当前位置:文档之家› 钢制管壳式换热器讲义讲解

钢制管壳式换热器讲义讲解

钢制管壳式换热器讲义讲解
钢制管壳式换热器讲义讲解

钢制管壳式换热器结构形式、各部位名称与代号

设计考虑的因素:

换热设备的类型很多,对每种特定的传热工况,通过优化选型都会等到一各最适合的设备型号民。如果将这个型号的设备使用到其它工况,则传热效果可能会有很大的改变。因此针对具体工况选择换热器类型,是很重要和复杂的工作,设计考虑以下因素:

流速的选择

流速是换热器设计和重要变量。提高流速则提高传热系数,同时压力降与功率消耗也随之增加。

高流速的优缺点

优点:1)提高总传热系数,减小传热面积;2)减小在管子表面生成的污垢的可能性。

缺点:1)提高了增加了阻力和动力消耗;2)含颗粒的介质流速过快对设备造成严重和磨损。

允许的压力降的选择

选择较高的压力降可以提高流速,从而增加传热效果,减小换热面积,但较大的压力降也使操作费用增加。

管壳各流体的确定

主要依据两流体的操作温度和压力、可以利用的压力降、结构和腐蚀性、以及所需设备材料的选择等方面,考虑液体适合走哪一程。

适于走管程的有水和水蒸汽或强腐蚀性液体;有毒性流体;容易结垢的流体,高温或高压操作的流体等。

适于走壳程和流体有塔顶冷凝蒸汽;类似冷凝和再沸;关键压力降控制的流体;粘度大的流体等。

当上述情况排除之后,介质走哪程的选择,应着眼于提高传热系数和最充分的利用压力降上。由于介质在过程和流动容易湍流,因而将粘度在或流量小的流体,即雷诺数低的流体走过壳程是有得的,反之如果在管程能够达到湍流时,则安排直管程比较合理

换热终温的确定

换热终温一般由工艺过程的需要确定,当换热终温可以时,其数值对换热器是否经济合理有很大和影响,在热流出口与冷流出口相等的情况下,热量的利用效率最高,但是有效传热温差小,换热面积最大。另外在确定物流出口温度时,不希望出现温度交叉现象,即热流出口温低于冷流出口温度,如果工艺流程需要,则必须选择多台串联。

设备结构的选择

强化传热元件和设备的性能特点:

换热设备具体结构参数选择依据

管子形式:1)光管(适用于任何条件,适用面广);

2)螺纹管(壳程流体的膜传热系数相当于管程传热系数1/3-3/5的场合;强化壳程传热提高总传热系数;结垢速率低,操作周期长);

3)波纹管(管程流体的膜传热系数低于壳程3/5以下,RE 低的场合;大幅度提高管内膜传热系数,流体处于低RE时尤为显著。防垢性能好。管外传热系数也相应提高。

管子排列方式:正三角形排列和正方形斜转45度排列。

管径:φ19、φ25

管长:3、6、9米

管径:325—2600

冷凝器

当蒸汽与低于其饱和温度的壁面相接触时会冷凝成液体,同时放出汽

化潜热并传递给壁面,这种热交换过程称为冷凝传热。

冷凝传热过程大致分为以下类型

按冷凝面的基本几何参数分,可分为管内冷凝和管外冷凝,管内冷凝包括水平管、垂直管和倾斜管;管外冷凝包括垂直音管及管束,水平单管及管束。

按管子类型分可分为光管、螺纹管(低翅处片管)、沟槽管等

按蒸汽的流体动力学分可分为:低速(重力控制)和高速(剪力控制)两种动力学状态。

按组分的数目和性质可分为:单组分和多组分混合物(冷凝液互溶和不互溶两种)、含不凝气的混合物。

按冷凝方式可分为:膜状冷凝、滴状冷凝、直接接触冷凝,均相流冷凝等。

冷凝传热的影响因素:

不凝气:不凝所的存在对冷凝传热将会产生十分不利的影响,如水蒸汽中含1%(重量)的空气将使冷凝膜传热系数下降60%。

气流的速度:气体的流速对冷凝传热的影响在低速时可忽略不计,但在高流速时,气流会对液膜表面产生明显的粘滞应力。在工业操作的流速范围内,气体流速对冷凝传热系数的影响极小

