当前位置:文档之家› 图像增强技术

图像增强技术

图像增强技术
图像增强技术

数字图像处理期中论文

图像增强技术综述

学院信息工程学院

专业电子信息工程

方向信息处理方向

姓名何娜娜

学号200710113081

中国传媒大学

2010 年11 月27 日

图像增强技术综述

内容摘要

数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。

关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强

Abstract

Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation.

Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening

1 图像增强概述

1.1 图像增强背景及意义

在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

1.2 图像增强的应用

目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。如对x射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。

2 图像增强的基本理论

2.1 图像增强的定义

为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。

一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。

2.2 图像增强的分类及方法

图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。 基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

2. 3 常用的图像增强方法

(1) 直方图均衡化

有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。 (2) 对比度增强法

有些图像的对比度比较低,从而使整个图像模糊不清。这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。 (3) 平滑噪声

有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。 (4) 锐化

平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。

3 数字图像的基本概念

3.1 数字图像的表示

图像并不能直接用计算机来处理,处理前必须先转化成数字图像。早期一般用picture 代表图像,随着数字技术的发展,现在都用image 代表离散化了的数字图像。

由于从外界得到的图像多是二维(2-D )的,一幅图像可以用一个2-D 数组),(y x f 表示。这里x 和y 表示二维空间XY 中一个坐标点的位置,而f 则代表图像在点),(y x 的某种性质数值。为了能够用计算机对图像进行处理,需要坐标空间和性质空间都离散化。这种离散化了的图

像都是数字图像,即),(y x f 都在整数集合中取值。图像中的每个基本单元称为图像那元素,简称像素。

3.2 图像的灰度

常用的图像一般是灰度图,这时f 表示灰度值,反映了图像上对应点的亮度。亮度是观察者对所看到的物体表面反射光强的量度。作为图像灰度的量度函数),(y x f 应大于零。人们日常看到的图像一般是从目标上反射出来的光组成的,所以),(y x f 可看成由两部分构成:入射到可见场景上光的量;场景中目标对反射光反射的比率。确切地说它们分别称为照度成分),(y x i 和反射成分),(y x r 。),(y x f 与),(y x i 和),(y x r 都成正比,可表示成),(y x f =),(y x i ×),(y x r 。

将二维坐标位置函数),(y x f 称为灰度。入射光照射到物体表面的能量是有限的,并且它永远为正,即0<),(y x i < ;反射系数为0时,表示光全部被物体吸收,反射系数为1时,表示光全部被物体反射,反射系数在全吸收和全反射之间,即0<),(y x r <1。因此图像的灰度值也是非负有界的。

3.3 灰度直方图

灰度直方图是数字图像处理中一个最简单、最有用的工具,它反映了数字图像中每一灰度级与其出现频率之间的统计关系。可以有针对性地通过改变直方图的灰度分布状况,使灰度均匀地或按预期目标分布于整个灰度范围空间,从而达到图像增强的效果。

4 图像增强方法及算法

4.1 直方图增强

灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更

加明显。灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。

4.1.1 直方图

图像的直方图是图像的重要统计特征,它可以认为是图像灰度密度函数的近似。图像的灰度直方图是反映一幅图像的灰度级与出现这种灰度级的概率之间的关系的图形。

灰度直方图是离散函数,一般的来讲,要精确的得到图像的灰度密度函数是比较困难的,在实际中,可以使数字图像灰度直方图来代替。归纳起来,直方图主要有一下几点性质:

(1)直方图中不包含位置信息。直方图只是反应了图像灰度分布的特性,和灰度所在

的位置没有关系,不同的图像可能具有相近或者完全相同的直方图分布。

(2)直方图反应了图像的整体灰度。直方图反应了图像的整体灰度分布情况,对于暗色图像,直方图的组成集中在灰度级低(暗)的一侧,相反,明亮图像的直方图则倾向于灰度级高的一侧。直观上讲,可以得出这样的结论,若一幅图像其像素占有全部可能的灰度级并且分布均匀,这样的图像有高对比度和多变的灰度色调。

(3)直方图的可叠加性。一幅图像的直方图等于它各个部分直方图的和。

(4)直方图具有统计特性。从直方图的定义可知,连续图像的直方图是一位连续函数,它具有统计特征,例如矩、绝对矩、中心矩、绝对中心矩、熵。

(5)直方图的动态范围。直方图的动态范围是由计算机图像处理系统的模数转换器的灰度级决定。

MATLAB 图像处理工具箱提供了imhist 函数来计算和显示图像的直方图,灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,如图4.1所示,(b )为图像(a )的灰度直方图,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(像素的个数)。

图4.1

当图像对比度较小时,它的灰度直方图只在灰度轴上较小的一段区间上非零,较暗的图像由于较多的像素灰度值低,因此它的直方图的主体出现在低值灰度区间上,其在高值灰度区间上的幅度较小或为零,而较亮的图像情况正好相反。

4.1.2 直方图均衡化

直方图均衡化过程如下:

(1)计算原图像的灰度直方图)(K r r P ;

(2)计算原图像的灰度累积分布函数k s ,进一步求出灰度变换表;

(3)根据灰度变换表,将原图像各灰度级映射为新的灰度级。

在MATLAB中,histeq函数可以实现直方图均衡化。该命令对灰度图像I进行变换,返回有N级灰度的图像J,J中的每个灰度级具有大致相同的像素点,所以图像J的直方图较为平坦,当N小于I中灰度级数时,J的直方图更为平坦,缺省的N值为64。

以下展示了直方图均衡化的效果:

