当前位置:文档之家› 浅谈阿特金森循环发动机

浅谈阿特金森循环发动机

浅谈阿特金森循环发动机
浅谈阿特金森循环发动机

浅谈阿特金森循环发动机

图:阿特金森循环发动机

自四冲程内燃机诞生至今,如何提高发动机的效率是发动机工程师们一直努力研究的课题。提到发动机效率,“压缩比”就自然而然地成为了讨论的主角了。一直以来,“高压缩比=高效率、高功率”已经成为了内燃机学当中不变的信条。由进气、压缩、膨胀、排气四个冲程循环构成的四冲程内燃机,是奥托历时14年于1876年研发成功的,该发动机原理,被称为奥托循环。而其中能提高内燃机效率最具关键性的一环——压缩冲程,由原理变为机械的过程,曾困扰了奥托十数年之久。

图:阿特金森循环发动机活塞行程示意图,黄红绿四个色块依次表示:吸气、压缩、

膨胀、排气四个活塞冲程。

因为当时的技术限制,压缩比不能作出更大的提升,因此发动机的效率也不能进一步地提升。1882年,英国工程师James At kinson(詹姆斯?阿特金森)在使用奥托循环内燃机的基础上,通过一套复杂的连杆机构,使得发动机的压缩行程大于膨胀行程,这种巧妙的设计,不仅改善了发动机的进气效率,也使得发动机的膨胀比高于压缩比,有效地提高了发动机效率,这种发动机的工作原理被称为阿特金森循环。

图:复杂的连杆机构不仅影响了活塞行程,也使得作用在曲轴上的力矩发生了改变。

然而,采用了阿特金森循环的发动机虽然在热效率方面得到了提高,但是,过于复杂的连杆机构使其工作的稳定性和可靠性相对较低,所以并不能得到广泛应用。到了1940年,美国工程师Ralph Miller(拉夫?米勒)研发出一款膨胀比高于压缩比的发动机。但是,这款发动机摒弃此前由阿特金森研采用复杂的连杆机构来实现的形式,而是采用了在吸气冲程结束,进入压缩冲程时,令进气门延迟关闭,迫使原本已经吸入气缸内的可燃混合气有一部分通过进气门“吐”出气缸,再关闭气门。令引擎的实际压缩行程不是从活塞下止点就开始,而是在下止点在往上某个点(或许是只有0.7倍的活塞行程)才开始,降低了活塞的实际压缩行程,也就达到了压缩行程小于膨胀行程的目的了。而由于有部分油气混合物返回进气道,使得压缩过程的实际油气混合物的量较少,因此阿特金森/米勒发动机的理论压缩比设计都比较高,令较稀疏的油气混合物有充分的压缩量。以丰田的2ZR-FXE引擎为例,理论压缩比高达13.0:1,但实际压缩比相当于10:1左右(因实际压缩行程被缩短所致)。

图:奥拓循环发动机配气相位

这种基于阿特金森循环理论改良而来的发动机,称为米勒循环发动机,也是目前近现代阿特金森循环发动机的基本工作原理。采用米勒循环的发动机,因摒弃了复杂的连杆机构,在工作的稳定性和可靠性方面得到了很好的保证,但是,为什么米勒循环发动机不能够得到广泛的应用呢?这就由其自身的特性确定的。

图:米勒循环配气相位,从动态图可以看出,进气门的开启时间比一般引擎要长,为的就是让新鲜混合气逃逸掉一点,以缩减压缩行程。

阿特金森/米勒循环发动机的特性主要有两点:独特的进气方式让低速扭矩很差;长活塞行程不利于高转速运转。在低速时,本来就稀薄的混合气在“反流”之后变得更少,这让该类发动机低速扭矩表现很差,用于车辆起步显然动力不够。而较长的活塞行程确实可以充分的利用燃油的能量,提升经济性,但也因此限制了转速的升高,加速性能也变差,在民用车上,为了平衡,通常行程与缸径两个数据是接近的。这导致阿特金森/米勒循环发动机“升功率”这个性能指标会很低,以丰田2ZR-FXE为例,1.8L引擎的输出仅有98匹/14.5Kgm,与奥托循环1.8L发动机相比,性能参数差距太大,作为汽车动力系统没有竞争力。

图:阿特金森循环发动机的扭矩不足的问题由电动机弥补,充分发挥其经济性。

话虽如此,到了提倡环保节能的今天,汽车厂商为顺应这一主题,开

发出不少油电混合动力汽车。而电动机低扭大的特性恰好能弥补阿特金森/米勒循环发动机低扭差的特性,而且阿特金森/米勒循环发动机的热效率高,燃油经济性好的特性也能更好地满足此类环保车型自身的特点,所以,油

电混合动力汽车的发动机大多采用阿特金森/米勒循环发动机。

相关主题
文本预览
相关文档 最新文档