气流方向:如果气流的方向与液膜流动方向一致时,使液膜拉薄,对冷凝传热有得,相反则会使液膜加厚,使冷凝传热效率下降。

液膜雷诺数:在层流区,冷凝传热系数随液膜雷诺数的增加而减小,这与无相变换热器不同,在设计时应加以考虑。

管子排数

换热设备损坏和失效的主要形式及原因

一、腐蚀

1、介质引起的均匀腐蚀

1)硫及硫化物引起的均匀腐蚀。烃类介质中含硫及硫化物,尤其是在脱硫之前,硫化氢或硫醇的含量较高。硫引起的腐蚀会导致在金属表面直接形成一层金属硫化物。这种腐蚀产物一般较厚而疏松,对金属表面不能起保护作用。因此,这种腐蚀是以一定的速率使管壁减薄。碳钢在260度以上的硫化氢环境中就能产生明显的均匀腐蚀。如果硫化氢中含水,则在常温下也能产生均匀腐蚀。

2)盐酸产生的均匀腐蚀。使管束产生均匀腐蚀的另一常见的形式是盐酸引起的均匀腐蚀。原油中含盐特别是氯化物水解后产生盐酸,产生均匀腐蚀。

2)其他强酸腐蚀介质的腐蚀。

2 应力开裂腐蚀

1)奥式体不锈钢管产生的应力腐蚀开裂。当换热设备管束采用18—8、316等类型的奥式体不锈钢时,介质中又含有一定浓度的氯离子,管子本身存在轧制、固溶、弯制、焊接、胀接、装配时存在较高应力时管束将存在应力腐蚀开裂的敏感性。

机械及热应力损伤

1)管子与管板胀接处发生松动

当胀接的管端与管板间温差超过设计值时,会影响管子与管板的结合力。管子突然降温时,会因为胀接处的管子外径收缩发生泄漏;管子温度比管板温度高得太多时,胀接处的管子会因此发生塑性变形,当管子温度降至正常时,已塑性变形的管子由于外径已减少,同样会在管子与管板的胀接处发生泄漏。

2)管子与管板间的温差引起焊缝开裂、胀接松脱

管束轴向长度较长,壳体刚性大,两端为固定管板的换热器,当管子与壳体的温差出现大于设计值时,在管子与管板的联接处,无论是焊接形式还是胀接形式,都会因为管壳之间存在热膨胀量的差太大,对管子与管板的联接处产生较大的附加应力而发生焊缝开裂或胀接处松脱,其结果是在联结处发生泄漏。

3)振动产生的疲劳损伤

与换热器相联接的转动机械,如泵、压缩机等设备的振动,以及介质的流动及介质的压力的脉动,都会引起管束的振动。过度的管束振动会使管子受到疲劳损伤。其结果是产生疲劳开裂或腐蚀疲劳开裂。这种因管束振动而产生的疲劳裂纹。环向裂纹一般出现在管子中间。

新技术应用:

1、螺纹管换热器的

螺纹管属于管外径扩展表面积的类型,在普通换热管外壁轧制成螺纹状的低翅片,用以增加外侧的传热面积。翅片部分的最大外径比管子的光端要小,而翅片根部要小得多,因此在与光管相同的管间距下净

错流面积比光管明显增大。

2、波纹管换热器

改变管内流体的流动状态,增强传热效果。波纹管是在无切削的机加工中,管内被挤出凸肋从而改变了管内壁滞流层的流动状态,减少了流体传热热阻,增强了传热效果。

3、拆流杆式换热器

是通过改变壳程管束支撑件、大幅度降低阻力提高了流速或改变动方式从而达到强化传热的效果的目的。

换热器螺栓螺母选用表

换热设备的选材要参考国外经验,按《加工高硫原油重点装置主要设备设计选材导则》和公司的实际情况执行,主要考虑设备的工作条件、设备的可靠性以及使用寿命,同时也要考虑到选用材料资源和经济效益等因素。换热设备的寿命一般应在10年以上(冷却器管束寿命5年以上)。

3.1.7.1 换热管的选材,重点是防腐蚀,具体选用时一般可遵从以下主要原则:

低温部位的选材

蒸馏装置的初、常顶冷凝冷却管束可选用涂料防腐、双相不锈钢、镍基合金或钛管等材料,但应避免使用奥氏体不锈钢材料,不推荐使用渗铝防腐技术;

轻烃和液化气冷却器管束及其它含硫化氢浓度高部位的管束宜选用涂料防腐、08钢等,慎用18-8系列不锈钢材料;

蒸汽发生器管束材质一般选用碳钢材料。

高温硫腐蚀部位,可选用18-8系列不锈钢和碳钢渗铝等材料。

耐氢腐蚀材料按API RP 941“炼油厂和石油化工厂高温高压临氢作业用钢”选取;