图4.2

从直方图统计可以看出,原始图的灰度范围大约是110到250之间,灰度分布的范围比较狭窄,所以整体上看对比度比较差,而直方图均衡化后,灰度几乎是均匀的分布在0到255的范围内,图像明暗分明,对比度很大,图像比较清晰明亮,很好的改善了原始图的视觉效果。

优势:能够使得处理后图像的概率密度函数近似服从均匀分布,其结果扩张了像素值的动态范围,是一种常用的图像增强算法。

不足:不能抑制噪声。

4.1.3 图像二值化

图像的二值化处理就是将图像上的像素点的灰度值设置为0或255,也就是讲整个图像呈现出明显的黑白效果。

将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局

部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,首先,图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。其次,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像。

所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。

下图为图像二值化的效果:

图 4.3

4.2 对比度增强

对比度增强是图像增强技术中一种比较简单但又十分重要的方法。这种方法是按一定的规则修改输入图像每一个像素的灰度,从而改变图像灰度的动态范围。它可以是灰度动态范围扩展,也可以使其压缩,或者是对灰度进行分段处理,根据图像特点和要求在某段区间中进行压缩在另外区间进行扩展。

例如,观察图4.4可以发现,该图的对比度不高其灰度直方图没有低于35或高于210的值,如果将图像数据映射到整个灰度范围内,则图像的对比度将大大增大。

图4.4

设输入图像为f(x,y),处理后的图像为g(x,y),则对比度增强可以表示为下面的数学

变幻式:

g(X,Y)=T[f(X,Y)]

其中T 表示输入图像和输出图像对应点的灰度映射关系。实际中由于曝光不足或成像系统非线性的影响,通常照片或电子系统生成图像对比对不良,利用对比度增强变换可以有效地改善图像的质量。

4.2.1 灰度调整

1. imadjust 函数

MATLAB 软件中,imadjust 函数可以实现图像的灰度变换,通过直方图变换调整图像的对比度。

()gamma top bottom high low I imadjust J ],[],[,=

其中,gamma 为校正量r ,][high low 为原图像中要变换的灰度范围,][top bottom 指定了变换后的灰度范围。

以下展示了常用对比度扩展法的结果:

图4.5

从图4.5【原图】可以看出原始图像动态范围较小,整体较暗,反映在直方图上像素主

要集中在低灰度的一侧,如【原图的灰度直方图】所示。经过对比度调整,图像变亮,可以看到更多的细节如图【原图直方图均衡化】和【均衡后的灰度直方图】所示。

优势:可以充分利用图像中的亮度信息,明显改善图像质量,是一种常用的图像增强算法。

不足:对于受噪声影响明显的图像,该算法增强效果不明显。即不能有效地抑制噪声。而且,仅仅利用了图像中的局部信息。

从原理上讲,我们也可以用一些数学上的非线性函数进行变换,如平方、指数、对数等,但其中有实际意义的还是对数变换。

2.对数变换

对数变化常用来扩展低值灰度,压缩高值灰度,这样可以使低值灰度的图像细节更容易看清。对数变换的表达式为:

g(x,y)=log[f(x,y)+1]

运用对数变换的结果如图4.6:

图 4.6

从图像对数变换前后的效果比较,可以知道,对数变换确实能够扩展低值灰度,而压缩高值灰度,使低值灰度的图像细节更容易看清。

3 指数变换

指数变换可以扩展低值灰度,压缩高值灰度,也可以扩展高值灰度,压缩低值灰度,但是由于与人的视觉特性不太相同,因此不常采用。

4.2.2 Gamma校正

Gamma校正也是数字图像处理中常用的图像增强技术。Imadjust函数中的gamma因子即是这里所说的Gamma校正的参数。Gamma因子的取值决定了输入图像到输出图像的灰度映射方式,即决定了增强低灰度还是增强高灰度。当Gamma等于1时,为线性变换。

图 4.7

4.3 平滑滤波

平滑技术用于平滑图像中的噪声。平滑噪声可以在空间域中进行,基本方法是求像素灰度的平均或中值。为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。

4.3.1 线性滤波

输出图像的值等于输入图像滤波后值的局部平均,各个项具有相同的权。下面是平滑窗口分别为矩形和圆形的情况。

???

?????????

????=1111111111111111111111111

251],[k j h rect ???

??

??

?

?????

???=0111011111

11111

1111101110

211],[k j h circ

对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。

邻域平均法是空间域平滑噪声技术。用一像素邻域内各像素灰度平均值来代替该像素原来的灰度,即是邻域平均技术。

另外,频域处理的基础是频域滤波,例如,理想的低通滤波器:

其中[

]2

122

)

2/()2/(),(N v M u v u D -+-=。

??

?≥≤=0

),(0),(1),(D v u D D v u D v u H

如图4.8(a)为线性平滑滤波的例子:

图 4.8(a)

如图4.8(b)为利用低通邻域平均模板进行平滑的例子:

图 4.8(b)

优势:实现简单,去噪效果明显。

不足:去噪的同时会导致结果图像边缘位置的改变和细节模糊甚至丢失。

4.3.2 非线性滤波

中值滤波是一种最常用的图像增强技术,是非线性滤波。对椒盐噪声有很好的去噪效果。下图是加高斯噪声后,中值滤波和平均滤波的滤波效果对比:

图 4.9(a)

如图可见,对于高斯噪声,均值滤波效果比均值滤波效果好。原因:

(1)高斯噪声是幅值近似正态分布,但分布在每点像素上。

(2)因为图像中的每点都是污染点,所以中值滤波选不到合适的干净点。

(3)因为正态分布的均值为0,所以均值滤波可以消除噪声。(实际上只能减弱,不能消除。)

