当前位置:文档之家› 光学冷加工

光学冷加工

光学冷加工
光学冷加工

实验二十五放大镜的制作

第一章光学零件制造工艺一般知识

1.1 光学零件制造工艺的特点及一般过程

制作光学零件的常见材料有三大类,即光学玻璃、光学晶体和光学塑料,其中以光学玻

璃,特别是无色光学玻璃的使用量最大。虽然光学零件的加工按行业划分归入机械加工一类,

但由于加工对象的材料性质和加工精度要求显著地不同于金属材料,因而加工工艺上也完全

不同于金属工艺而具有特殊性。

1.1.1 光学零件的加工精度及其表示

光学零件属于高精度零件。平面零件的加工精度主要有角度和平面面形;球面零件的加

工精度要求主要有曲率半径和球面面形。高精度棱镜的角误差要求达到秒级。高精度平面面

形精度可达到几十分之一到几百分之一波长。平面零件的平面性和球面零件的球面性统一称

为面形要求。光学车间一般用干涉法计量,用样板叠合观察等厚干涉条纹(俗称看光圈)。

表示面形误差的光圈数符号是N,不规则性(或称局部误差)符号是△N。除面形精度外,

光学零件表面还要有粗糙度要求。光学加工中各工序的表面粗糙度如表6-1所示。光学零件

=0.025um,用轮廓算术平均偏差表示为抛光表面粗糙度用微观不平十点高度表示为R

2

R

=0.025um,用符号表示则为0.008,在此基础上,还有表面疵病要求,即对表面亮丝、擦2

痕、麻点的限制。

1.1.2 光学零件加工的一般工艺过程及特点

光学零件加工的工艺过程随加工方式不同而异。光学零件的加工方式主要有两类:传统

(古典)加工工艺和机械化加工工艺,这里我们只介绍传统加工工艺。

传统工艺的特点主要有:

(1)使用散粒磨料及通用机床,以轮廓成形法对光学玻璃进行研磨加工。操作中以松香

柏油粘结胶为主进行粘结上盘。先用金刚砂对零件进行粗磨与精磨,然后使用松香柏油抛光

模与抛光粉(主要是氧化铈)对零件进行抛光加工。影响工艺的因素多而易变,加工精度可

变性也大,通常是几个波长数量级。高精度者可达几百分之一波长数量级。

(2)手工操作量大,工序多,操作人员技术要求高。对机床精度,工夹磨具要求不那么

苛刻,适于多品种,小批量、精度变化大的加工工艺采用。

传统加工工艺过程,以一个透镜为例,先后依次经过以下一些工序:

1、毛坯加工。包括按光学零件图选择合适的块料,切割整平、划分、胶条、滚圆开球面。开球面是单件进行的。

2、粗磨加工。使表面粗糙度及球面半径符合细磨要求。传统工艺中粗磨是单件进行的。一般采用传统工艺加工的工厂中,粗磨车间往往包括毛坯加工。

3、上盘:粗磨之后,经清洗,将一个个透镜毛坯按同半径组合成盘。即依靠粘结胶把分散的透镜固定在球形粘结膜上,应注意的是成盘时要使每一个透镜毛坯的被加工面都处于同一半径的球面上。

4、细磨抛光工序。在加工第一表面时,细磨到抛光过程中一般是不需拆盘的,即一次一盘完成。操作中,先使用粒度依次变细的三至四道金钢砂将被加工面研磨到抛光要求的表面粗糙度,然后清洗,进行抛光。抛光是用一定半径的抛光模加抛光粉进行。一面加工完毕后,涂上保护膜,翻面再进行上盘。细磨抛光加工第二表面。

5、定心磨边工序。透镜加工过程中会出现光轴和定位轴偏离(称为偏心)。定心磨边的任务是消除偏心,并使侧圆柱面径向尺寸达到装配要求。传统工艺的磨边常在光学定心磨边机上进行。

6、镀膜工序,对表面有透光要求的透镜,要加镀增透膜。球面反射镜要镀反射膜。有的还要镀其它性质的薄膜,依使用要求由设计决定。

7、胶合工序。对成象质量要求较高的镜头,往往采用几块透镜胶合而成。胶合应在镀膜以后进行。

以上这些工艺过程可简略表示如下:

选料——切割——整平——胶条——滚圆——开球面——粗磨球面——上盘——细磨——抛光——下盘;第二面上盘——细磨——抛光——下盘——定心磨边——镀膜

1.2 光学工艺安全操作知识

光学加工由于精度高,加工对象特殊,必须在专门的光学车间内进行。因此,除了遵守一般的机械加工规则外,还必须遵守光学加工所特有的安全操作要求。

1.2.1 光学车间的特点

在光学零件加工过程中,大多数工序对温度、湿度、尘埃、振动、光照等环境因素是敏感的,特别是高精度零件和特殊零件的加工尤其如此。因此,光学车间都是封闭形,并要求恒温、恒湿、限制空气流动、人工采光,防尘。

1、温度对光学工艺的影响

恒温是光学车间一个明显特点之一。这里包括恒温温度及波动范围两个问题。光学车间

各工作场所由于要求不同,对恒温温度及其波动范围的要求是各不相同的。

(1)温度对抛光效率与质量的影响

由于抛光过程中存在的化学作用随温度升高而加剧,因而升温会提高抛光效率。但由于古典工艺中采用的抛光模制模用胶、粘结胶等主要由松香和沥青按一定配比制成,一定的配比只在一定的温度下使用。而且它们对温度的变化较为敏感,温度过低,抛光模具与零件吻合性不好;温度过高,抛光模具抛光工作面变形。这两者将使加工零件的精度难以保证,具体表现在光圈难以控制和修改。实践得出:抛光间的温度一般应控制在22℃±2℃为宜。

(2)检验对室温的要求

温度的波动直接影响检验精度。一方面因为精密光学仪器对温度的波动很敏感;另一方面被检零件不恒温时,检具和零件间有温差会直接影响读数精度。所以,检验室必须恒温,并且也应控制在22℃±2℃范围内。

2、湿度对光学工艺的影响

在光学零件加工过程中,凡要求恒温或空调的地方,均因控制湿度所需。因为,水份蒸发速度直接影响湿度恒定状态。湿度过低,易起灰尘,零件表表清擦时也易产生静电而吸附灰尘,影响其光洁度。特殊零件如晶体零件的加工以及光胶工艺等,对湿度的要求尤为严格。光学加工过程中室内温度一般应控制在60%左右。

3、防尘

由于光学零件对表面质量即表面光洁度和表面疵病有极高的要求,所以光学车间的防尘问题也特别突出。灰尘在抛光时会使零件表面产生道子、划痕、亮丝;在镀膜时,会使膜层出现针孔、斑点、灰雾;在刻划时会引起刻线位置误差、断线等。

灰尘来源主要有:外间空气带入;由工作人员衣物上落下(粒径一般在l一5μm左右,直径小于1μm的灰尘,往往不能依靠自重降落,而长时间悬浮于空气中,影响产品质量);不洁净的材料、辅料、工夹具等带入;生产过程中产生的灰尘(光学车间的净化条件,若按室内含尘的重量浓度要求,应控制在毫克/米3的数量级。胶合室的要求更严,一般以颗粒浓度作为要求,达到粒数/升的数量级)。

1.2.2 光学生产安全操作规则

由于光学车间的特殊性和光学零件加工的高精度要求,学生进入光学车间实习时,必须遵守以下安全技术及操作规则:

1、进入光学车间,特别是进入细磨、抛光、检验、磨边、胶合、镀膜、刻划等工作间时,应穿白色工作服,戴工作帽,穿专用鞋子或干净拖鞋,以防止将室外灰尘带入光学车间;

2、在操作过程中禁止用手指直接触摸光学表面,需要拿起光学零件时,手指也只能接触光学零件的侧面或非工作面。因为手指上留有汗渍、各种有机酸、盐类等对光学表面有害物质,它们往往会使光学零件表面受到侵蚀。如果不小心触摸后,必须立即用脱脂纱布或脱脂棉花蘸上酒精、乙醚混合液擦拭干净;

3、为保持光学车间的恒温条件,不能在一个工作场所聚集过量人员,致使周围气温上升。门窗也不能随意打开;

4、开机前,须先检查机床设备、工夹具是否完好。发现电机有异常现象或其它机械毛病时,应立即拉开电闸或停机检查。安装、拆卸零件和夹具时,机床主轴必须完全停止转动;

5、为了清洗光学零件和其它工作需要,光学车间常常使用或临时存放多种易燃物质,如溶剂汽油、无水酒精、乙醚等。因此光学车间必须严格注意防火,加热设备必须远离上述物质。为了防火,同时也为了空气卫生,光学车间内严格禁止吸烟;

6、在加工过程中,粗砂禁止带入细砂,细砂禁止带入抛光区,因此在换砂以后,在磨砂完毕进入抛光前,必须对工件、工夹具、工作台等进行彻底清洗,以防砂子带入使工件表面出划痕、亮丝,破坏光洁度;

7、在上盘、下盘,或其它需要加热光学零件情况时,不可使零件急热急冷。加热时应注意零件升高的温度必须控制在材料的退火温度以下。由于电炉表面温度已接近或超过许多材料的退火温度,所以不能将光学零件直接放置在电炉盘上加热,必须垫上衬垫;

8、在未了解实习所用机床及仪器设备的操作规范前,不允许擅自开动机床,试看试用有关的仪器设备。也不允许操作不在实习范围内的仪器与设备,以免造成损坏和人身不安全事故。

1.3 光学零件和光学零件图

光学零件是光学制造最后完成的目标,光学零件图是加工和检验的依据,所以在加工之前必须熟悉光学零件图及相应的技术指标、符号、尺寸等的含义。

1.3.1光学零件及有关术语、符号

光学工艺使用的图纸,通常有光学零件图、胶合部件图、工序图(毛坯图、粗磨图、抛光图等).其中光学零件图规定了加工时所必须的全部资料,包括外形尺寸,材料、技术要求及其它需说明的各项内容如图(1—11)、图(1—12)、图(1—13)所示。其它工艺图纸均按光学零件图画出,标注各工序完工后的尺寸和检验要求。