冷却水为腐蚀控制介质的冷却器管束,宜采用涂料防腐(如TH847、TH901)

3.1.7.2 管束管板材料均为锻件,材料一般有16Mn、35#钢。当换热管与管板连接形式采用焊接时,不能选用35#钢管板;采用强度胀接

时,管板硬度比管子硬度高出HB30。

3.1.7.3 壳体、封头材料应从压力、温度和使用介质综合考虑,并符合压力容器用钢要求。有应力腐蚀时,应进行消除应力热处理;高温硫腐蚀的部位,按照炼制高硫原油选材要求,选用复合钢板,设备的接管、法兰选用相应耐腐蚀材料。

管壳式换热器的工艺设计

管壳式换热器的工艺设计 芮胜波李峥王克立李彩艳 兖矿鲁南化肥厂 芮胜波:(1974-),山东枣庄人,工程师,工程硕士,从事煤化工项目研发及建设工作。第一作者联系方式:山东滕州木石兖矿鲁南化肥厂项目办(277527),电话:0632-2363395 摘要:管壳式换热器在各种换热器中应用最为广泛,为了使换热器既能满足工艺过程的要求,又能从结构、维修、造价等方面比较合理,在设计中要从各个方面综合考虑。本文着重从换热器程数的选择以及如何降低换热器的压力降方面进行了比较详细的论述,对于换热器的工艺设计起到一定的指导作用。 关键词:管壳式换热器,程数,压降 在化工、石油、动力、制冷以及食品等行业中,换热器都属于非常重要的工艺设备,占有举足轻重的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强,特别是换热器的设计必须满足各种特殊工况和苛刻操作条件的要求。大致说来,随着换热器在生产中的地位和作用不同,对它的要求也不同,但都必须满足下列一些基本要求:首先是满足工艺过程的要求;其次,要求在工作压力下具有一定的强度,但结构又要求简单、紧凑,便于安装和维修;第三,造价要低,但运行却又要求安全可靠。 许多新型换热器的出现,大大提高了换热器的传热效率。比如板式换热器和螺旋板式换热器具有传热效果好、结构紧凑等优点,在温度不太高和压力不太大的情况下,应用比较有利;板翅式换热器是一种轻巧、紧凑、高效换热器,广泛应用于石油化工、天然气液化、气体分离等部门中;此外,空气冷却器以空气为冷却剂在翅片管外流过,用以冷却或冷凝管内通过的流体,尤其适用于缺水地区,由于管外装置了翅片,既增强了管外流体的湍流程度,又增大了传热面积,这样,可以减少两边对流传热系数过于悬殊的影响,从而提高换热器的传热效能。 尽管各种各样的新型换热器以其特有的优势在不同领域得以应用,但管壳式换热器仍然在各种换热器中占有很大的比重,虽然它在换热效率、设备的体积和金属材料的消耗量等方面不占优势,但它具有结构坚固、操作弹性大、可靠程度高、使用范围广等优点,所以在工程中仍得到普遍使用。 目前我们在各种工程中应用最多的换热器就是管壳式换热器,其中又以固定管板式为最常见,除了波纹管换热器等可选用标准系列产品外,其它光管换热器都由工艺专业自行设计,尽管专用计算软件HTFS的应用使设计人员从繁琐的手工设计计算中解脱出来,但是为了使设计出来的换热器能更好的满足各种要求,仍然有许多方面需要在设计时充分加以考虑。 首先,程数的选择。 管程程数的选择:关键要比较管程与壳程的给热系数,如果单管程时管程流体的给热系数小于壳程流体给热系数,则可选用双管程,管程给热系数会因此显著增大,并且总传热系数也会有大幅提高。例如,有一台单管程换热器,管程给热系数为990W/(m2.℃), 壳程给热系数为5010 W/(m2.℃),总传热系数为794 W/(m2.℃),在换热器的外形尺寸保持不变的情况下改为双管程后,管程给热系数变为1680 W/(m2.℃),增大了70%,,总传热系数变为1176 W/(m2.℃),增大了48%,显然此时选用双管程换热器有利。反之,如果单管程时管程的给热系数大于壳程给热系数,虽然改用双管程时,管程给热系数也会显著增大,但是总传热系数则增幅不明显,例如,一单管程换热器,管程给热系数为2276 W/(m2.℃), 壳程给热系数为2104 W/(m2.℃),总传热系数为1040 W/(m2.℃),在换热器的外形尺寸保持不变的情况下