但对于椒盐噪声,中值滤波效果比均值滤波效果好。原因:

(1)椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。

(2)中值滤波是选择适当的点来替代污染点的值,所以处理效果好。

(3)因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。

中值滤波是基于一个移动窗口并计算输入图像在窗口内的像素亮度值的中值作为输出图像窗口中心的像素值而产生的。给定的图像f(x,y)中的每一个点(m,n),取其领域s。设s含有M个像素{a1,a2,?,aM},将其按大小排序,若M是奇数时,则位于中间的那个象素值就是修改后图像g(x,y)在点(m,n)处的像素值;若M是偶数则取中间两个象素的平均值作为修改后图像g(x,y)在点(m,n)处的象素值。我们在这里先人为的加上一些噪声,然后在matlab中实现中值滤波的效果图如下:

图 4.9(b)

比较经过加入椒盐噪声的图像和经过中值滤波的图像,可以发现,图像的噪声点被去除;但是比较原始图像和经过滤波的图像后会发现,图像的边缘稍微的变得模糊,这是平滑算法不可避免的缺点。

下图为高通滤波边缘增强的例子:

图 4.9(c)

优势:去噪效果明显,并且能够较好的保持图像边缘位置和细节。

不足:非线性滤波算法的实现相对线性滤波比较困难。

4.4 锐化

图像锐化处理的作用是使灰度反差增强,从而使模糊图像变得更加清晰。图像模糊的实质就是图像受到平均运算或积分运算,因此可以对图像进行逆运算,如微分运算以突出图像细节使图像变得更为清晰。

由于拉普拉斯是一种微分算子,它的应用可增强图像中灰度突变的区域,减弱灰度的慢变化区域。因此,锐化处理可选择拉普拉斯算子对原图像进行处理产生描述灰度突变的图像,再将拉普拉斯图像与原始图像叠加而产生锐化图像。拉普拉斯锐化的基本方法可以由下式表示:

x

y

x

f

y

-

g?

x

=

f

(

,

)

)

,

,

(2y

)

(

这种简单的锐化方法既可以产生拉普拉斯锐化处理的效果,同时又能保留背景信息:将原始图像叠加到拉普拉斯变换的处理结果中去,可以使图像中的各灰度值得到保留、灰度突变处的对比度得到增强,最终结果是在保留图像背景的前提下,突现出图像中小的细节。

图4.10展示了在MATLAB中进行图像锐化的处理结果:

图4.10

比较原始模糊图像和经过拉氏算子运算的图像,可以发现,图像模糊的部分得到了锐化,特别是模糊的边缘部分得到了增强,边界更加明显。但是,图像显示清楚的地方,经过滤波发生了失真,这也是拉氏算子增强的一大缺点。

4.5 利用sym4函数进行小波变换进行图像增强

某些传统图像增强方法往往带来比较严重的负效应。为此,人们一直在寻找更好的图像增强方法。小波分析因其分析信号的“数学显微镜’、多分辨分析能力,与图像增强的结合成为一种必然。

基于小波分析的图像增强,就是突出图像的边缘细节,尽可能的消除负面因素,从而达到增强图像的目的。基于小波分析的图像增强是采用小波变换,对低频成分进行特殊处理,以增强图像中的目标信息。

效果如图 4.11所示:

图 4.11

4.6 彩色增强

用于增强图像对比度的方法很多,要根据应用目的加以选择。伪彩色变换是增强图像显示效果和提高视觉分辨率的一种常用的、最有效的手段,但伪彩色增强不可能增加图像的有效信息;伪彩色增强的视觉效果由所选择的彩色映射决定,在选择映射函数时,尽可能使三通道的函数不相关。伪彩色处理增强视觉效果明显,常用于医学、遥感图像显示。

真彩色图像增强需要考虑彩色特征空间的选择,同样的运算在不同的特征空间效果不同。

4.6.1 伪彩色增强

伪彩色(pseudo color),非彩色图像(灰度、二值)人为映射成彩色图像。伪彩色增强是将一个波段或单一的黑白图像变换为彩色图像,从而把人眼不能区分的微小的灰度差别显示为明显的色彩差异,更便于解译和提取有用信息。伪彩色增强的方法主要有以下三种:(1)密度分割法:

密度分割或密度分层是伪彩色增强中最简单的一种方法,它是对图像亮度范围进行分割,使一定亮度间隔对应于某一类地物或几类地物从而有利于图像的增强和分类。它是把黑白图像的灰度级从0(黑)到M0(白)分成N个区间Li,i=1,2,…,N。给每个区间Li指定一种彩色Ci,这样,便可以把一幅灰度图像变成一幅伪彩色图像。此法比较直观简单,缺点使变换出的彩色数目有限。

(2)空间域灰度级-彩色变换:

空间域灰度级-彩色变换是一种更为常用的、比密度分割更有效的伪彩色增强法。它是根据色度学的原理,将原图像的灰度分段经过红、绿、蓝三种不同变换,变成三基色分量,然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。彩色的含量由变换函数的形状而定。

(3)频率域伪彩色增强:

频率域伪彩色增强时先把黑白图像经傅立叶变换到频率域,在频率域内三个不同传递特性的滤波器分离成三个独立分量,然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(直方图均衡化),最后将它们作为三

基色分量分别加到彩色显示器的红、绿、蓝显示通道,从而实现频率域分段的伪彩色增强。效果如图:

图 4.12

4.6.2 真彩色增强

真彩色(true-color)是指图像中的每个像素值都分成R、G、B三个基色分量,每个基色分量直接决定其基色的强度,这样产生的色彩称为真彩色。例如图像深度为24,用R:G:B=8:8:8来表示色彩,则R、G、B各占用8位来表示各自基色分量的强度,每个基色分量的强度等级为28=256种。图像可容纳224=16 M种色彩。这样得到的色彩可以反映原图的真实色彩,故称真彩色。

图 4.13

4.6.3 假彩色增强

假彩色:有三种形式第一,把真实景物图像的象元逐个地映射为另一种颜色。第二,把多光谱图像中任三个光谱图像映射为可见光rgb,在合成为一幅彩色图像第三,把黑白图像,用灰度级映射或频谱映射而成为类似真实彩色的处理。

伪彩色,相当于假彩色中的一个特例,即指定某灰度为某种彩色。相当于第三中形式。

图 4.14

5图像增强小结

增强图象中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。

基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

6源程序:

1、图 4.1

%灰度直方图

I=imread('D:\image\rice.bmp');%读取图像

subplot(2,1,1);

Imshow(I);%显示图像

title('(a)原图');

subplot(2,1,2);

imhist(I);%绘制图像的灰度直方图

title('(b)原图的灰度直方图');

2、图 4.2

%灰度直方图均衡化

I=imread('D:\image\bubbles.bmp');%读取图像

subplot(2,2,1);

Imshow(I);%显示图像

title('原图');

subplot(2,2,2);

imhist(I);%绘制图像的灰度直方图

title('原图的灰度直方图');

subplot(2,2,3);

J=histeq(I,64);%对图像进行均衡化处理,返回有64级灰度的图像J Imshow(J);%显示图像

title('原图直方图均衡化');

subplot(2,2,4);

imhist(J);%绘制图像的灰度直方图

title('均衡后的灰度直方图');

3、图 4.3

%图像二值化(选取一个域值,(5) 将图像变为黑白图像)

I=imread('beauty.tif');

bw=im2bw(I,0.5);%选取阈值为0.5

subplot(1,3,1);

imshow(I);

title('原图');

subplot(1,3,2);

imshow(bw);

title('显示二值图像');

J=find(I<150);

I(J)=0;

J=find(I>=150);

I(J)=255;

subplot(1,3,3);

imshow(I);

title(' 图像二值化 ( 域值为150 ) ');

4、图 4.5

%imadjust函数

I=imread('D:\image\rice.bmp');%读取图像

subplot(2,2,1);

Imshow(I);%显示图像

title('原图');

subplot(2,2,2);

imhist(I);%绘制图像的灰度直方图

title('原图的灰度直方图');

subplot(2,2,3);

J=imadjust(I,[0.3 0.7],[]);%对图像进行灰度变换

Imshow(J);%显示图像

title('原图直方图均衡化');

subplot(2,2,4);

imhist(J);%绘制图像的灰度直方图

title('均衡后的灰度直方图');

5、图 4.6

%对数变换

I=imread('beauty.tif');%读取图像

I=mat2gray(I);%对数变换不支持uint8类型数据,将一个矩阵转化为灰度图像的数据格式(double)

J=log(I+1);

subplot(1,2,1);

Imshow(I);%显示图像

title('原图');

subplot(1,2,2);

Imshow(J);

title('对数变换后的图像')

6、图 4.7

%Gamma校正

for i=0:255;

f=power((i+0.5)/256,1/2.2);

LUT(i+1)=uint8(f*256-0.5);

end

img=imread('gg.bmp');

img0=rgb2ycbcr(img);

R=img(:,:,1);

G=img(:,:,2);

B=img(:,:,3);

图像识别技术的研究现状论文

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

红外图像增强算法研究

红外图像增强算法研究 安阳,胡耀祖 武汉理工大学信息学院,武汉 (430070) E-mail:alen1983@https://www.doczj.com/doc/5510583707.html, 摘要:本文根据红外图像的特点介绍了几种经典的图像增强算法,讨论算法的效果,提出对算法的一些改进,给出了一些改进后的效果。 关键词:红外图像,直方图,锐化 1.引言 红外技术是二战后兴起的一项红外信息转换与处理技术。它研究红外辐射的发射、传输和接收的规律及其应用原理,而红外成像技术是其应用最广泛的方面。随着科技的不断发展,红外热成像技术在军事、科研、工农业生产、医疗卫生等领域的应用越来越广泛,与此同时图像实时处理的研究也得到了迅速发展[1]。 随着红外成像技术的广泛应用,人们对红外图像成像质量的要求越来越高,要提高红外图像的质量可以有两种途径:一是不断研究更高性能的红外探测器;另一个就是要进行红外图像的预处理,从而改善图像质量。 目前随着材料技术的突破,美国,西欧等发达国家在红外成像阵列的研制取得了巨大的发展,高密度,高灵敏度,快响应的红外焦平面阵列在军事上已经得到了应用,非制冷焦平面阵列也得到了快速的发展。 但是由于材料器件的限制,仅仅依靠红外探测器的提高不能完全达到我们所期望的图像质量,而且高精度的探测器件的研制所花费的人力物力是十分巨大的。而解决这个问题的一个有效的手段就是对红外图像进行实时图像预处理。实时图像处理技术能在现有的条件下不仅能提高红外图像质量,而且在较短的时间内迅速改善和提高红外热像仪的各项性能指标。 2.红外图像对比度增强算法 2.1 红外图像的特点 红外成像的目标和背景的红外辐射需经过大气传输、光学成像、光电转换和电子处理等过程,才被转换成为红外图像。所以从红外图像的产生过程分析,红外图像主要有以下特点:1)空间相关性强,对比度低;2)表征对象的温度分布,是灰度图像,分辨率较低,图像比较模糊;3)噪声干扰较大,噪声比较复杂,信噪比低;4)存在器件性的非均匀性等。 我们可以看出红外图像存在很多缺陷,对人眼来说其最显著的特点就是对比度很低,图像很模糊,所以本文主要从对比度提升和图像锐化两个方面进行增强算法的研究。 2.2 红外图像的直方图均衡化及改进 红外图像直方图的特点是像素相对比较集中,灰度值变化不大,使得图像的对比度很低,视觉效果很差。直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。