绘制光学零件工艺图样的一般原则是:光学零件的光轴用点划线表示,一般水平放置,光线方向应自左向右,零件一般对称于光轴放置,圆零件只画出沿光轴剖开的剖面图。

图纸左上角的表格依次列出对玻璃的要求和对零件的加工要求,包括面形精度,表面质量等.零件的外形尺寸,有关技术要求在图上注明或在图纸下方用文字或符号注明。

常用符号、术语说明如下:

N 光圈数符号。表示被检的零件表面和样板标准表面曲率半径偏差时产生的干涉条纹数(通称光圈)数目;

ΔN 光圈局部误差符号,表示表面形状的局部误差;

ΔR 样板精度等级符号.即样板曲率半径实际值对名义值的偏差量符号;

B(P) 光学零件表面疵病符号,也称为光洁度。光学零件工作表面的粗糙度一般都要求=0.025μm,旧标准为V14。在此基础上还需限制表面上存在的亮丝、擦痕、麻点,达到R

1

应与机械加工中的光洁度概念区分开。

C(X) 透镜偏心差符号,亦称透镜的中心偏差符号。用透镜表面的球心对透镜定位轴的偏离量表示;

π尖塔差符号。表示反射棱镜的棱向误差;

θ平行差符号。玻璃平板两表面间的不平行度;

S 屋脊棱镜双角差符号。屋脊棱镜屋脊角有偏差时造成的双象差的程度;

d 透镜中心厚度;

φ透镜的口径;

镀膜符号:④为增透膜,②为增反镜;

Δnd 玻璃材料折射率允许误差,包括对标准值的允差和同一批玻璃中的一致性允差。

Δ(n F—n C) 色散允差,与Δn d一样同样包括二项:

光学均匀性:玻璃内因折射率渐变造成的不均匀程度,影响零件的鉴别率,以鉴别率表示;双折射:玻璃存在应力时呈现各向异性,产生双折射现象,以双折射光程差表示;纹:玻璃中的化学不均匀区,因折射率不同于主体而出现丝状或层状的疵病,块料玻璃有从三个方向检查的,也有二个或者一个方向检验的;气泡:玻璃体内残留气泡程度,有大小与个数

两项指标。

1.4 光学零件的加工余量

1.4.1 加工余量的基本概念

在光学零件加工过程中,为了从玻璃毛坯获得所需要零件的形状、尺寸,表面必须预留一定量的玻璃层,这一定量的玻璃层就称为加工余量。加工余量的正确给出是十分重要的,如果给出的余量小,则加工不出符合技术要求的零件;如果余量太大,又会造成材料与工时的浪费。

根据光学零件加工工序,零件的加工余量分为:锯切余量、整平余量、滚圆余量、粗磨余量、细磨及抛光余量、定中心磨边余量;在每一工序之后给下一道工序留下的余量称为中间工序的余量;由加工中各个中间工序的余量所组成的余量总和称为总加工余量;鉴于各工序的加工特点不同,需要很好地研究如何合理地规定各道工序的加工余量。

1.4.2 确定加工余量的原则

光学零件的绝大部分余量都是借助于散粒磨料或固着磨料磨除去的。在研磨过程中,磨料对玻璃表面施加压力,形成一定的破坏层,往后的细磨、抛光等各道工序就是要除去这

一破坏层,使玻璃表面形成符合要求的光学表面。因此,确定加工余量的原则应该是每道工

序中除去的余量等于上一道工序产生的破坏层深度Fn-1,与本道工序产生的破坏层深度之差.玻璃经过第一道砂粗磨后,表面产生凹凸层hc 和破坏层Fc ,破坏层最深处以AA ’表示;当第二道砂粗磨时,产生凹凸层h 1和破坏层F 1,而破坏层深度应与AA ’线重合,而其加工余量应为图中的△1,显然△1等于F c 与F1之差。以后各道磨料的研磨加工余量均可类推,最后一道磨料的精磨所产生的h 与F 都己相当细微,因此,应该使最后一道磨料中的F 略微超出AA 线。然后通过抛光除去残余的相当微细的破坏层。余量的表达式为:

???

??-=?-=?-=?-n

n n

e F F F F F F 12121

1 必须指出:根据上述原则计算的余量只是理论值,实际上还应该结合加工的具体情况给予适当地放大。 1.4.3各工序余量的确定

1、锯切余量与公差

锯切余量与锯片的侧向振动、锯片厚度、锯切深度等因素有关,可按表1—1选取。

表1—1锯切余量

锯切的尺寸公差取±0.2~0.5mm 。 2、整平余量

整平时,磨去玻璃层的厚度,决定于毛坯玻璃的厚度,表面不平程度及其它表面疵病大小,一般加工中单面整平余量取0.2~0.6mm ;

3、磨外圆加工余量与公差

磨外圆余量是指将整平后的方料,按其边长磨到圆直径之间的磨去量,根据磨外圆的加工机床与零件尺寸不同,可按表1-2确定,磨外圆公差可按表1-3确定。

表1-2磨外圆余量

表1—3 磨外圆公差

4、研磨、抛光余量与公差

研磨的余量与被加工零件开关和尺寸、毛坯的种类、机床精度等因素有关。抛光余量十分微小,它与精磨余量一起给出。

(1)用散粒磨料研磨时,粗磨余量参考表1-4:

表1-4 散粒磨料粗磨余量

(2)用固着磨料研磨时,粗磨铣切余量参考表1—5,对于棱镜,考虑到修磨角度,余量应当增大。

表1—5 固着磨料粗磨余量

(3)精磨抛光余量及公差

精磨和抛光的余量:一般采用的数据为,零件直径≤10mm 时,单面余量取0.15~0.20mm ,零件直径>10mm 时,单面余量取0.20~0.25mm 。 高速精磨余量一般取0.1mm 。 3

、定心磨边余量

凹透镜的定心磨边余量参考表1—6选取。对于凸透镜当其直径与凹透镜尺寸相同时,可选取比表1—6低一级的余量。

表1—6 凹透镜定心磨边余量

1.4.4 光学零件毛坯尺寸的计算

各工序的加工余量确定之后,就可计算出毛坯的尺寸。 1、透镜的毛坯尺寸计算

对于双凸透镜可按下式计算:

t=t0+2(p1+p2)

对于凹凸透镜可按下式计算:

t=t0+2(p1+p2)+h

对于双凹透镜可按下式计算:

t=t0+2(p1+p2)+h1+h2

式中:t——毛坯的厚度;

t0——透镜的中心厚度;

p1——精磨抛光余量(单面);

p2——粗磨余量(单面);

h1、h2――凹面的矢高。

2、棱镜的毛坯尺寸计算

棱镜的种类虽多种多样,但都可认为是若干个三棱镜的组合,所以只需分析三棱镜毛坯尺寸的计算。

第二章光学零件制造工艺实习

2.1光学零件的粗磨成型工艺

2.1.1粗磨及其要求

一、概述

1、什么是粗磨

将玻璃加工成透明的光学表面,无论采用传统工艺还是机械化工艺,均需要经过三大基本工序:即粗磨、细磨(精磨)、抛光。

粗磨是将玻璃块料或型料毛坯加工成具有一定几何形状、尺寸精度和表面粗糙度的工件的工序。按国内一般情况,粗磨工序是包括毛坯加工分工序的,而狭义的粗磨是仅指在已基本成型的毛坯上研磨表面,使其表面形状(如球面半径)和表面粗糙度满足下一步上盘细磨要求的那一部分工作。这里所述粗磨则指较广的范围,即从由块料加工毛坯开始,因此它所包含的分工序相应地要比成型毛坯的多一些。

2、粗磨的要求

粗磨的要求是随零件的种类不同而不同的。

对于球面零件,粗磨加工的要求是:一定的曲率半径、中心厚度、中心偏不超过某一范围;

完工后的表面粗糙度要求达到3.2(R

1

=3.2μm)相当于旧标准光洁度等级为V5;对于平面零件,粗磨加工的要求是:一定的角度、厚度、外形尺寸;完工后的表面粗磨度一般应比球面零件的要求高一些。

二、粗磨工艺的机床、设备与辅料

传统工艺用机床采用散粒磨粒加工,主要种类有:

(1)割料机:主要结构为一高速旋转的铁片圆盘,下置一个砂桶,用手推动玻璃进行锯割,俗称泥锯;

(2)粗磨机:该机床由一电机通过皮带驱动主轴转动,主轴上端装有平模或球模,主轴转速可以利用塔轧变速,研磨时可根据工件加工余量的大小,向平模或球模添加不同粒度的磨料与水的混合物。玻璃的磨除量和表面凹凸层与磨料粒度、磨料种类、磨料供给量、机床转速及压力等因素有关。该机只有一个主轴,故又称单轴机,若有两个主轴则称粗磨二轴机。

三、粗磨量具

根据粗磨精度情况,量具使用范围如下:

(1) 钢尺:用于划线、切料、核料、测量;

(2) 分厘卡:0—25mm规格,用于凸透镜中心厚度测量;25mm以下的外圆及棱镜尺寸测量;加装测量头还可测量凹透镜的中心厚度;25~50mm规格,用于25—50内各种外圆尺寸、棱镜尺寸测量;

(3) 游标卡尺:用于零件直径、长度、高度、内径等大于50mm的尺寸测量;

(4) 百分表:测量零件深度、平行度、凹透镜中心厚度;

(5)角尺:包括直角尺、调整角尺(角规)、万能角尺,用于测量零件角度,是棱镜加工的必备量具;

(6)刀口尺:用于检验平面零件的平面性;

以上量具校正时应用三级块规。

四、粗磨磨料

粗磨磨料最常用的是金刚砂,其主要成份为Al

2O

3

、SiO

2、

Fe

2

O

3

等,系天然矿物产品。

磨料生产中,对于粗细不同的磨料是用其粒度来表示的。按国家标准规定,对用筛选法获得的磨料粒度号用一英寸长度上的筛孔数目命名,如60、80、120、280。号数越大,磨料越细;较细的磨料用水选法分级,以实际尺寸命名粒度号。如W。、W20、Wo等,号数越大,磨料越粗。由于各种粒度的磨料实际上是一群粒径在一定范围内的混合体,因此,对磨料的质量还要求要有一定的粒度均匀性。