管壳式换热器的机械设计

第七章管壳式换热器的机械设计 本章重点:固定管板式换热器的基本结构 本章难点:管、壳的分程及隔板 建议学时:4学时 第一节概述 一、定义:换热器是用来完成各种不同传热过程的设备。 二、衡量标准: 1.先进性—传热效率高,流体阻力小,材料省; 2.合理性—可制造加工,成本可接受; 3.可靠性—强度满足工艺条件。 三、举例 1.冷却器(cooler) 1)用空气作介质—空冷器aircooler 2)用氨、盐水、氟里昂等冷却到0℃~-20℃—保冷器deepcooler 2.冷凝器condenser 1)分离器 2)全凝器 3.加热器(一般不发生相变)heater 1)预热器(preheater)—粘度大的液体,喷雾状不好,预热使其粘度下降; 2)过热器(superheater)—加热至饱和温度以上。 4.蒸发器(etaporater),—发生相变 5.再沸器(reboiler) 6.废热锅炉(waste heat boiler) 看下图说明其结构及名称

四、管壳式换热器的分类 1、固定管板式换热器: 优点:结构简单、紧凑、布管多,管内便于清洗,更换、造价低,应用广泛。管坏时易堵漏。缺点:不易清洗壳程,一般管壳壁温差大于50℃,设置膨胀节。 适用于壳程介质清洁,不易结垢,管程需清洗以及温差不大或温差虽大但是壳程压力不大的场合。 2、浮头式换热器: 管束可以抽出,便于清洗;但这类换热器结构较复杂,金属耗量较大。 适用于介质易结垢的场合。 3、填料函式换热器: 造价比浮头式低检修、清洗容易,填料函处泄漏能及时发现,但壳程内介质由外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。适用于低压小直径场合。 4、U型管式换热器:

管壳式换热器工艺设计说明书

管壳式换热器工艺设计说明书 1.设计方案简介 1.1工艺流程概述 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。 图1 工艺流程草图 1.2选择列管式换热器的类型 列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛

的传热设备。其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料围广,操作弹性也较大等。因此在高温、高压和大型装置上多采用列壳式换热器。如下图所示。 1.2.1列管式换热器的分类 根据列管式换热器结构特点的不同,主要分为以下几种: ⑴固定管板式换热器 固定管板式换热器,结构比较简单,造价较低。两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。 固定板式换热器 ⑵浮头式换热器 浮头式换热器,一端管板式固定的,另一端管板可在壳体移动,因

而管、壳间不产生温差应力。管束可以抽出,便于清洗。但这类换热器结构较复杂,金属耗量较大;浮头处发生漏时不便检查;管束与壳体间隙较大,影响传热。 浮头式换热器适用于管、壳温差较大及介质易结垢的场合。 ⑶填料函式换热器 填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。但壳程介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。 ⑷U形管式换热器 U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,层管子损坏后不易更换。 U形管式换热器适用于管、壳壁温差较大的场合,尤其是管介质清洁,不易结垢的高温、高压、腐蚀性较强的场合。

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

《管壳式换热器机械设计》参考资料

1前言 (1) 概述 (1) 换热器的类型 (1) 换热器 (1) 设计的目的与意义 (2) 管壳式换热器的发展史 (2) 管壳式换热器的国内外概况 (3) 壳层强化传热 (3) 管层强化传热 (3) 提高管壳式换热器传热能力的措施 (4) 设计思路、方法 (5) 换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 管径 (11) 管子数n (11) 管子排列方式,管间距的确定 (11) 换热器壳体直径的确定 (11) 换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 管板结构尺寸 (16) 管板与壳体的连接 (16) 管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 群座的设计 (27) 基础环设计 (29) 地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×的无缝钢管,材质为20号钢,管长。 管子数n L F n d 均π= (2-1) ()根均5035 .40225.014.3160 F L =??= = ∴ n d n π 其中安排拉杆需减少6根,故实际管数n=503-6=497根 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上 的管数为25,查表7-5取管间距a=32mm. 换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳 l 取d l 2=,()m m 8682522)125(32=??+-?=i D ,