增强现实技术综述

增强现实技术综述 摘要:增强现实技术,它是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息,声音,味道,触觉等),通过电脑等科学技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。本文先介绍了增强现实技术的概念,进而描述其未来发展趋势以及应用场景 关键词:增强现实技术投影技术3D技术跟踪注册技术前景展望 一、增强现实技术简介 增强现实(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界 套在现实世界并进行互动。 AR是一种将真实世界信息和虚拟世界信息无缝集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息,通过计算机视觉等科 学技术,应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。通 过AR技术,真实的环境和虚拟环境叠加到同一画面或空间。 这种技术最早于1990年提出。随着随身电子产品运算能力的提升,增强现实的用途越来越广。 二、增强现实技术的基本原理及特征 (一)工作原理简介 移动式增强现实系统的早期原型增强现实的基本理念是将图像、声音和其他感官增强功能实时添加到真实世界的环境中。听起来十分简单。而且,电视 网络通过使用图像实现上述目的不是已经有数十年的历史了吗?的确是这样, 但是电视网络所做的只是显示不能随着摄像机移动而进行调整的静态图像。增 强现实远比您在电视广播中见到的任何技术都要先进,尽管增强现实的早期版 本一开始是出现在通过电视播放的比赛和橄榄球比赛中,例如Racef/x和添加 的第一次进攻线,它们都是由SporTVision创造的。这些系统只能显示从一个 视角所能看到的图像。下一代增强现实系统将显示能从所有观看者的视角看到 的图像。 在各类大学和高新技术企业中,增强现实还处于研发的初级阶段。最终,可能到这个十年结束的时候,我们将看到第一批大量投放市场的增强现实系统。

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.doczj.com/doc/5510583707.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

增强现实技术及相关问题研究

增强现实技术及相关问题研究 摘要:为了实现虚拟技术的不断发展,对增强现实 技术进行研究已经逐渐成为最为重要的内容。文章围绕增强现实技术中存在的相关问题,对技术在安卓系统以及其他相关系统中的运用展开了探讨,从而进一步实现增强现实技术的有效应用。 关键词:增强现实;技术;智能手机 所谓增强现实技术,即应用于虚拟世界中的一种研究技术,现阶段,受信息技术、传感技术等影音图形处理技术发展的影响,在移动端中逐渐实现了GPS定位、重力感应等智能功能,在此基础上,增强现实技术的应用也逐渐得到了重视。在移动端中,增强现实技术的应用也可以被叫做移动增强现实技术,较之传统的增强现实技术,在移动端应用的增强现实更具移动性,客户在使用的同时更加便捷,并且在其具体应用中范围更广,以此实现了增强现实技术的不断提升。为此,文章中笔者针对增强现实技术,对其应用进行了分析。 一、增强现实技术基本内涵 现阶段对于增强现实技术的定义不同的学者具有不同 的认识,在相关的国际大会中,一些学者对其展开了讨论,目前,能够达成一致的部分主要在于增强现实技术的元素构

成,然而在其定义方面仍然存在一些出入。现阶段,在虚拟行业中,对于增强现实技术定义的限定,主要以Azuma的 定义为准,即在信息技术的基础上,将虚拟与现实世界结合,并为进行实施互动。 增强现实技术也就是在移动终端对于增强显示技术的 使用,是脱离实验室等指定条件下的增强现实体系。一般情况下,增强现实技术所涉及到的相关技术形式主要包含以下几种:即全球跟踪定位系统、在位置的基础上实行的计算服务以及无线通信等几种技术。 二、增强现实技术的应用策略 1.应用于数字营销中 在数字营销中应用增强现实技术,不仅对技术的应用范围进行了拓展,同时也为数字营销提供了更加新颖的形式,在其应用的同时,客户可以发现更加新鲜的视角对产品进行体验,例如,在安卓的移动设备中,我们可以利用移动终端屏幕将产品的虚拟信息投放于周边的物体表面,更显高科技,同时也能够起到激发客户积极性的作用,让客户通过增强现实技术更加了解该产品,从而实现产品销售量提升的基础目标。另外,在进行产品外观展示时,也可以利用增强现实技术,结合3D模型通过展示台的形式将产品的外观、性能等 进行展示,让客户全面位立体的了解产品功能,提高客户体验率。针对现阶段一些能够人体识别的高科技产品,我们可