五、粘结材料

用于粘结零件,是一种零件粘结和装夹辅助材料,常用的有柏油和松香。

按一定比例配合熬制成的火漆、松香和黄蜡配制的粘结胶等,其主要指标是针入度和软化点。软化点越高,针入度越小,胶则越硬.对于粘结胶,软化点约为上盘温度,而适宜使用的室内温度则应低于此值,粘结胶软化点应大于80℃。

2.1.2 粗磨磨具

粗磨磨具包括加工用的研磨模、倒角模和装夹粘结用的粘结模。加工模具又称工具,多用铸铁制造;粘结模又称夹具,常用铝合金或铸铝制成,按其外形可分为球面和平面两类,各种球面模具的主要差别在于球面半径精度和模具的矢高,不同模具原则上不能通用。平面模具主要指标是其口径大小,通用性较大。

一、球面零件的粗磨

A、球面零件粗磨工艺过程

球面零件粗磨工艺过程根据所用毛坯的类型及加工方式的不同而不同。

1、块料毛坯:传统工艺下的球面零件粗磨工艺过程,可由下列工序构成:

(1) 锯料(切割):按零件毛坯尺寸进行锯切;

(2) 整平:磨去锯切时留下的不平痕迹;

(3) 切片(或割方):按零件直径毛坯尺寸切片割方;

(4) 胶条:按零件厚度方向胶成长条;

(5) 滚圆:用手工方法将胶条磨去棱角再滚磨成圆柱,或装在专用机床上直接按尺寸要求磨外圆;

(6) 拆胶、清洗:胶条拆开获得若干单个圆形玻璃片;

(7) 磨球面(俗称开R):将圆片平表面按图纸要求磨成球面;

(8) 倒角:磨去锋利的边缘;

(9) 清洗送检。

2、型料毛坯:型料毛坯一般是已具有圆片形状的玻璃料或是热压成型的球面玻璃料两种,对于型料毛坯一般是采用机械化工艺加工,其工序过程有:

(1)型料检验型料是一定质量的光学玻璃经热加工后的产品,其理化性质常有改变,因此用料时,一定要按图纸要求逐项检验,合格方可使用;

(2)上盘将型料上刚性盘装夹

(3)铣磨球面用金刚石磨轮在铣磨机上进行铣削形成球面;

(4)粗磨修整这一工序主要用于部分机械化工艺中,即成盘铣磨好的球面零件,下盘后要单只粗磨修整并倒角,方能送古典式细磨工序加工。

B、主要工序操作方法

1、锯料(切割):锯料的目的是将大块料锯切成小块或片状,以利下道工序加工。可按以下步骤完成。

(1)选料:根据图纸上对材料提出的各项指标要求,认真细致地选择,不可出错,稍有差错,加王后即成废品,既费工又费料,因为以后各道工序一般不再检查,也很难检查。

(2)划线:划线的尺寸是图纸上零件要求的名义尺寸,总的加工余量与锯缝宽度三部分之和。

双凸透镜划线尺寸计算:

厚度划线尺寸:6(图纸上名义尺寸)+0.3(细磨抛光余量)+0.2(粗磨余量)+1(整干余量)+2(锯缝宽度)=8.5。式中:单位是毫米(mm);

直径划线尺寸:30(图上名义尺寸)+1.5(磨边余量)+1(滚圆余量)+1(磨方余量)+2(锯缝宽度)=35.5 。

(3)锯切:在泥锯上锯切;先检查机床是否正常,砂桶内有无合适的砂浆,工作台是否可靠。然后开动机床,手持玻璃沿靠板缓缓推进切割;对较薄的玻璃块,为防止最后崩边可预先胶上一块保护玻璃再行切割。

若在金刚石锯片切割机上切割,先按操作说明书检查机床是否正常,锯片装夹是否紧固,冷却液是否流通。然后装夹玻璃,调整好位置,开动电机自动切割。

(4)锯切操作注意事项

a、锯片不平直时:应先调整平直,轴上安装要正确、可靠;

b、进料时,应对准锯缝,锯片和玻璃接触线不应过长,并应从玻璃边缘开始切割;

c、用手握住玻璃时,不应有上下与左右方向的跳动,切割开始与结束时用力要轻,以防崩边;

d、锯大的玻璃块料时,切到中间应调转180o再切;

e、锯下的余料,必须即时重新打印或者用玻璃铅笔写上原来的牌号及有关质量指标,以防止以后不可辨认而成为废料。

2、整平:整平的目的是磨平锯切时留下的不平痕迹及破口,以保证零件平行度,控制尺寸,提高表面光洁度。也有手工整平与机械整平两种方法。

(1) 手工整平方法手握工件,使其在铸铁研磨盘上沿椭圆形路线运动,运动方向应与

磨盘转动方向相反,同时加砂加水,研磨时需要多磨的地方应加大压力,如在凸出部、形块的厚端部或者让需要多磨的部位在磨盘的边缘部分停留的时间较长些;

(2) 机械整平用平面磨床进行磨平,或者用铣磨机床铣平,一般是多块成盘加工;

(3) 整平操作注意事项

手工整平时,要防止在工件上加压不匀造成工件表面成凸起的弧形,正确的加压方法是使工件始终贴紧磨盘表面运动,同时不可一次加压过剧,应从厚到薄逐渐过渡。

3、划方:划方是传统工艺中,加工小尺寸球面零件时常见的工序方法。对于较薄(< 10mm)的整平毛坯,不用锯切方法而是用金刚石玻璃刀划方,使用金刚石玻璃刀划方的要点如下:

(1) 选择号数合适的金刚石刀、玻璃厚时,相应的金刚石刀的号数要大;

(2) 走刀时,切削刀刃加力要合适(约2kg)应与玻璃表面成一定倾角,走刀过程中不能停顿断线;

(3) 划痕不能重复,交叉;

(4) 工作台面要平,玻璃较厚时,刀路上应涂上煤油,d>lOmm时,划后用小锤轻轻敲击划痕背面,使之开裂。

3、磨球面(开R)

这是球面光学零件的第一次成形加工。磨球面工艺的要求除加工出符合粗磨图纸上规定的球面半径值外,还应该控制偏心差,并使加工面具有一定的粗糙度。同样,磨球面也有手工与机械两种方法。

(1)手工法磨球面用手工法磨球面指用散粒磨料单件手工粗磨球面的方法。

①研磨盘以速度w1作逆时针方向转动,工件用手指按住(较小的工件可以用一木棒粘上)沿磨盘表面上下移动。为防止产生较大偏心差,工件还要依靠大拇指的推动,不断围绕自身轴线以速度w2转动;

②粗磨球面一般要用从粗到细的三道磨料加工,每一号磨料应有相应曲率半径的粗磨球模,第一道磨料要根据单件矢高的大小,选择不同的粒度(矢高大于1毫米时用粒度180#磨料;矢高为0.4~l毫米时用200~180#磨料,矢高小于0.4毫米的,用小于200#的磨料);第二道选用280#磨料,第三道选用W40。(或W2a)磨料;

③为控制偏心和检验厚度,磨完第一道磨料后应留出具一定尺寸的检验环(凹球面)和检验点(凸球面)用观察检验环是否对径等宽分布,检验点是否位于中心来判断偏心的程度。磨完第二道磨料的中心厚度大于粗磨完工尺寸约0.1毫米,第三道磨料则磨到粗磨完工尺寸。

2.1.3 平面零件的粗磨

一、平面零件的粗磨

对于具有一个侧圆柱面的一般平面零件,如分划板、度盘、平面平晶,平行平晶等,传统工艺的工艺过程类似于球面零件的粗磨工序,不同之处是无需磨制球面;平面零件粗磨表面质量比球面的要求高,应比球面零件多磨一道细一号的砂,同时要修改两表面的平行性。

用散粒磨料粗磨平面时,第一道砂根据工件的加工余量的不同,选用不同的粒度。用粒度小于180#的砂研磨后,厚度余量应比粗磨完工尺寸至少大0.5毫米;用180#砂研磨后留余量0.3毫米以上;用240#砂磨后留余量0.25毫米以上;用280#砂磨后留余量0.1毫米;最后用W40(或W2s)砂磨到粗磨完工尺寸,粗磨完工的工件表面以中间略凹些为好。

粗磨时检验工件和平模的平面性用刀口平尺,根据平尺刃口下是否漏光的情况来判断面形。检验前应将表面擦净。平尺放到工件上后不要来回拖动,以免使平尺刃口很快被磨损。

1、散粒磨料多片加工

工件尺寸小于150mm时,可采用多片成盘加工工艺。具体操作过程是:将粘盘加热,用石蜡或松香蜡将平面工件上盘,粘盘中心要凹;

2、散粒磨料单件加工

工件尺寸大于150mm时,应用小平模粘结单件加工,如外圆较规则,可不必粘结,装在套模内加工即可。

2.2 光学零件的细磨(精磨)工艺

2.2.1 概述

一、细磨工艺及其要求

粗磨完工的零件表面是比较粗糙的,其几何形状也与图纸要求差距较大,还不能用来进行抛光加工,为此,零件的粗磨工序完工之后还必须设置细磨工序。其目的有两个,一是通

=0.8μm)左右,相当于旧标准光洁度等级V 过细磨工序将零件的表面粗糙度提高到0.8(R

1

7;二是使零件几何形状更加精确,面形更为完善。所以细磨是粗磨与抛光之间的一道中间工序,也是不可少的基本工序。

等,鉴于以上原因,细磨工艺过程并无严格的界限,通常是指从280#或320#到W1、W1

粒度的散粒磨料的加工。有的地方,特别是采用金刚石丸片加工的机械化工艺场合,通常把粗磨与抛光中间的工序叫精磨工序。其作用与要求与上述细磨相同。为便于区分,以下把这一工序中用散粒磨料加工的叫细磨;用金刚石工具加工的叫精磨。

二、细磨工序的特点

1、细磨完工后工件表面粗糙度低,凹凸层深度接近抛光剂颗粒尺寸面形基本接近图纸要求,角度用测角仪检测应基本无误差;

2、细磨工序只要零件结构允许,多是成盘加工.必须指出,如果采用机械化工艺,用金刚石磨轮铣磨,金刚石丸片精磨的方式则往往在粗磨前即应完成成盘工作;

3、细磨所用机床、工具应较粗磨时精密,特别是平面研磨模,球面研磨模等,必须经过反复修改,试磨、检验符合要求后才能使用;