管壳式换热器的制造检验要求

管壳式换热器的制造检验 要求 The final revision was on November 23, 2020

管壳式换热器的制造、检验要求 作为压力容器管壳式换热器制造、检验及验收应符合GB150的要求,但同时也要符合换热器本身的特殊要求。 一、焊接接头分类 与一般压力容器类似,管壳式换热器也将主要受压部分的焊接接头分为A、B、C、D四类,如图7-1所示(教材P192)。 A类接头为筒体、前后管箱或膨胀节的轴向焊缝; B类接头为筒体、前后管箱或膨胀节的周向焊缝或带径发兰与接管的对接环向焊缝; C类接头为筒体或前后管箱与无径发兰或无径发兰与接管的平焊环向焊缝; D类接头为接管与筒体或前后管箱的环向焊缝。 二、零部件制造要求 1.管箱与壳体 壳体内径允许偏差: 对于用板材卷制的壳体,起内径允许偏差可通过控制外圆周长的方式加以控制,外圆周长的允许上偏差为10mm,下偏差为零。 2.圆度: 壳体同一断面上的最大直径和最小直径之差e应符合以下要求: 对于公称直径DN(以mm为单位)不大于1200mm的壳体:e≤min(%DN,5)mm;对于公称直径DN(以mm为单位)大于1200mm的壳体:e≤min(%DN,7)mm。 3.直线度:

壳体沿圆周0°、90°、180°、270°四个部位(即通过中心线的水平面和垂直面处)测量的壳体直线度允许偏差应满足以下要求: 当壳体总长L≤6000mm时,直线度允许偏差≤min (L/1000, mm; 当壳体总长L>6000mm时,直线度允许偏差≤min (L/1000,8) mm。 热处理要求`:碳钢、低合金钢制的焊有分程隔板的管箱和浮头平盖、侧向开孔超过1/3圆筒内径的管箱,焊后需作清除应力处理,有关密封面在热处理后加工。 4.其它要求: 壳体在制造中应防止出现影响管束顺利安装的变形。有碍管束装配的焊缝应磨至与母材表面平齐。接管、管接头等不应伸出管箱、壳体的内表面。 (解释圆度、直线度) 5.换热管 (1)换热管的拼接: 当换热管需拼接时其对接接头应作焊接工艺评定。对于直管,同一根换热管的对接焊缝不得超过一条;对于U形管,对接不得超过两条,拼接管段的长度不得小于300mm,U形管段及其相邻的至少50mm直管段范围内不得有拼接焊缝。 换热管拼接接头的对接错边量不超过管壁厚度的15%,且小于,拼接后的直线度以不影响穿管为准。 对接后的换热管按表7-7选取钢球直径进行通球检查,以钢球通过为合格 换热管拼接接头应进行射线抽样检测,抽样数量应不少于接头数量的10%且不少于一条,满足JB4730中的Ⅱ级为合格,如有一条焊缝不合格,则应加倍抽样,仍出现不合格焊缝时,则应100%检查。。对接后的换热管应以2倍的设计压力为试验压力进行液压试验。

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

管壳式换热器的设计与制造

管壳式换热器的设计与制造 摘要:换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备,在日常的设计和制造 中正常碰到。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的 30%~40%左右,近年来随着节能技术的发展,应用领域不断扩大,利用换热器进 行高温和低温热能回收带来了显著的经济效益。目前,在换热设备中,使用量最 大的是管壳式换热器。 关键词:管板换热管折流板与折流杆防冲板导流筒管束组装压力试验下面就管壳式换热器特有的几个主要零部件在设计和制造过程中的计算、选材中的要求作一些介绍。 1 管板 1.1 管板材料 管板是换热器的主要受压元件之一,一般情况下用锻件优于用钢板,但用锻件的成本要高很多,故在条件不苛刻时用板材作管板依然很多。一般规定如下: 1)钢板厚度δ>60mm时,宜采用锻件。 2)管板以凸肩形式与圆筒相对接时,必须采用锻件。 3)采用钢板作管板时,厚度大于50mm的Q245R、Q345R,应在正火状态下使用。 1.2 管板的计算 管板的结构复杂,影响管板的因素很多,重点考虑一下因素: 1)把实际的管板简化为受到规则的排列的管孔削弱、同时又被管子加强的等效弹性基础上的均质等效圆平板。 2)管板周边部分较窄的不布管区按其面积简化为圆环形实心板。 3)管板边缘可以有各种不同形式的连接机构,各种型式可能包含有壳程圆筒、管箱圆筒、法兰、螺栓、垫片等多种原件。 4)考虑法兰力矩对管板的作用。 5)考虑换热管与壳程圆筒的热膨胀差所引起的温差应力,还应考虑管板上各点温度差所引起的温度应力。 6)计算由带换热管的多孔板折算为等效实心板的各种等效弹性常数与强度参数。 1.3 管板的制造 1)管板可以拼接,只是对拼接接头应进行100%射线或超声检查,应按JB4730射线检测不低于Ⅱ级,或超声检测中的Ⅰ级为合格。 2)除不锈钢外,拼接后管板应作消除应力热处理。 3)对于堆焊复合管板,堆焊前应作堆焊工艺评定;基层材料的待堆焊面和复层材料加工后的表面,应按JB4730进行表面检测,检测结果不得有裂纹、成排气孔,并应符合Ⅱ级缺陷显示;不得采用换热管与管板焊接加桥间隙补焊的方法进行管板堆焊。 4)孔桥宽度偏差应符合GB151中的规定。 5)管孔表面粗糙度:①当换热管与管板焊接连接时,管孔表面粗糙度Ra值不大于25μm。②当换热管与管板胀接连接时,管孔表面粗糙度Ra值不大于12.5μm。