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

虚拟现实增强技术综述

虚拟现实增强技术综述 曾玮峰 中南大学信息科学与工程学院 摘要随着近年来计算机三维处理能力的增长和低成本传感显示元件的出现,虚拟现实得到了快速发展,特别是与现实世界产生了越来越多的结合技术,从虚拟和现实的两个角度对虚拟现实进行增强。论文重点围绕近几年的发展趋势,论述了增强现实与增强虚拟环境的技术特点,介绍了虚拟现实增强技术的相关硬件设备发展;然后分别介绍了增强现实和增强虚拟环境技术的发展现状,讨论了移动互联网上的虚实增强技术与应用,最后进行总结并提出需要解决的问题。 关键词增强虚拟环境增强现实虚实增强混合现实 1引言 虚拟现实技术建立人工构造的三维虚拟环境,用户以自然的方式与虚拟环境中的物体进行交互作用、相互影响,极大扩展了人类认识世界,模拟和适应世界的能力。虚拟现实技术从20世纪60~70年代开始兴起,90年代开始形成和发展,在仿真训练、工业设计、交互体验等多个应用领域解决了一些重大或普遍性需求,目前在理论技术与应用开展等方面都取得了很大的进展。虚拟现实的主要科学问题包括建模方法、表现技术、人机交互及设备这三大类,但目前普遍存在建模工作量大,模拟成本高,与现实世界匹配程度不够以及可信度等方面的问题。 图1虚拟现实、增强现实和混合现实搜索量统计对比(来源: Google trends, 2004。01~2014。 06) 针对这些问题,已经出现了多种虚拟现实增强技术,将虚拟环境与现实环境进行匹配合成以实现增强,其中将三维虚拟对象叠加到真实世界显示的技术称为增强现实,将真实对象的信息叠加到虚拟环境绘制的技术称为增强虚拟环境。这两类技术可以形象化地分别描述为“实中有虚”和“虚中有实”。虚拟现实增强技术通过真实世界和虚拟环境的合成降低了三维建模的工作量,借助真实场景及实物提高了用户体验感和可信度,促进了虚拟现实技术的进一步发展。

图像增强研究现状

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

红外增强算法综述

红外增强算法综述 在图像形成、传输或变换的过程中,由于受到其它客观因素诸如系统噪声、曝光不足或过量、相对运动等影响,获取图像往往会与原始图像之间产生某种差异(称为降质或退化)。退化后的图像通常模糊不清或者经过机器提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像增强技术正是在此意义上提出的,目的就是为了改善图像的质量。图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除元关信息,达到强调图像的整体或局部特征的目的。图像增强尚没有统一的理论方法,常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。下面将由红外图像的直方图出发,介绍相关的增强算法。 一、红外图像的直方图及其特点 1、红外图像的直方图 图像的基本描述有灰度、分辨率、信噪比、频谱等等。灰度直方图是用于表达图像灰度分布情况的统计图表,有一维直方图和二维直方图之分。其中最常用的是一维直方图,其定义是:对于数字图像()y x f ,,设图像灰度值为0r 、1r ......1-L r ,则概率密度函数()i r P 为: ()()....3,2,1== i r r P i i 图像上总的像素数的像素数灰度级为 且有()110 =∑-k i r P ,由于i r 取值离散,故直方图习惯画成灰度级—像素数(图1) 的形式。 图1:典型直方图 直方图具有以下性质: 1) 只表示图像中每一灰度级出现的频数,而失去了具有该灰度级的像素的位置信息; 2) 图像与直方图之间是多对一的映射关系;

3) 一副图像各子区直方图之和等于该图像的全图直方图。 在图像处理中,直方图是很有用的决策和评价工具。直方图可以提供下列信息: 1) 每个灰度级像素数出现的频数; 2) 图像像素值的动态范围; 3) 整幅图像的大致平均亮度; 4) 图像的整体对比度情况。 直方图统计在对比度拉伸,灰度级修正、动态范围调整、图像亮度调整、模型化等图像处理方法中发挥了很大作用,在本文后面的讨论中将可以看到直方图的意义。 2、红外直方图的特点 对红外图像直方图与可见光图像直方图进行对比研究可以发现,红外图像相对于可见光图像有着其特有的规律和特点: 1) 像素灰度值动态范围小,很少能覆盖整个灰度级空间。而可见光图像的像素则几乎分布于几乎整个灰度级空间。 2) 绝大部分像素集中于某些相邻的灰度级范围内,在这些范围内以外的灰度级上的像素数量很少,而可见光的像素分布则相对比较均匀。 3) 直方图中有明显的峰存在,很多情况下为单峰或者双峰(分为主峰、次峰),而可见光图像直方图的峰不是很明显,并且峰的数量一般多于两个。 但要注意的是,上述三点是大多数红外图像直方图所具备的特点。由于具体的气候条件、环境温度等因素的影响,不同季节不同时间段内各种物体的热辐射呈现不同的特点,物体越热,红外成像的亮度越高,物体温度越低,其红外成像的亮度就越低,所以实际当中的红外图像往往呈现出各自的特点,并不一定与上述特点完全一致。 二、通常的红外图像增强算法 图像增强是一种基本的图像预处理手段,对图像的某些特征,如对比度、边缘等进行增强或突显,便于后续分析和处理。它并不意味着能增加原始图像的信息,有时甚至会损失一些信息。但图像增强的结果却能加强对某些特定信息的识别能力,使图像中我们感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 1、红外图像增强算法的分类 图像增强的处理技术从增强的作用域出发,可以分为空间域的方法和变换域的方法两大类,如图2所示。空间域法直接对图像像素进行操作,主要的空间域法有直方图均衡化、直方图规定化、灰度窗口和空域滤波等技术;而频率域法是首先将图像从空间域按照某种变换模型(如傅立叶变换)变换到频率域,然后对图像进行处理,再将其反变换到空间域,获得增强图像,这是一种间接地方法,频域方法有高通滤波、低通滤波、带通和带阻滤波等技术。 图像增强算法的优劣不是绝对的,由于具体用的目的和要求不同,所需要的具体的增强技术也大不相同,因此没有图像增强的通用标准,观察者才是某种增强方法优劣的最终判断者。增强算法处理的效果,除了与算法本身有一定关系外,还与图像的数据特征直接相关。实际应用中应当根据图像数据的特点和工作的要求来选择合理的图像增强处理方法。 由于红外图像的成像机理以及红外成像系统自身的原因,红外图像与可见光图像相比,大多有图像对比度低、图像较模糊、噪声大等特点。为了有利于后续