4、对清洁工作的要求更高,粗砂绝对不可带入细砂。为此,每道砂后都必须对工件、磨具、机床台面进行清洗。细磨完毕后用皂液作更精细地清洗。

2.2.2上盘与下盘技术

上盘是细磨<精磨)加工前的一道关键工序。无论用哪一种方法加工,无论是单件或多件加工,一般都要先上盘,即把零件按一定要求固定在粘结模上。固定的方式有用胶粘结的,也有不用胶粘结而依靠分子吸引力固定着的(光胶).对于单件上盘只是要求把零件无偏心地固定在粘结模上;对于多件上盘,则要求(1)所有零件在镜盘上加工面一致,即要求球面镜盘上所有零件的加工面位于同一球面上。如果是平面镜盘,则要求所有加工面处于同一平面内。(2)零件在镜盘上的排列必须符合可排片数多和磨损均匀的原则。由于机床功率限制和球面半径的约束,每一镜盘上所能排列的镜片数量有一极限值。另外,由于镜盘增大,均匀磨损困难程度也随之增大,所以每一镜盘上也不是排列的片数越多越好。因此,上盘以前必须进行镜盘设计,确定采用镜盘的排列方式和尺寸,所用粘结模的尺寸等。然后方能进行上盘操作。镜盘设计一般由工艺人员完成。感兴趣者可查阅曹天宁等编《光学零件制造工艺学》第五章有关内容,此处从略。

2.2.3 透镜的细磨工艺

透镜的细磨方法有两种,即用散粒磨粒细磨与金刚石工具高速精磨。

一、用散粒磨料细磨球面

用散粒磨料细磨时,磨料在研磨磨具和零件之间处于松散的自由状态,借助细磨所加压力,通过模具、磨料和零件之间的相对运动,实现零件表面成型目的。细磨前应根据零件粗磨后的表面质量,选择细磨用磨料粒度号。通常粗磨完工,表面粗糙度为3.2,相当于用w28 (302#)磨料加工的表面,则细磨第一道磨料粒度号应选用W28(302#)。

散粒磨料细磨的技术关键在于细磨磨具的面形精度、研磨速度及压力调整。如细磨研磨模具面形精度达不到要求,则应先修改研磨模具。

1、细磨模具的修改

细磨模具的修改方法根据修改量的大小,可有对磨法(凹凸一对磨具对磨),砂石或刮刀修改法。若表面误差太大时,可在球面车床上进行修改。细磨模修改后,工作表面曲率半径应符合要求,表面且不允许有不规则的凹凸不平,不允许有砂眼、气孔、大擦痕,模具工作面相对镜盘旋转中心的跳动量应小于0.1毫米。

对磨修改球面研磨模操作方法:

(1)凹模修改

①用凹模在细磨机上细磨一盘零件;

②洗净、擦干,用样板检查加工面光圈,若出现低光圈,凹模中心应多磨,将凸模安装在主轴上,凹模在上,摆幅要大,摆幅量是凹模直径的1/2左右;

③若零件表面出现高光圈,则凹模边缘应多磨。修改方法:凹模在下,凸模在上,摆幅要大,摆幅量是凸模直径的1/3左右;

各道细磨用的研磨模具的修改顺序以最后一道磨料所用模具为基准,逐步修改上一道磨料用的研磨模具。用擦贴度检验,擦贴度为1/3~1/2,即接触面积占1/3~1/2,且接触区不应集中在零件中心。如细磨用302#、302、303#三道磨料,相应有三对研磨模具。先修改303#磨料用模具,用废零件试磨看光圈检验,303磨料用模具修改好后,修改302磨,用模具亦用零件检验,试磨后的零件在303#磨料模具上看擦贴度,若合格最后修改302# 磨料用研模具。

(2)凸模修改

①试磨一盘零件。用件板检查被加工面,是高光圈时,应多磨模具边缘、修改方法是凸模在下,凹模在上,加大摆幅,摆幅量是凹模直径的1/2左右;

②用样板检查被加工面时,若是低圈则应多磨模子中心,凹模在下、凸模在上。摆幅要大,摆幅量是凸模直径的1/3;

③擦贴度观察方法为了方便而有效地观察擦贴度,可在零件(镜盘)上哈气,哈出的带有水汽的气体在玻璃表面冷凝成水膜,贴合在模子上,接触处形成水印。取下镜盘后,看水印大小及分布状态即可判别擦贴度大小。

2、细磨操作过程

散粒磨料在普通细磨机上细磨过程如下:

(1)根据被加工零件的技术要求和镜盘大小选择机床。一般机床可加工的最大镜盘尺寸按平面镜盘尺寸千计算,球面镜盘应进行换算。决定机床转速、三角架摆幅、铁笔的前后位

置和高低。

(2)分清磨料粒度号,依次确定磨去余量分配。细磨余量根据磨料号。零件大小、零件材料软硬程度确定。单面余量<0.01mm时可用Wu和Wzo号磨料;单面余量0.1mm左右时,可用Wo\Wi4\Wlo号磨料。为了保证零件厚度,对于厚度公差0.1mm的零件,在第二面加工时应按厚度大小配盘,若厚度差别过大,应单只修磨,整盘零件厚度公差在0.05mm以内;

(3)将镜盘或模具装上机床主轴。正常情况下,一般凸镜盘及直径大于350mm的凹镜盘应装在主轴上,而凹研磨模应扣在其上,由铁笔拨动;

(4)在下盘上均匀涂布浓些磨料浆,放上镜盘,手推动几下,使磨料分布均匀。然后手扶铁笔,架至上盘支承孔内,开动机器。先开主轴开关,再开摆动开关。5分钟左右取下镜盘检查零件是否全部磨到.如果均匀磨到,可继续加磨料研磨。如果镜盘边缘或中间均匀地未磨到,应再修改模具。如镜盘上局部区域未磨到,应预热一下镜盘再磨。如仍磨不到,则表示上盘时各零件的加工面不在一个球面上,应重新上盘。

(5)镜盘和模具研合后,可在铁笔上部加荷重,以加快研磨速度,采用两道磨料制时,球面第一道磨料应研磨10—20分钟。

(6)清洗镜盘。检验无砂眼和擦痕时,换用第二道磨料。第二道磨料开始前,磨具、台面、铁笔等均应清洗干净.当最后一道磨料在整个镜盘表面研磨均匀之后应停止加磨料,再加5—10分钟的水,磨到模具表面呈灰青色或灰黑色时取下。

(7)用温水洗净镜盘,检查表面细磨质量。合格后送抛光。细磨中零件最后面形和样板相比,一般应为低光圈,光圈数为2—3为宜。

2.3 光学零件的抛光工艺

光学零件要获得透明的光学表面必须进行抛光加工,它是光学零件制造过程中所花工时最多,要求最高,影响质量的因素多而易变的一道主要工声。

2.3.1 概述

光学零件抛光工序在细磨(或精磨)之后进行。抛光的作用机理目前还没有形成一个完整统—的理论。由于影响抛光质量的因素多而易变,故达到抛光作用的手段和途径也多并各有差异。但对抛光操作的基本要求,抛光的基本过程和方法,抛光所用的各种辅料,抛光过程中的质量监控方法等均已比较成熟,在用散粒磨料的传统工艺中尤为如此,是光学零件工艺实习的重点学习内容。

一、抛光的基本要求

细磨过的光学零件,外形几何.尺寸已基本确定,抛光是对表面作微量修整,基本要求有:

1、获得光学表面,即最后要磨除细磨加工留下的凹凸和裂纹层,获得表面粗糙度为0.008 表面疵病符合图纸要求的透肯表面。

2、表面面形精度符合图纸要求的N和△N。

上述两个要求在一般的抛光过程中是分步达到的。即先抛亮,达到第一个要求;然后精修光圈,使之合格达到第二个要求。

二、抛光过程和抛光方法

1、古典抛光工艺的特点及过程

古典法抛光是一种历史悠久的加工方法。其主要特点是:采用普通的研磨抛光机床或手工操作;抛光模层材料多采用抛光柏油;抛光剂是用氧化铈或氧化铁;压力是用加荷重方法实现。虽然这种方法效率低,但加工精度较高,故目前仍被采用着。其基本过程为:在和细磨通用的各种平摆式机床上(二轴机、四轴机)装好镜盘与抛光模,其安装方式,不管是镜盘还是抛光模,一般都是凸的在下,凹的在上,将抛光液加在抛光模和零件表面之间,借助两者的相对运动,使镜盘表面(零件表面)逐渐形成光学表面。

抛光过程中,面形精度使用光学样板检验其光圈数决定。抛光质量好坏的关键是准确的误差判别(光圈识别)和各种工艺因素的合理调节,即取决于操作人员的技术水平。

2.3.2 抛光辅料

抛光过程中使用的辅助材料很多,其质量好坏对光学零件加工质量及生产效率有重要影响,其中以抛光中用作磨削物质的抛光粉与形成光学表面面形的抛光摸层材料最为重要。

一、.抛光粉

在古典法抛光工艺中,抛光粉是必不可少的磨削物质.对抛光粉的要求是:

(1)应具有一定的晶格形态和晶格缺陷,有较高的化学活性;

(2)粒度大小应均匀—致,纯度高、不含有机械杂质;

(3)硬度适中;

(4)有良好的分散性(下易结块)和吸附性。

在光学玻璃抛光中,常用的抛光粉有以下几种:

(1)氧化铁,俗称红粉。(它属于a型氧化铁a-Fe2O3,)斜方晶系,颗粒成球形,边缘有架状物,颗粒大小约0.5—1Pm,莫氏硬度4—7比重5.2。

由于氧化铁价廉易得到,几百年来,传统工艺中一直以它为主要抛光物质。近二十年来除眼镜行业外,已逐渐为氧化铈代替。用氧化铁抛光虽效率低,但光洁度高。

(2)氧化铈(CeO2)它是稀土金属氧化物,属于立方晶系,颗粒外形呈多边形,棱角明显

球面光学样板的加工工艺

河南工业职业技术学院 Henan Polytechnic Institute 毕业设计 题目球面光学样板的加工工艺系别光电工程系 专业精密机械技术 班级 姓名 学号 指导教师 日期 2013年11月