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

浅谈管壳式换热器的制造工艺(精)

浅谈管壳式换热器的制造工艺 在换热器的制造中,筒体、封头等零件的制造工艺与一般容器制造无异,只是要求不同,其中重点把握材料的检验,管板、折流板管孔的配钻,筒体的焊接,法兰的加工等。纵观其制造工艺,大部分用的是传统工艺,其中焊接占的比例较高,因而必须严格按照焊接工艺施焊,并且对焊缝探伤。 1 检验材料 换热器用的材料中,钢材(钢板、钢管、型材、锻件)的质量及规格应符合下列现行国家标准、行业标准或有关技术条件,钢材应符合GB GB713-2008的要求,钢材的选用应接受国家质量技术监视局颁发《压力容器安全技术监察规程》的监察。其中,受压元件以及直接与受压元件焊接的非受压元件用钢材,必须附有钢厂的钢材质量证实书(或复制件,复制件上应加盖供给部分的印章)。常见的有碳素钢和低合金钢(如Q235-B、Q235-C、Q245R、Q345R等)。根据设备的使用条件,需留意材料的供货状态,如正火状态;必要时复验材料的化学成分和检验其机械性能;进行超声波检验等。 标准规定,压力容器用碳素钢和低合金钢,当壳体厚度大于30mm的Q245R和Q345R,其他受压元件(法兰、管板、平盖等)厚度大于50mm的Q245R和 Q345R,以及厚度大于16mm的15MnVR,应在正火状态下使用;调质状态下和用于多层包扎容器内筒的碳素钢和低合金钢要逐张进行拉力试验和夏比(V型)常温或低温冲击试验。 凡符合下列条件之一的,应逐张进行超声波检测:①艳服介质毒性程度为极度、高度危害的压力容器②艳服介质为液化石油气且硫化氢含量大于100mg/l的压力容器③最高工作压力大于即是10MPa的压力容器④GB150第二章和附录C、 GB151《管壳式换热器》、GB2337《钢制球形储罐》及其他国家标准和行业标准中规定应逐张进行超声波检测的钢板(详见各标准)⑤移动式压力容器。 选材时,经常要对材料焊接试板进行力学性能检验,主要有拉伸试验,弯曲试验和冲击试验。其中弯曲试样按规定要求冷弯到规定角度后,受拉面上不得有沿任何方向单条长度大于3mm的裂纹或缺陷。 常温冲击试验的合格指标:常温冲击功规定按图样或有关技术文件的规定,当不得小于27J(三个标准试样冲击功)。低温冲击功规定值按附录(标准的附录)的有关规定;试验温度下三个试样冲击功均匀值不得低于上述规定值,其中一个试验的冲击功可小于规定值,但不得小于规定值的70%。 2 焊接方式 制造过程中,常用的焊接方法有手工电弧焊、埋弧自动焊、气体保护焊(氩弧焊、CO2保护焊)等。根据不同的材料,不同的厚度,开不同的坡口,采用不同的焊接工艺。手工电弧焊是应用最广泛的焊接方法,其操纵灵活,设备简单,可

管壳式换热器的型号表示方法

6.3.8 管壳式换热器的型号表示方法 (t t s s P N LN XXXDN A I II P d N ----------------或) ---- -- ---- --- ----- ------ ① ② ③ ④ ⑤ ⑥ 1. 1〉第一个字母代表前端管箱形式 2〉第二个字母代表壳体形式 3〉第三个字母代表后端结构形式 2. 公称直径(mm ) 对于釜式重沸器用分数表示,分子为管箱内直径,分母为圆筒内直径 3. 管/壳程设计压力,MPa 。压力相等时只写P t 4. 公称换热面积 ㎡ 5. 当采用Al,Cu,Ti 换热管时,应在LN/d 后面加材料琼等号,如LN/D Cu LN --公称长度 ,m d --换热管外经 mm 6. 管/壳程数。单壳程时 只写N t 7. I----I 级(换热器)管束 采用较高级冷拔换热管,适用于无相变传热和易产生振动场合 II---II 级(换热器)管束 采用普通级冷拔换热管,适用于受沸、冷凝传热和无振动一般场合 例如: (1) 浮头式换热器:S---钩圈式浮头 6500 1.65442.5A E S I ------------ 平盖管箱,公称直径500㎜,管壳程设计压力均为1.6MPa ,公称换热面积254mm ,较高 级冷拔换热器外经25mm,管长6m,4管程但壳程的I 级浮头式换热器 (2) 固定管板式换热器: 2.5970020041.625B E M I ------------ 封头管箱,公称直径700mm,管程设计压力2.5MPa ,壳程设计压力1.6MPa,,公称换热面积2200m , 较高级冷拔换热管外经25mm,管长9mm,4管程,但壳程的固定管板式换热器,M--与B 相似的固定管板(封头)结构。