增强现实综述

增强现实综述 引言 增强现实(Augmented Reality,简称AR),也被称之为混合现实。它是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息,声音,味道,触觉等),通过科学技术模拟仿真后再叠加到现实世界被人类感官所感知,从而达到超越现实的感官体验。与传统虚拟现实所要达到的完全沉浸的效果不同,增强现实技术致力于将计算机生成的信息同真实世界中的场景结合起来,它可以为医疗和工程用户提供准确、高效的辅助操作界面,也能够为教育或娱乐程序构造引人入胜的交互环境。增强现实技术在工业设计、机械制造、建筑、教育和娱乐等领域都有着广泛的应用前景,而且它提供了一种更容易时间的虚拟现实的方法,更代表了下一代更易使用的人机界面的发展趋势。 增强现实的发展进程与研究现状综述 发展进程 增强现实 (AugmentedReality,简称AR)技术可以将虚拟的三维物体融合到现实场景中,并能支持用户与其进行交互,它己经成为虚拟现实研究中的一个重要领域,同时也是人机界面技术发展的一个重要方向。 AR技术始于二十世纪六十年代,美国哈佛大学 IvanSutherland教授发明了光学透明头盔显示器(see一 throughHead一 MountedDisplay,简称STHMD)显示计算机生成的3D图形[7]。20世纪80年代到90年代,AR的发展较为成熟,一些公司和高校不断研制出完善的AR系统,其中比较好的有: 1986年,Furness研制的vCAss系统采用头盔显示器将射程、射击目标等作战信息显示在飞行员的视野上。 1986年,美国北卡大学 (LJNCatChaPelHill)研制出用于实现生物化学和建筑可视化的STHMD系统。 1993年,美国哥伦比亚大学的Feine:教授等人设计了一个基于知识的AR系统。该系统用于指导机械维修,可以将有关技术说明叠加在激光打印机上,辅助技术人员完成维修工作,这样,技术人员再也不用带着大量笨重的资料在身边,边进行维修工作,边查阅身边的资料,一旦出现难题、紧急情况,就会不知所措了。

图像增强技术要点

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

图像增强研究现状

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X 射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。X射线是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N. Hounsfield先生和Allan M. Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20

图像增强技术在液晶电视中的应用分析

图像增强技术在液晶电视中的应用分析 电视作为一个视听产品,画质是其重要的指标,越来越受到消费者的关注和重视。文章介绍了几种常用的图像增强技术在电视产品中的应用,并对这些技术进行了简要的分析。 标签:画质;图像增强;动态对比度;直方图 引言 随着经济的发展和科技水平的提高,3D技术、智能电视、网络功能纷纷被移植进电视,电视产品越来越趋于同质化。而对于市场竞争趋于同质化的今天,提升核心技术竞争力已成为企业间新一轮的发展重心。因此,拥有卓越的画质,同时为消费者提供包括超清、互联网在内的更多的电视体验方式,才能更加适应未来消费者的需求。 改善平板电视画质的途径主要有两种:一是从显示器件方面,使用更高规格的显示屏,如采用对比度和亮度更高、响应时间更短的显示屏,但性能指标越高,显示屏的制造成本也越高,这无疑会增加电视制造厂商的生产成本;二是从视频处理芯片方面,采用图像增强技术来提升画质,弥补显示器件固有的不足,从而提升平板电视的显示效果[1]。在当今成本制胜的市场环境下,国内电视制造厂家不得不采用量大面广的中低端平板显示屏,所以平板电视产品只能通过视频处理芯片的图像增强技术来提升画质,从而提高产品的性价比,满足人们的需求。 1 图像增强技术在电视中的应用 平板电视实现彩色图像重现的过程中,视频信号本身、A/D转换、图像缩放及电路上信号传输等过程,都有可能对画质产生负面的影响,特别在图像处理与控制电路方面,不同厂家提供的方案可能会产生不同的图像处理效果,对电视图像画质可能有着不同程度的削弱[2]。 TV、高清分量信号、HDMI等外部视频信号通过视频解码芯片转换成数字信号,然后送到图像处理与控制电路中处理,图像处理器集成有图像隔/逐行处理、比例放大或缩小、OSD控制、MCU等功能模式。通过图像处理与控制电路对图像进行各种处理后,数字图像被转换成能够适合屏幕显示的数据格式。由低压差分信号(LVDS)送到平板显示屏显示。在图像处理器中引入图像增强技术,既可以改善图像处理过程中的降质,又可以根据显示器的一些特性作反向处理,比如反伽玛校正[3]等来改善平板电视的显示效果。文章介绍了几种常用的图像增强技术在电视产品中的应用,下面对这几项图像增强技术进行简要的分析。 1.1 DCTI/DLTI 为了增强系统的瞬态响应,弥补信号在传输过程中的损失,目前高端的视频