毕业设计任务书 设计题目: 球面光学样板的加工工艺 设计要求: 1.设计球面样板加工的尺寸和精度要求,并附图例 2.设计出球面样板的制造工艺(包括球体的研制,球面样板的制造),并设计出球体制造的工艺的工序要求,其中要求图文并用。 3.设计出球面样板加工的曲率半径以及其中的误差分析,并附图解释。 4.做出球面样板加工的精度分析并做好精度检验要求。 设计任务: 1.设计球面的标准样板; 2.设计球面样板的制造工艺及设计图示; 3.设计球面样板的曲率半径; 4.样板的精度分析与检验; 5.写出详细毕业设计说明书(10000字以上),要求字迹工整,原理叙述正确,会计算主要元器件的一些参数,并选择元器件。 设计进度要求: 第一周:在图书馆查看书籍,在网上搜索资料,在实践中听取老师的教导,以便于查找各类相关资料,使资料更完整,更精确,有利于论文的撰写。 第二周:使自己对论文的框架有个大概的了解,将收集到的资料进行整理分类,及时与导师进行沟通。将设计的雏形确立起来,论文的文字叙述全部做好。 第三周:根据论文的要求对论文进行排版,绘图,把文字校对等项工作完成。 指导教师(签名):

摘要 球面样板是检验球面光学零件曲率半径和球面面型误差的量具,由于光学系统多由球面组成,而球面的曲率半径测试的特殊性,逐渐发展成这套即比较简单,又容易控制误差的测量工具和检验方法。样板是光学零件制造过程中使用最广泛、最简便的一种精密测量工具,因此,在光学零件生产技术准备阶段,必须先设计和制造一套标准样板和一定数量的工作样板。 球面光学样板的制造与球面零件制造,虽然有许多类似之处,但由于样板是测量工具,要求面形精度比一般透镜高得多,因此,为了保证其高精度,球面徉板往往成对制造。 关键词:粗磨,精磨,抛光,工艺,检测。

光学冷加工毕业

光学冷加工毕业

河南工业职业技术学院Henan Polytechnic Institute 毕业设计 题目光学零件铣磨 系别光电工程系 专业精密机械技术 班级精密0901 姓名田俊 学号150090106 指导教师黄长春 日期2011年10月10

摘要 铣磨机的使用大大提高了粗磨整平工艺的机械化程度。但由于机床本身的精度以及磨轮、磨削量、进给量、冷却液等多方面因素的影响,粗磨光学零件之光洁度一般只能达到220~#~240~#砂面。国内粗磨平面一般采用的磨轮粒度均在JR60~#~100~#之间,其浓度为100%。粗磨完工所要求的零件表面光洁度等级一般为▽6。从我国粗磨平面的特点来看,一般要去除较大的加工余量,单面余量多在2~3毫米之间,有的零件磨削第一面时其余量竟达5毫米以上。这势必要求金刚石磨轮具有良好的磨削性能,也就是磨轮应选用青铜结合剂且粒度应较粗。实践证明,粒度在80~#~100~#的磨轮由于其磨削力小,用于PM5 关键词:光学零件铣磨机, 表面光洁度等级, 线速度 ,真空吸盘, 整平工艺, 调速机构 ,粗磨 ,金刚石磨轮 ,粒度

ABSTRACT Milling mill use has greatly increased the degree of mechanization of kibble leveling process. However, due to the accuracy of the machine itself, as well as grinding wheels, grinding amount, feed rate, coolant, and many other factors affect the roughing the optical parts of finish is generally only reach 220 to # 240 to # sand surface. Domestic kibble plane generally use the granularity of the grinding wheel between the JR60 ~ # ~ 100 ~ #, the concentration of 100%. Kibble completion requirements of the parts surface finish level generally ▽ 6. View from the our kibble plane features, generally to remove a larger allowance, single-sided margin of more than 2 to 3 mm, and some parts grinding the first side when the rest of the amount as high as more than 5 mm . This will require that the diamond grinding wheel with a good grinding performance, is the grinding wheel should be used bronze binder and coarse granularity should. Practice has proved that the particle size in the 80 ~ # 100 to # of the grinding wheel due to its small grinding force for PM5 Keywords: optical, parts milling, mill surface finish grade line, speed vacuum consolidation process, level governor

光学零件加工技术

光学零件加工技术 邬建生 二 00 四年元月(整理) 目录 一、统研磨抛光与高速研磨抛光特点 二、准球心法和传统法比较 三、切削工序的要求 四、粗磨工序的要求 五、如何保持粗磨皿表曲率半径的精度 六、修磨皿的技巧 七、影响抛光的因素 八、抛光剂(研磨粉)的影响 九、研磨皮及选择十、传统加工要求十一、计算公式十二、光圈识别与修整措施十三、机床的选择十四、机床的调整十五、超声清洗原理十六、品质异常分析步骤十七、工艺规程的设计 光学零件的加工,分为热加工、冷加工和特种加工,热加工目前多采用于光学零件的坯料备制; 冷加工是以散粒磨料或固着磨料进行锯切、粗磨、精磨、抛光和定心磨边。 特种加工仅改变抛光表面的性能,而不改变光学零件的形状和尺寸,它包括镀膜、刻度、照相和胶合等。冷加工各工序的主要任务是: 粗磨(切削)工序:是使零件具有基本准确的几何形状和尺寸。精磨(粗磨)工序:是使零件加工到规定的尺寸和要求,作好抛光准备。抛光(精磨)工序:是使零件表面光亮并达到要求的光学精度。定心工序:是相对于光轴加工透镜的外圆。 胶合工序:是将不同的光学零件胶合在一起,使其达到光轴重合或按一定方向转折。 球面光学零件现行加工技术三大基本工序为: 1、范成法原理的铣磨(切削)

2、压力转移原理的高速粗磨 3、压力转移原理的高速抛光。 范成法原理的铣磨(切削),虽然加工效率较高,但其影响误差的因素较多,达到较高精度和较粗糙度较困难。压力转移原理的准球心高速粗磨和高速抛光,零件受力较均匀,加工效率也较高,但必须预先准确修整磨(模)具的面形,才能保证零件的面形精度。准确修整面形精度需要操作者的经验和技巧,而且需反复修整。 一、传统研磨与高速研磨特点 1. 传统研磨 传统研磨也叫古典研磨,它是一种历史悠久的加工方法 其主要特点是: (1)采用普通研磨机床或手工操作; (2)要求人员技术水平较高; (3)研磨材料多采用散砂(研磨砂)抛光沥青 (4)抛光剂是用氧化铈或氧化铁; (5)压力用加荷重方法实现虽然这种方法效率低 , 但加工精度较高所以,目前仍被采用。 2. 高速研磨抛光一般是指准球心法(或称弧线摆动法)。其主要特点是: (1)采用高速、高压和更有效的利用抛光模,大大提高了抛光效率 (2 )压力头围绕球心做弧线摆动,工作压力始终指向球心,也是靠球模成型的。 3. 范成法 准球心法对机床的精度要求较低 , 加工方法和传统法相近,易于实现,用的较广;范成法对机床精度及调整要求较高,目前很少采用。 二、准球心法和传统法较 1. 准球心法

光学透镜的加工工艺

光学玻璃透镜 1 成型方法 原来的玻璃透镜模压成型法,是将熔融状态的光学玻璃毛坯倒入高于玻璃转化点50℃以上的低温模具中加压成形。这种方法不仅容易发生玻璃粘连在模具的模面上,而且产品还容易产生气孔和冷模痕迹(皱{TodayHot}纹),不易获得理想的形状和面形精度。后来,采用特殊材料精密加工成的压型模具,在无氧化气氛的环境中,将玻璃和模具一起加热升温至玻璃的软化点附近,在玻璃和模具大致处于相同温度条件下,利用模具对玻璃施压。接下来,在保持所施压力的状态下,一边冷却模具,使其温度降至玻璃的转化点以下(玻璃的软化点时的玻璃粘度约为107。6泊,玻璃的转化点时的玻璃粘度约为1013。4泊)。这种将玻璃与模具一起实施等温加压的办法叫等温加压法,是一种比较容易获得高精度,即容易精密地将模具形状表面复制下来的方法。这种玻璃光学零件的制造方法缺点是:加热升温、冷却降温都需要很长的时间,因此生产速度很慢。 为了解决这个问题,于是对此方法进行了卓有成效的改进,即在一个模压装置中使用数个模具,以提高生产效率。然而非球面模具的造价很高,采用多个模具势必造成成本过高。针对这种情况,进一步研究开发出与原来的透镜毛坯成型条件比较相近一点的非等温加压法,借以提高每一个模具的生产速度和模具的使用寿命。另外,还有人正在研究开发把由熔融炉中流出来的玻璃直接精密成型的方法。 玻璃毛坯与模压成型品的质量有直接的关系。按道理,大部分的光学玻璃都可用来模压成成型品。但是,软化点高的玻璃,由于成型温度高,与模具稍微有些反应,致使模具的使用寿命很短。所以,从模具材料容易选择、模具的使用寿命能够延长的观点出发,应开发适合低温(600℃左右)条件下模压成型的玻璃。然而,开发的适合低温模压成型的玻璃必需符合能够廉价地制造毛坯和不含有污染环境的物质(如PbO、As2O3)的要求。对模压成型使用的玻璃毛坯是有要求的: ①压型前毛坯的表面一定要保持十分光滑和清洁; ②②呈适当的几何形状; ③③有所需要的容量。毛坯一般都选用球形、圆饼形或球面形状,采用冷研磨成型或热压成型。 模具材料需要具备如下特征: ①表面无疵病,能够研磨成无气孔、光滑的光学镜面; ②在高温环境条件下具有很高的耐氧化性能,而且结构等不发生变化,表面质量稳定,面形精度和光洁度保持不变; ③不与玻璃起反应、发生粘连现象,脱模性能好; ④在高温条件下具有很高的硬度和强度等。 现在已有不少有关开发模具材料的专利,最有代表性的模具材料是:以超硬合金做基体,表面镀有贵金属合金和氮化钛等薄膜;以碳化硅和超硬合金做基体,表面镀有硬质碳、金刚石状碳等碳系薄膜;以及Cr2O-ZrO2-TiO2系新型陶瓷。 玻璃透镜压型用的模具材料,一般都是硬脆材料,要想把这些模具材料精密加工成模具,必需使用高刚性的、分辨率能达到0.01μm以下的高分辨率超精密计算机数字控制加工机床,用金刚石磨轮进行磨削加工。磨削加工可获得所期盼的形状精度,但然后还需再稍加抛光精加工成光学镜面才行。在进行高精度的非球面加工中,非球面面形的测试与评价技术是非常重要的。对微型透镜压型用模的加工,要求更加严格,必需进一步提高精度和减轻磨削的痕迹。