管壳式换热器课程设计

管壳式换热器课程设计 一、管壳式换热器的介绍 管壳式换热器是目前应用最为广泛的换热设备,它的特点是结构坚固、可靠高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范 围广、换热面的清洗比较方便、高温和高压下亦能应用。但从传热效率、结构的紧凑性以及位换热面积所需金属的消耗量等方面均不如一些新型 高效率紧凑式换热器。管壳式换热器结构组成:管子、封头、壳体、接管、 管板、折流板;如图1-1所示。根据它的结构特点,可分为固定管板式、 浮头式、U形管式、填料函和釜式重沸器五类。 二、换热器的设计 2.1设计参数 参数名称壳程管程 设计压力(MPa) 2.6 1.7 操作压力(MPa) 2.2 1.0/0.9(进口/出口) 设计温度(℃) 250 75

操作温度(℃) 220/175(进口、出口) 25/45(进口/出口) 流量(Kg/h) 40000 选定 物料(-)石脑油冷却水 程数(个) 1 2 腐蚀余度(mm) 3 - 2.2设计任务 1. 根据传热参数进行换热器的选型和校核 2.对换热器主要受压原件进行结构设计和强度校核,包括筒体、前端封头管箱、外头盖、封头、法兰、管板、支座等。 3.设计装配图和重要的零件图。 2.3热工设计 2.3.1基本参数计算 2.3.1.1估算传热面积 -=220-45=175 -=175-25=150 因为,所以采用对数平均温度差 算术平均温度差:= P= R= 查温差修正系数表得 因此平均有效温差为0.82 放热量 考虑换热器对外界环境的散热损失,则热流体放出的热量将大于冷流体吸收的热量,即:

取热损失系数,则冷流体吸收的热量: 由可的水流量: ==31372.8 这里初估K=340W/(),由稳态传热基本方程得传热面积: =16.55 2.3.1.2由及换热器系列标准,初选型号及主要结构参数 选取管径卧式固定管板式换热器,其参数见上表。从而查《换热器设计手 册》表1-2-7,即下表 公称直径管程数管子根数中心排管管程流通换热面积换热管长 换热管排列规格及排列形式: 换热管外径壁厚:d=50mm 排列形式:正三角形 管间距: =32mm 折流板间距: 2.1.1.3实际换热面积计算 实际换热面积按下式计算 2.2计算总传热系数,校核传热面积 总传热系数的计算 式中:——管外流体传热膜系数,W/(m2·K); ——管内流体传热膜系数,W/(m2·K);

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

《管壳式换热器机械设计》参考

1.1概述 (1) (1) (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 2.1 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×2.5mm 。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×2.5的无缝钢管,材质为20号钢,管长4.5m 。 2.2 管子数n L F n d 均π=Θ (2-1) 其中安排拉杆需减少6根,故实际管数n=503-6=497根 2.3 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上的管 数为25,查表7-5取管间距a=32mm. 2.4换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳l 取d l 2=,()m m 8682522)125(32=??+-?=i D , 查表2-5,圆整后取壳体内径9=i D 00mm 2.5 换热器壳体壁厚计算及校核

管壳式换热器的设计(课程设计)

xxxxxxxxx 大学 课程设计说明书 设计题目:管壳式换热器的设计 学院、系:化学工程与工艺学院(精细化工专业)专业班级:精细2012班 学生:xxxxxxxxxxxx 指导教师:xxxxxxxxxxxxx 成绩:________________________ 2015年07 月08