虚拟现实增强技术综述_周忠

中国科学:信息科学2015年第45卷第2期:157–180 https://www.doczj.com/doc/5510583707.html, 虚拟现实增强技术综述 周忠x*,周颐x,肖江剑y x北京航空航天大学虚拟现实技术与系统国家重点实验室,北京100191 y中国科学院宁波工业技术研究院,宁波315201 *通信作者.E-mail:zz@https://www.doczj.com/doc/5510583707.html, 收稿日期:2014–04–08;接受日期:2014–07–07;网络出版日期:2014–12–16 国家自然科学基金(批准号:61170188,61273276)和国家高技术研究发展计划(“863”计划)(批准号:2012AA011801,2012AA01 1803)资助项目 摘要随着近年来计算机三维处理能力的增长和低成本传感显示元件的出现,虚拟现实得到了快速发展,特别是与现实世界产生了越来越多的结合技术,从虚拟和现实的两个角度对虚拟现实进行增强.论文重点围绕近几年的发展趋势,论述了增强现实与增强虚拟环境的技术特点,介绍了虚拟现实增强技术的相关硬件设备发展;然后分别介绍了增强现实和增强虚拟环境技术的发展现状,讨论了移动互联网上的虚实增强技术与应用,并结合作者参与ISO/IEC的工作,介绍了相关国际标准制定最新情况;最后进行总结并提出需要解决的问题. 关键词增强虚拟环境增强现实虚实增强混合现实 1引言 虚拟现实技术建立人工构造的三维虚拟环境,用户以自然的方式与虚拟环境中的物体进行交互作用、相互影响,极大扩展了人类认识世界,模拟和适应世界的能力.虚拟现实技术从20世纪60~70年代开始兴起,90年代开始形成和发展,在仿真训练、工业设计、交互体验等多个应用领域解决了一些重大或普遍性需求,目前在理论技术与应用开展等方面都取得了很大的进展.虚拟现实的主要科学问题包括建模方法、表现技术、人机交互及设备这三大类,但目前普遍存在建模工作量大,模拟成本高,与现实世界匹配程度不够以及可信度等方面的问题[1]. 针对这些问题,已经出现了多种虚拟现实增强技术,将虚拟环境与现实环境进行匹配合成以实现增强,其中将三维虚拟对象叠加到真实世界显示的技术称为增强现实,将真实对象的信息叠加到虚拟环境绘制的技术称为增强虚拟环境.这两类技术可以形象化地分别描述为“实中有虚”和“虚中有实”.虚拟现实增强技术通过真实世界和虚拟环境的合成降低了三维建模的工作量,借助真实场景及实物提高了用户体验感和可信度,促进了虚拟现实技术的进一步发展. 搜索热度代表了大众对于该词的关注程度,一般来说,新技术会引起搜索高潮,然后慢慢下降,在技术取得突破或出现某热点事件时激增,最终趋于稳定.我们使用Google trends对比了虚拟现实,增强现实,增强虚拟环境和混合现实等词的全球搜索热度,为了有所参照,以人机交互(HCI)作为参考,搜索结果对比如图1所示.可以看出,和人机交互一样,虚拟现实的搜索热度逐渐下降并趋于稳定,这说

增强现实技术的发展与应用

增强现实技术的发展与应用 增强现实技术将虚拟世界叠加在现实世界上,使体验者在虚实融合的世界进行互动,是近年来的研究热点。文章首先综述了增强现实技术的国内外研究现状,然后详细介绍了跟踪注册技术、3D显示技术和人机交互技术三项关键技术,最后对增强现实技术的应用发展进行阐述,并展望了其进一步的研究和发展。 标签:增强现实;跟踪注册技术;3D显示技术;人机交互技术 1 概述 增强现实技术是虚拟现实技术的一个重要分支领域,是近些年来各大高校和研究机构的研究热点。与虚拟现实技术使用户完全沉浸在虚拟世界环境中不同,增强现实技术将虚拟世界与现实世界相结合,把虚拟世界疊加在现实世界并进行互动,通过诸如各种成像眼镜、头戴光学透视显示器、投影仪等多种设备,为用户提供一个由虚拟信息和真实景物构成的混合式场景。1997年,北卡大学的罗纳德·阿祖玛从三个方面的内容:虚拟物体与现实环境结合、三维显示和实时交互定义了增强现实。因此,增强现实技术是一种将计算机产生的数字图形动画等信息实时叠加显示到现实的场景中,并使用户可以在虚实混合的场景中进行自然互动的人机交互技术。增强现实技术提供了更加自然的交互能力,让人们能够以全新的方式去体验和认知周围的事物,并能帮助我们完成一些复杂的工作,在现阶段增强现实技术比虚拟现实技术具有更广泛的应用空间。 2 国内外研究情况 最早关于增强现实技术的研究可以追溯至1968年,美国麻省理工学院研发了世界上第一台光学透视头戴式显示器,该设备可以将计算机生成的图形实时与真实场景叠加、融合,掀开了增强现实技术的面纱。1999年,美国华盛顿大学和日本广岛城市大学成功联合开发了基于标识的增强现实系统开发包ARToolKit 并维护至今,极大地推动了增强现实技术的普及,进而涌现出更多相关的软件应用和开发系统。现阶段,增强现实技术的核心算法、人机交互方法和软硬件基础平台是各大研究机构的研究重点。主导基于自然平面图像与立体物体识别追踪三维注册算法的瑞士洛桑理工学院计算机视觉实验室[1]、专注于基于增强现实技术的人机交互技术研究的新加坡国立大学多媒体交互实验室[2]以及正在研发增强现实辅助汽车机械维修的德国宝马实验室[3]都是增强现实技术领域的翘楚,被公认为代表业内的领先水平。随着硬件设备技术的不断发展以及增强现实技术的日益成熟,原有的研究领域已拓展到许多新的领域。 国内关于增强现实技术的研究较国外起步较晚,主要的研究机构大都分布在各大高校,如北京理工大学、浙江大学、北京航天航空大学等,研究的领域比较单一、涉及面比较窄。随着增强现实技术的发展,我国开始对增强现实技术逐渐重视,并将增强现实技术列为国家科学技术发展规划的一个重点研究方向。

相关主题
文本预览
相关文档 最新文档