光学冷加工工艺和设备

光学冷加工工艺和设备现状及其发展 张曾扬 ▲历史的回顾 我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。 光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。 五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅

助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。 二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。 二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。 进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量

我国光学加工技术的发展历史

我国光学加工技术的发展历史 发布日期:2008-03-05 我也要投稿!作者:网络阅读:[ 字体选择:大中 小 ] 我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。 五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。 二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。 光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。 二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量生产中占据了统治地位。 本世纪初,我国光学制造业已取得了辉煌的成果,进入了发展的高峰,已形成了很强的生产能力。据有数字统计的资料,我国光学制造能力已超过了五亿件/年,当然这不包括,一些小型民办企业的生产能力。在亚洲也好,在世界上也好,中国光学冷加工的能力应当是名列前茅的,但我们的技术水平却是比较落后。主要是表现在不能大批量生产高精度元器件,大部分企业不能长期稳定生产,不能制造高精度的特种光学零件。造成此种现象的原因:a.执行工艺规程不够b.没有专门工艺研究和工艺设备的研究开发单位c.没有行业法规d.没有软件贸易企业,没有“光学工程”的承包单位。 光学加工设备和光学工艺的发展是分不开的。孔夫子说过“工欲善其事,必先利其器”。

真光学冷加工实习报告

光学冷加工实习报告 一:前言 光学加工设备和光学工艺的发展是分不开的。孔夫子说过“工欲善其事,必先利其器”。这说明设备在工艺技术发展中的重要性。 我国光学加工设备和国际上光学设备的发展过程是一致的,即脚踏、机动、电动。基本是两大系列,一是德国系列、二是日本系列。解放前主要是德国设备为主,即从1936年云光厂成立,从国外引进的德国设备如:单轴粗磨机、二轴精磨抛光机、四轴精磨抛光机、五轴精磨抛光机等。二是伪满的大陆科学院为维修使用的光学仪器从日本购进的设备。解放后156项中的西光厂又从苏联购进了光学加工设备、它的原型机亦是德国设备、如ЩМ-500和ЩnМ-350型单轴粗磨机、ЩnМ-350三轴精磨抛光机、ЩnМ-200中型六轴精磨抛光机、和ЩnМ-60小型六轴抛光机以及Ц-2型定心磨边机等。 由古典方法转向机械化粗磨(铣磨)、准球心抛光,是光学制造业的一次重大的变革. 对光学加工改革起着推动作用的是兵器工业“739”会议。上世纪七十年中期是我国光学制造技术大变革的时期。八十年代光学制造技术最大变革由成盘加工转向单件加工。 单件加工很早就在日本采用,1983年“北总”是从日本引进PenTaxK1000相机开始引进这种技术和设备的。而部分技术人员和工人早在这以前从事劳务出口时,在日本已经接确此项工艺,但由于我们在八十年代初期,虽然引进了设备,而在工艺结构上还不完善,没有相应配套的工装和辅料,所以采用上述设备后,生产效率并不高。

加之当时,生产批量不大,没能引起人们的注意和足够的认识。但是一些专家看到了此种工艺的特点,它很适合中国国情。因此北总在1983年于江西召开的工艺研讨会上把它列入了三条高效生产线之内。这三条生产线即:平面高效生产线(228厂承担)、球面单件生产线(308和598厂承担),刚性上盘球面零件高效生产线(248和原5208厂承担)。

机械制造(冷加工)学科的范畴、研究内容及特点

机械制造(冷加工)学科的范畴、研究内容及特点 (以典型机械产品为例展开论述) 冉伟康 (北京石油化工学院) 摘要:该文介绍了我国金属冷加工行业,特殊钢丝生产现状和钢丝生产主要工艺流程。并通过介绍钢丝在原料表面处理、热处理、拉拔的过程,论述了冷加工的学科范畴、研究内容及特点。 关键词:冷加工钢丝拉拔机械制造表面处理 前言:金属冷加工是钢铁工业生产的一个重要组成部分。金属冷加工的种类较多,例如:钢丝、钢丝绳、钢绞线及其它金属制品等等。 1.1钢丝生产在国民生产中的地位 钢丝生产是以热轧线材(也称盘条)为原料,经冷加工而制成的线材制品"以钢丝为原料再加工而成的钢铁制品。如商品钢丝、钢丝绳等称为二次制品"钢丝生产与其它钢铁生产相比,具有工艺和装备技术较为复杂,产品质量要求较高,生产管理要求严格,生产周期较长等特点,属于技术密集和劳动密集型的钢材生产。因此,钢丝生产的水平,在一定程度上也反映出一个国家的工业规模和制造技术水平。金属制品中的钢丝是国民经济建设重要的基础材料,在国民经济中占着重要地位,其产品广泛应用于冶金、煤炭、石油、交通、通讯、化工、林业、渔业、机械、轻工、建筑等各个部门。因为钢丝具在其它钢材无与伦比的优点,其规格可小达0.00lllun,比头发丝还细10倍,且尺寸精度高,断面形状多样化,应用范围广阔,是国家重点扶持并鼓励发展的行业"我国金属制品材料行业经过五十年的发展,己逐步形成了多种经济成分共存、竞相发展的局面。随着国民经济产业的转型,对金属制品材料行业也提出了新的要求,在中低档次产品供过于求的同时,那些投资大、科技含量高、生产难度大、质量要求严的高档次产品出现了较大缺口。如钢帘线在我国问世已30年,但至今其规模、质量、数量都还不能满足市场的需求,缺口很大;又如汽车专用高级弹簧钢丝、高强度耐疲劳的石油专用钢绳、矿山提升用绳、电梯钢绳等。尽管我国均能生产,但由于品种质量规格等问题,目前仍需进口。挑战的背后就是机遇,因此,金属制品材料企业要发展,要状大必须加大资金投入,致力于产品科技含量和工艺、设备水平的提高。 1.2钢丝生产依据 钢丝生产主要是依据产品标准要求,确定生产方式。产品标准是供方与顾客之间的纽带。根据产品标准,采用合理工艺,实行科学管理,是确保产品合格的基本保证。 在钢丝生产中,同一个钢号(化学成分相同),采用不同标准,生产方式就不同。就T9A为例:当执行GB/T4357-89弹素弹簧钢丝标准时,必须采用连续线生产,产出的成品钢丝可用于制造各种弹簧、编制钢丝绳等。当执行GB/T5952- 86 弹素工具钢丝标准时,就必须采用周期线生产,产出的成品钢丝,可用于制造工具。如:刀具、钻头、制针等。因为,连续线和周期线产出的钢丝显微组织不同、力学性能不同、工艺性能不同,所以,用途不同。 值得阐明的是:不论是连续线生产还是周期线生产,热处理、表面处理、加

光学零件加工技术课程设计工艺规程编制模板

精品文档 。 1欢迎下载 第十五章 光学零件工艺规程编制 工艺规程的作用: ①工艺规程是光学零件加工的主要技术文件,是组织生产不可缺少的技术依据。 ②合理的工艺规程是保证加工质量、提高生产效率、反映生产过程和工艺水平的综合技术资料。 ③要想编制出合理的工艺规程,必须掌握光学零件的制造特点,考虑现有生产条件,并尽可能采用新工艺。 光学零件加工技术是在不断发展的,对不同生产方式、不同生产规模、不同加工对象来说,工艺规程是有较大区别的,例如:古典法、高速加工法。 §15-1 编制工艺规程的一般原则 光学零件常规加工工艺规程编制的一般原则如下: 一、对光学零件图进行工艺审查 在编制工艺规程时: ① 要熟悉产品图纸的技术条件, ② 熟悉其他原始资料, ③ 进行综合技术分析, ④审查零件图的设计合理性、结构工艺性及经济性。

精品文档 。 2欢迎下载 二、确定加工路线及加工方法 ① 根据生产纲领(大量生产还是小量生产)确定生产类型(小量、成批、大量?), ② 按照生产类型及零件的材料、形状、精度、尺寸要求决定毛坯类型, ③根据生产类型与毛坯类型确定加工路线和加工方法。 三、设计必要的专用样板,或选择通用样板。 主要是标准样板和工作样板。 四、确定加工余量及毛坯尺寸 根据生产类型、加工方法、毛坯类型确定各工序的加工余量。应先从最后一道工序开始确定加工余量,例如,透镜的加工余量应先从定心磨边开始给定直径尺寸,棱镜和平面镜应先从抛光开始给定厚度尺寸,然后再考虑各工序中的相应余量。最后给出总余量和毛坯尺寸。 五、设计及选用工夹具、机床、测量仪器 在确定加工路线和加工余量后,按各工序的要求,设计必要的工、夹具,如透镜的精磨、抛光工、夹具设计,包括粘结膜、贴置模、精磨模、抛光模等的设计。并根据生产条件选用机床和测量仪器。 六、选用必需的光学辅料。 光学零件生产中所使用的光学辅料主要有清洗材料、粘结材