目录 2015年07 月08 (1) 目录 (2) 一、课程设计题目 (5) 二、课程设计容 (5) 1.管壳式换热器的结构设计 (5) 2. 壳体及封头壁厚计算及其强度、稳定性校核 (5) 3. 筒体水压试验应力校核 (5) 4. 鞍座的选择 (6) 5. 换热器各主要组成部分选材,参数确定。 (6) 6. 编写设计说明书一份 (6) 7. 绘制1号装配图一。 (6) 三、设计条件 (6) (1)气体工作压力 (6) (2)壳、管壁温差50℃,t t >t s (6) (3)由工艺计算求得换热面积为105m2。 (6) (4)壳体与封头材料在低合金高强度钢中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (6) (5)壳体与支座双面对接焊接,壳体焊接接头系数Φ=0.85 (6) (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 (6) 四、基本要求 (7) 五、说明书的容 (7) 1.符号说明 (7) 2.前言 (7) 3.材料选择 (7) 4.绘制结构草图 (7) 5.壳体、封头壁厚设计 (8) 6.标准化零、部件选择及补强计算: (8) 7.结束语:对自己所做的设计进行小结与评价,经验与收获。 (8) 8.主要参考资料。 (8)

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

管壳式换热器制造工艺规程

管壳式换热器制造工艺规程 1. 主题内容与适用范围 本规程规定了管壳式换热器的壳体、管箱、折流板、支持板和管束的制造,以及换热器的组装、耐压试验及油漆包装等内容。 适用于换热器制造。 2.引用标准 GB150-1998《钢制压力容器》 GB151-1999《管壳式换热器》 《压力容器安全技术监察规程》 3. 壳体制造 3.1 壳体的制造除符合本规程外,还应符合《压力容器壳体制造工艺规程》和GB151-1999《管壳式换热器》中的规定。 3.2 圆筒内直径允许偏差 3.2.1 用板材卷制时,内直径允许偏差可通过外圆周长加工以控制,其外圆周长允许上偏差为10mm,下偏差为0。 3.2.2用钢管作圆筒时,其尺寸允许偏差应符合GB/T8163和GB/T14976的规定。在遵循GB151 4.4.2规定时,GB151附录 C的奥氏体不锈钢焊接钢管也可用作圆筒。 3.2.3 圆筒同一断面上最大最小直径之差e≤0.5%DN且当: (1)D N≤1200mm时,其值不大于5mm; (2)D N>1200mm时,其值不大于7mm; 3.2.4 圆筒直线度允许偏差为L/1000(L为圆筒总长)。且当: (1)L≤6000mm时,其值不大于4.5mm; (2) L>6000mm时,其值不大于8mm; 直线度检查应通过中心线的水平和垂直面,即沿圆周0°、90°、180°、270°四个部位测量。 3.3 壳体内壁凡有碍管束顺利装入或抽出的焊缝均应修磨至与母材

表面齐平。 3.4 壳体长度公差按GB/T1804-2000中m级规定。 3.5 接管、补强圈与壳体装配,须待壳体与法兰的两道环缝焊接完毕后,再划线开孔。装配接管法兰及补强圈,先从壳体内部将接管焊到壳体上,并对正接管以千斤顶或支撑胎具在壳体内部顶住,然后在外面焊接接管及补强圈。 4. 管箱制造 4.1 管箱短节与管箱法兰组对时,应以法兰背面为基准。法兰的螺栓孔在施工图样无规定时均应跨中,如施工图样有规定时,按图样要求加工。 4.2 管箱法兰密封面及隔板密封面应在接管、补强圈等零部件与管箱组焊完毕并经热处理后再进行加工。 4.3 管箱接管开孔划线时,应使短节纵焊缝处于水平位置。 4.4 管箱隔板装配前,应将管箱内部环缝凸起处铲平,然后再组装焊接隔板。 4.5 焊接管箱隔板时,焊缝应与法兰端面齐平,不得凹下。 4.6 碳钢、低合金钢制的焊有分程隔板的管箱和浮头盖以及管箱的侧向开孔超过1/3圆筒内径的管箱,应在施焊后作消除应力的热处理。奥氏体不锈钢制管箱、浮头盖一般不作焊后消除应力热处理(图样、工艺文件另有规定的除外)。 5. 管板的制造工艺要求 5.1 管板、管箱盲板若用钢板制作时,非加工面(一般为管板、管箱盲板内侧表面)不平度不得超过以下规定值,否则应进行校平:(1)D N<1000mm时,≯2mm; (2)D N≥1000mm时,≯3mm; 5.2 拼接管板的焊缝应进行100%的射线或超声检测,按JB4730规定的Ⅱ级或Ⅰ级为合格,除不锈钢外,拼接后的管板还应作消除应力

相关主题
文本预览
相关文档 最新文档