聚合物的结晶性取决于分子中重复单元的单一性和分子链的柔性。PA46的结晶速度很快,结晶度高,因此产品的耐热性优异。改性的PA6T材料也具有很高的结晶度,PA9T、PA10T一般是均聚物,结晶度高,结晶速度快,可以快速成型。 1.5尺寸稳定性 半芳香族聚酰胺吸水率低、熔点高、结晶度高,在吸水、受热等条件下具有很高的尺寸稳定性,特别是相对于PA46,其湿热条件下的尺寸稳定性有显着地提高。 1.6回流焊性 在干态下,PA46、PA6T、PA9T等都表现出优异的耐焊锡性,如表2所示。吸湿状态下,PA6T的耐焊锡性温度最高为260℃,PA46不到250℃,PA9T高可以达到280℃,远远高于聚苯硫醚(PPS)的250℃。一般,回流焊的峰值温度在260℃左右,时间约30 s,因此半芳香族聚酰胺如PA6T、PA9T等可以轻松用于SMT技术,是新型焊锡线路板的理想材料。 1.7化学性能 由于耐高温PA的内聚能和结晶度较高,因此具有很好的耐脂肪烃、芳香氯代烃、酯类、酮类、醇类等有机溶剂和耐车用的各燃料、油类、防冻液等。 2主要的耐高温PA 2.1PA46 PA46,学名聚己二酰丁二胺,是由丁二胺与己胺缩聚而成。PA46的分子链结构完整,结晶性能机结晶度高,因此具有良好刚性、耐蠕变性、耐疲劳性和耐磨性,但玻璃化温度较低,吸水性高,从而尺寸稳定性差。其熔点约为295℃,30%玻璃纤维增强:PA46热变形温度为285℃,冲击强度比PA66高1倍,比聚甲醛高40%,弯曲强度也大于PA6和PA66。PA46的耐磨性和尺寸稳定性较好,且具有良好的化学稳定性,成型时结晶速度比PA66快4-5倍,比PA6快10倍,可采用注射成型和挤出成型制成各种零件、管、棒、片材等。PA46可用于增强橡胶制品、输送带、水管等,注射成型制品的潜在市场是汽车发动机、车体部件及电气、电子、仪表、家电应用领域中,需要耐热、高强度、耐冲击的零部件,还可以作为PA6、PA66的成核剂。PA46可在160℃连续长期使用,成本较热致液晶聚合物低,热变形温度较PPS高,成型周期较短,韧性较好,可取代高端的热致液晶聚合物等。

相关主题
文本预览
相关文档 最新文档