光学冷加工-研磨加工基本知识

研磨加工基本知识讲义 一、镜片加工流程及基本知识 1、镜片加工流程: 切削→研削→研磨→洗净 2、切削的基本知识: 切削:国内叫“粗磨”,国外叫NCG,为英文“球面创成”之缩写。 切削目的:去除材料硝材表面层,深度为0.5~0.6mm.。 由于硝材压型时精度不高,不加大加工余量就不能达到镜片所需尺寸(包括曲率、肉厚等)。 3、研削的基本知识: 研削(也称精磨或砂挂),是镜片研磨前的极为重要的工序,研削加工的主要目的为: ①加工出研磨工序所需要的表面精细度。 研削分为两道工序: A、第一道工序称S1,用1200#~1500#的钻石粒。 B、第二道工序称S2,用1500#~2000#的树指进行加工。 ②加工出研磨工序所需要的球面精度。 ③满足镜片中心肉厚要求,在规定的尺寸公差之内。 ④研削品质的好坏对研磨后镜片的品质影响极大。 如研磨不良伤痕(キ)、砂目(ス)、肉厚、面不等不良均与研削有直接关系,研削品 质的好坏决定研磨品质的优劣。 二、研磨加工基本知识: 硝材在经过切削及研削,其基本尺寸及表面光洁度已经形成,但仍不能满足客户光学上的要求,必须进行研磨工序,研磨是获得光学表面的最主要的工序: 1、研磨加工的目的: ①去除精度的破坏层,达到规定的外观限度要求。 ②精修面形,达到图面规置之不理的曲率半径R值,满足面本数NR要求及光圈局部 允差(亚斯)的要求。 2、研磨的机理:

①机械研削理论。 ②化学学说。 ③表面流动理论。 3、光圈的识别与度量(我们通常说的面即光圈) ①什么是光圈? 被检查镜片表面面形与标准曲率半径的原器面形有偏差时,它们之间含形成对称的 契形空气间隙,从而形成等厚干涉条纹,有日光照射下可见到彩色光环(此时空气 隙,呈环形对称),这种彩色的光环称为光圈,我们通常观察光圈数(即面本数)以 红色光带为准。 这是因为红色光带较宽(波长范围为0.62um~0.78um),看起来清晰明亮。 ②面本数的识别与度量 有原器检查镜片时,如果二者是边缘接触(中间有空气层),从正方稍加压力P,干 涉条纹从外向中心部移动即向内缩,称为低光圈或负光圈(图A),如果二者是从中 间开始接触(边缘有空气隙),从正上方稍加压力P,干涉条纹从中心向边缘移动(或 向外扩散)称为高光圈或正光圈(图B) ③亚斯的识别与度量 目前公司将面精度的中高、中低、垂边、分散或边等统称为亚斯,亚斯一定要满足 作业标准的要求,超过标准含影响镜头的解像,所以亚斯是一个非常重要的指标,

光学冷加工基础知识

1.1 对抛光粉的要求 a. 颗粒度应均匀,硬度一般应比被抛光材料稍硬; b. 抛光粉应纯洁,不含有可能引起划痕的杂质; c. 应具有一定的晶格形态和缺陷,并有适当的自锐性; d. 应具有良好的分散性和吸附性; e. 化学稳定性好,不致腐蚀工件。 1.2 抛光粉的种类和性能 常用的抛光粉有氧化铈(CeO2)和氧化铁(FeO3)。 a. 氧化铈抛光粉颗粒呈多边形,棱角明显,平均直径约2微米,莫氏硬度7~8级,比重约为7.3。由于制造工艺和氧化铈含量的不同,氧化铈抛光粉有白色(含量达到98%以上)、淡黄色、棕黄色等。 b. 氧化铁抛光粉俗称红粉,颗粒呈球形,颗粒大小约为0.5~1微米,莫氏硬度4~7级,比重约为5.2。颜色有从黄红色到深红色若干种。 综上所述,氧化铈比红粉具有更高的抛光效率,但是对表面光洁度要求高的零件,还是使用红粉抛光效果较好。 2. 抛光模层(下垫)材料 常用的抛光模层材料有抛光胶和纤维材料。 2.1 抛光胶 抛光胶又名抛光柏油,是由松香、沥青以不同的组成比例配制而成,用语光学零件的精密抛光。 2.2 纤维材料 在光学工件的抛光中,若对抛光面的面形精度(光圈)要求不高时,长采用呢绒、毛毡及其它纤维物质作为抛光模层的材料。 3. 常用测试仪器 光学零件的某些质量指标,如透镜的曲率半径、棱镜的角度,需要用专门的测试仪器来测量。常用的仪器有:光学比较侧角仪、激光平面干涉仪、球径仪和刀口仪等。 4. 抛光 在抛光过程中添加抛光液要适当。太少了参与作用能够的抛光粉颗粒减少,降低抛光效率。太多了,有些抛光粉颗粒并不参与工作,同时也带来大量液体使玻璃边面的温度下降,影响抛光效率。抛光液的浓度也要适当,浓度太低,即水分太多,参与工作的抛光粉颗粒减少并使玻璃表面温度降低,因此降低抛光效率。浓度太高,即水分带少,影响抛光压力,抛光粉不能迅速散步均匀,导致各部压力不等,造成局部多磨,对抛光的光圈(条纹)质量有影响。而且单位面积压力减少,效率降低,抛光过程中产生的碎屑也不能顺利排除,使工件表面粗糙。一般是开始抛光时抛光液稍浓些,快完工时,抛光液淡些,添加次数少些,这有利于提高抛光效率和光洁度。另外,一般认为抛光液的酸度(pH值)应控制在6~8之间,否则玻璃表面会被腐蚀,影响表面光洁度。 在抛光过程中检查光圈(条纹)时,如不合格,可以通过调整抛光机的转速和压力、工件与模具(抛光机下盘)的相对速度、相对位移、摆速和羞怯抛光模层等方法进行修改。 a. 提高主轴转速,能增加边缘部位与上模接触区域的抛光强度。经验证明,若速度过高,抛光表面温度升高,从而使抛光模层硬度降低,影响修改光圈(条纹)的效果。 b. 增加荷重以加大压力时,可提高整个抛光模和工件间接触区域的抛光强度,也将使抛光表面的温度升高,降低抛光模层的硬度。 c. 加大铁笔(上盘主轴)的位移量,可使上盘的中间部位和下盘的边缘部位同时得到

光学镜片加工工艺

目录 光学冷加工工序----------------------------------------2 玻璃镜片抛光工艺--------------------------------------3 镜片抛光----------------------------------------------4 光学冷加工工艺资料的详细描述--------------------------5 模具机械抛光基本程序(对比)--------------------------7 金刚砂 -----------------------------------------------8 光学清洗工艺-----------------------------------------10 镀膜过程中喷点、潮斑(花斑)的成因及消除方法------------12 光学镜片的超声波清洗技术-----------------------------14 研磨或抛光对光学镜片腐蚀的影响-----------------------17 抛光常见疵病产生原因及克服方法-----------------------23 光学冷却液在光学加工中的作用-------------------------25

光学冷加工工序 第1道:铣磨,是去除镜片表面凹凸不平的气泡和杂质,(约0.05-0.08)起到成型作用. 第2道就是精磨工序,是将铣磨出来的镜片将其的破坏层给消除掉,固定R值. 第3道就是抛光工序,是将精磨镜片在一次抛光,这道工序主要是把外观做的更好。 第4道就是清洗,是将抛光过后的镜片将起表面的抛光粉清洗干净.防止压克. 第5道就是磨边,是将原有镜片外径将其磨削到指定外径。 第6道就是镀膜,是将有需要镀膜镜片表面镀上一层或多层的有色膜或其他膜 第7道就是涂墨,是将有需要镜片防止反光在其外袁涂上一层黑墨. 第8道就是胶合,是将有2个R值相反大小和外径材质一样的镜片用胶将其联合. 特殊工序:多片加工(成盘加工)和小球面加工(20跟轴)线切割 根据不同的生产工艺,工序也会稍有出入,如涂墨和胶合的先后次序。 玻璃镜片抛光工艺 用抛光机和抛光粉或抛光液一起下进行抛光要设定抛光时间,压力等参数. 抛光后要立即进行清洗可浸泡,否则抛光粉会固化在玻璃上,会留有痕迹的. 1.抛光粉的材料 抛光粉通常由氧化铈、氧化铝、氧化硅、氧化铁、氧化锆、氧化铬等组份组成,不同的材料的硬度不同,在水中的化学性质也不同,因此使用场合各不相同。氧化铝和氧化铬的莫氏硬度为9,氧化铈和氧化锆为7,氧化铁更低。氧化铈与硅酸盐玻璃的化学活性较高,硬度也相当,因此广泛用于玻璃的抛光。 为了增加氧化铈的抛光速度,通常在氧化铈抛光粉加入氟以增加磨削率。铈含量较低的混合稀土抛光粉通常掺有3-8的氟;纯氧化铈抛光粉通常不掺氟。 对ZF或F系列的玻璃来说,因为本身硬度较小,而且材料本身的氟含量较高,因此因选用不含氟的抛光粉为好。 2.氧化铈的颗粒度 粒度越大的氧化铈,磨削力越大,越适合于较硬的材料,ZF玻璃应该用偏细的抛光粉。要注意的是,所有的氧化铈的颗粒度都有一个分布问题,平均粒径或中位径D50的大小只决定了抛光速度的快慢,而最大粒径Dmax决定了抛光精度

Cr12冷模加工全过程

机械制造基础大作业 ------------------------------------------------------------------------------- 第七题:Cr12冲模模具零件 制作成员:

材料牌号: Cr12 材料名称: 合金工具钢 标准号: GB/T 1299-2000 Cr12是应用广泛的冷作模具钢,具有高强度、较好的淬透性和良好的耐磨性,但冲击韧性差。主要用作承受冲击负荷较小,要求高耐磨的冷冲模及冲头、冷切剪刀、钻套、量规、拉丝模、压印模、搓丝板、拉延模和螺纹滚模等。 Cr12化学成分: 其他:镍Ni:允许残余含量≤0.25 铜Cu:允许残余含量≤0.30 钴Co:≤1.00 Cr12力学性能: 硬度:退火,269~217HB,压痕直径

3.7~ 4.1mm;淬火58-62HRC Cr12热处理规范及金相组织: 热处理规范:1)淬火,950~1000℃油冷;2)淬火980℃,油冷,180℃回火2h。金相组织:回火马氏体+未溶碳化物+残余奥氏体。

CAD视图:

加工余量:查表可知该工件单边放3到4mm余量即可,中间可以锻打出凹坑,以节省材料。 锻造公差:查表得该零件的锻造公差为a=3±3 b=3±5。 工序 因合金工具钢 Cr12耐磨性和淬透性高而塑性差、淬火变形小,所以常用来作冷冲压模具,但由于其导热性差,碳化物偏析严重,脆性大,因此加热时容易开裂。 (1)下料 ①原材料必须合格,特别是内部不可有裂纹等缺陷。 ②下料的锻造比一般控制在 2~ 4之间。

毛坯尺寸:130×130×52 密度 = 7870×10-6千克/立方毫米 质量 = 6.650 千克 体积 = 845000立方毫米 表面积 = 59800平方毫米 (2)锻造温度控制毛坯料加热要分三步: ①先预热到 500~ 600℃保温。 ②加热到 750~ 850℃保温。 ③ 再加热到 1000~ 1150℃开始锻造。

光学冷加工行业的定义

光学冷加工行业的定义 光学冷加工行业主要生产光学元器件,为光学仪器、光电子图像信息处理产品等的下游行业提供镜片、镜头等光学元件,在整个产业链构成中处于生产半成品的中间环节。 图1-1-1:光学冷加工行业的产业链构成 光学冷加工的主要工艺有压型、切削、铣磨、精磨、抛光、磨边、接合、镀膜等。行业下游的最终产品包括数码相机、拍照手机、扫描仪、投影仪、背投电视、DVD机、条形码阅读机等光学仪器和光电数码产品。光学冷加工主要为其下游产品加工光学镜片,从材质上区分,有玻璃和塑胶两大类。玻璃镜片分为平面镜和透镜两大类,其中平面镜包括平板玻璃和棱镜,透镜则包括了球面镜和非球面鏡。目前国内企业的非球面镜加工尚处于起步阶段,仍以玻璃球面镜为主流产品。 根据下游产品的不同种类,光学球面镜片依照口径规格不同分成以下几大类: 表1-1-1:光学球面镜片主要分类 行业特点:资金、技术和劳动密集型行业

资金密集型:光学冷加工行业的固定资产投入主要用于生产加工设备的购置,增加设备是产能提升的前提之一,设备等固定资产投入通常占总投入的70%-80%。 技术密集型:光学冷加工行业的技术含量较高,工艺技术和生产管理水平直接影响产品质量和良品率高低,决定了企业在市场竞争中的成本优势,并对产能规模提升形成制约。劳动密集型:光学冷加工行业生产自动化程度不高,许多环节需人工操作,各工序要求精细,需要大量熟练掌握工艺技能的操作人员。 行业的国际间产业结构调整趋势 全球光学冷加工业的最顶端技术主要掌握在日本、美国和德国厂商手上,其中日本掌握了全球光学冷加工技术的主要来源。随着近10年以来现代光电技术的大发展,光学技术发达国家纷纷调整自身产业结构和产业发展方向,逐渐退出传统光学加工领域,向现代、高端光电产品的制造、研发集中;台湾、中国大陆则逐渐成为全世界光学冷加工的制造中心。 德国:具有雄厚的光学工业基础,在光学冷加工方面具有高水平、高精度优势,蔡司镜头和来卡相机代表了世界传统光学加工和相机制造技术的最高水准。近年来,德国利用其高度专业化和生产技术柔性化的优势,大力发展现代光电技术,如集成光学、纤维光学、全息和激光技术等,传统光学加工中的镜片制造与镜头设计业务已大部分外包,仅依靠品牌经营。 美国:已完全退出了劳动力成本高昂、工艺落后的光学冷加工行业,其传统的光学仪器工业也已基本萎缩,转而凭借科技、资金优势,大力发展技术密集的现代光电设备和仪器,如:微细加工设备及检测仪器,智能化光谱仪器,生化和医疗仪器,光学遥感仪器,激光干涉仪,打印机等光学、光电仪器。 日本:充分利用电子技术优势,加速对传统光学仪器工业的改造和产品更新,特别加强独创性技术开发,促进光学仪器工业的改变。在光学冷加工方面,除少量高精密度的镜片、镜头加工外,日本已基本退出了传统的光学冷加工行业,重点向光学设计领域发展,并在光学检测设备和检测技术、光学加工和镀膜设备等的制造方面居世界领先地位,成为主要的光学冷加工设计、工艺、检测技术和设备输出国。 台湾:台湾并非传统光学技术发达地区,但伴随着发达国家光电产业结构调整过程,台湾地区凭借其地域和贸易优势,积极与国际企业合作,逐步掌握精密的光学加工技术,成为日本等发达国家退出光学冷加工领域后主要的技术和市场承接者,大量为日美企业

第十篇抛光加工工艺

1、 机械研削理论: 认为抛光是精磨的继续, 它们从本质上是相同的, 都是尖硬的磨 料颗粒对玻璃表面进行微小切削作用的结果。 但由于抛光是用很 细 颗粒 的 抛光 剂( 我公 司目前使用的 抛光 粉粒度范围 (0.5um-3um )。所以微小切削作用可以在分子大小范围内进行。 由于研磨皿与镜片表面相当吻合, 因此抛光时切向力很大, 从而 使玻璃表面凸凹微痕结构被切削掉,逐渐形成光滑的表面。 实验表明抛光粉粒度在一定范围时粒度越大, 研磨效率高; 研磨 粉硬度越高,抛光速率越高(如氧化铈 Ce02 研磨粉比红粉 硬度高,前者比后者抛光速率高 2—3倍。) Fe 2O 3 另外在一定范围内,增加压力,提高主轴转速,抛光速率显著提 高, 高速抛光即是依此而发展起来的。 通过实验测得,抛光掉的玻璃颗粒尺寸大约为 1?1.2nu 。仅从 第七章 抛光加工工艺 一、抛光原理 光学加工中,抛光是精磨以后的一个主要工序。 工件在精磨之后, 虽然具有一定的光滑和规则的表面形状, 但它还不完全透明而且表面 形状也不是所要求的, 需要经过抛光才能成为所要求的抛光表面。 因 此抛光的目的即为: ① 去除精磨的破坏层达到规定的外观限度要求。 ② 精修面形,达到图面规定的曲率半径 R 值,满足面本数NR 要 求及光圈局部允差(亚斯)的要求。 玻璃抛光机理对玻璃抛光本质的认识,很早就引起了人们的重 视,特别是 20 世纪以来,有关的文献发表了很多。但是玻璃的抛光 是个十分复杂的过程, 所以至今尚未形成一种能说明一切有关抛光现 象的统一理论,经过长期的观察和研究,目前,主要有三种学说

以上几点即可以看出抛光的机械磨削作用是十分明显的。 2 、化学学说 认为抛光过程主要是水、研磨剂、研磨皿等与玻璃之间化学作 用的结果。 ① 玻璃表面受水的作用,水解反应生成硅酸凝胶层。在抛光过程 中,抛光皿和研磨剂随时从玻璃表面凸凹层的硅酸凝胶去除,露出玻璃 新的表面,再水解,再去除,往复循环达到抛光效果。 ②抛光剂的PH值对研磨抛光影响甚大。 ③硝材的化学稳定性与研磨效率有直接关系。 3 、表面流动理论: 认为玻璃表面由于高压和相对运动、摩擦生热,致使表面产生 塑性流动,凸的部分将凹陷填平,形成光滑的表面。此种理论实验结果也得以说明其正确性。 以上三种学说,每一种学说都以一定的实验结果而得到支持,但又能找出不适合这种学说的例子而受到反对,都有不同程度的局限性。近年来,多数学者倾向于认为玻璃的抛光过程是上述几种基本过程同时作用的结果。 二、机台的加工原理 目前,现有抛光机台种类有: A:HSPM-0.5 B:KJ-077 C:HPD-080 D:CF-4(CF-5)E:HP-048 F: JPT15.4 G:平摆H: LP-330 由于镜片的形状不尽相同,在机台的选择上相应的也不尽相同,为此,重点就是以上机台的加工原理做一个说明,以便于在以后的工作中,对自己所操作的机台有一个全方位的了解。 1.HDPM-0.5 机械范围:0值理论值:0 3~0 30 实际加工较适合值:0 3~0 20 R值理论值:R2~R25 (主要加工凸镜片)

光学冷加工

实验二十五放大镜的制作 第一章光学零件制造工艺一般知识 1.1 光学零件制造工艺的特点及一般过程 制作光学零件的常见材料有三大类,即光学玻璃、光学晶体和光学塑料,其中以光学玻 璃,特别是无色光学玻璃的使用量最大。虽然光学零件的加工按行业划分归入机械加工一类, 但由于加工对象的材料性质和加工精度要求显著地不同于金属材料,因而加工工艺上也完全 不同于金属工艺而具有特殊性。 1.1.1 光学零件的加工精度及其表示 光学零件属于高精度零件。平面零件的加工精度主要有角度和平面面形;球面零件的加 工精度要求主要有曲率半径和球面面形。高精度棱镜的角误差要求达到秒级。高精度平面面 形精度可达到几十分之一到几百分之一波长。平面零件的平面性和球面零件的球面性统一称 为面形要求。光学车间一般用干涉法计量,用样板叠合观察等厚干涉条纹(俗称看光圈)。 表示面形误差的光圈数符号是N,不规则性(或称局部误差)符号是△N。除面形精度外, 光学零件表面还要有粗糙度要求。光学加工中各工序的表面粗糙度如表6-1所示。光学零件 =0.025um,用轮廓算术平均偏差表示为抛光表面粗糙度用微观不平十点高度表示为R 2 R =0.025um,用符号表示则为0.008,在此基础上,还有表面疵病要求,即对表面亮丝、擦2 痕、麻点的限制。 1.1.2 光学零件加工的一般工艺过程及特点 光学零件加工的工艺过程随加工方式不同而异。光学零件的加工方式主要有两类:传统 (古典)加工工艺和机械化加工工艺,这里我们只介绍传统加工工艺。 传统工艺的特点主要有: (1)使用散粒磨料及通用机床,以轮廓成形法对光学玻璃进行研磨加工。操作中以松香 柏油粘结胶为主进行粘结上盘。先用金刚砂对零件进行粗磨与精磨,然后使用松香柏油抛光 模与抛光粉(主要是氧化铈)对零件进行抛光加工。影响工艺的因素多而易变,加工精度可 变性也大,通常是几个波长数量级。高精度者可达几百分之一波长数量级。 (2)手工操作量大,工序多,操作人员技术要求高。对机床精度,工夹磨具要求不那么 苛刻,适于多品种,小批量、精度变化大的加工工艺采用。 传统加工工艺过程,以一个透镜为例,先后依次经过以下一些工序:

相关主题
文本预览
相关文档 最新文档