当前位置:文档之家› 基于AT89C51的温控制系统设计使用DS18B20温度控制2012

基于AT89C51的温控制系统设计使用DS18B20温度控制2012

基于AT89C51的温控制系统设计使用DS18B20温度控制2012
基于AT89C51的温控制系统设计使用DS18B20温度控制2012

哈哈大学内部质料可以参考不可抄袭-基于AT89C51的温控制系统设计

本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。

本科生毕业设计(论文)

基于AT89C51的温控制系统设计

本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。

本科毕业设计(论文)

基于AT89C51的温控制系统设计

基于AT89C51的温控制系统设计

Temperature Control System Design Based on AT89C51

本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。

学院(系):机电工程系

专业:机械设计制造及自动化

学生姓名:

学号:

指导教师(职称):(教授)

评阅教师:

完成日期:

哈哈大学内部质料可以参考不可抄袭-基于AT89C51的温控制系统设计

基于AT89C51的温控制系统设计

机械设计制造及自动化专业:

[摘要]:本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil 实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。

本课题所设计的多点温度控制系统可实现对远程环境的温度测量与监控,适用于电力工业、煤矿、火灾、高层建筑等场所,还可以用于环境恶劣的工业控制现场。

[关键词]:数字温度传感器DS18B20;单片机;Proteus仿真;Keil

AT89C51 Based Temperature Control System Design

and production

Mechanical Design, Manufacturing and Automation

Abstract:The paper introduces the composition, design project, circuit principle, program design and the process of simulation of mutil-point temperature measuremetn control system based on DSl8B20 systematically. The multi-point temperature measurement system based on DSl8B20 uses SCM AT89C51 as control core, the intelligent temperature sensor DSl8B20 as control boject,LCD LM016L ad display output and performs system functions by compilation-language. This design performs the circuit of reading ROM serial numbers of DS18B20, selecting detection and multi-screen display circuit of four-point temperature. The the system interaction simulation of hardware and software has been realized with EDA design and simulation tools Proutes and with SCM programming software Keil. Finally, The author performs the circuit connection and debugging combined with LCD 1602C\DS18B20 and STC89C52RC SCM development board, implementing the design goal of the project.

The multi-point control system of this project can realize long-range environmental temperature measurement and monitoring. It is suitable for power industry,coalf mine, fire

disaster, high-rise building and other places and It can be also used for the environment of industrial control site.

Keywords: Digital temperature sensor DS18B20;SCM;Proteus simulation;Keil

本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行

了电路焊接和调试,实现了课题设计目的。

目录

1 绪论 (1)

1.1 课题来源和研究目的 (1)

1.2 温度传感器国内外现状及水平 (2)

1.3 课题设计任务 (2)

2 系统硬件设计 (3)

2.1系统硬件组成 (3)

2.2 单片机的典型电路: (3)

2.3 DS18B20温度传感器和单片机接口技术 (4)

2.3.1 DSl8B20简介 (4)

2.3.2 DSl8B20具体参数及工作方式 (7)

2.3.3 DS18B20与单片机接口电路 (8)

2.4 LM016L液晶显示器和单片机接口技术 (8)

2.4.1 LM016L显示器简介 (8)

2.4.2 1602LCD的基本参数及引脚功能 (9)

2.4.3 LM016L与单片机接口电路 (10)

2.5 键盘电路设计 (10)

2.5.1 行列式键盘与单片机接口电路 (11)

2.5.2 PROTUSE中2×2键盘的制作 (11)

2.6 读DS18B20温度传感器序列号电路设计 (13)

2.7 系统在PROTUSE中原理图的设计 (13)

2.7.1 PROTUSE简介 (14)

2.7.2 原理图绘制 (14)

3 系统软件设计 (15)

3.1 读DS18B20的序列号程序设计 (15)

3.2 主程序设计 (16)

3.3 子程序设计 (18)

3.3.2 LCD 子程序的设计 (20)

3.3.3 温度的精度设计 (22)

4 系统仿真与调试 (23)

4.1 软件编程与调试简介 (23)

4.2 系统软、硬件交互仿真 (23)

4.2.1 程序编译 (23)

4.2.2 程序加载 (23)

4.2.3 系统仿真 (23)

4.3.1 STC89C52开发板 (24)

4.3.2 焊接DS18B20的电路板图 (25)

4.3.3 实物的连线及调试 (26)

5 结束语 (27)

参考文献 (27)

附录 (28)

致谢 (45)

本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。

本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。

1 绪论

1.1 课题来源和研究目的

温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时他也是一种最基本的环境参数。人民的生活与环境度息息相关,物理、化学、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境。可见研究温度的测量具有重要的理论意义和推广价值。

随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活中对温度测量系统方面的需求。

21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于:

(1) 本课题综合了现代测控、电子信息、计算机技术专业领域方方面面的知识,具有综合性、科学本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil 实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。性、代表性,可全面检验和促进学生的理论素养和工作能力。

(2) 本课题的研究可以使学生更好地掌握基于单片机应用系统的分析与设计方法,培养创新意识、协作精神和理论联系实际的学风,提高电子产品研发素质、增强针对实际应用进行控制系统设计制作的能力。

(3) 掌握一个显示屏和一个温度传感器的原理、性能、使用特点和方法,利用单片机对系统进行编程。

1.2 温度传感器国内外现状及水平

传感器属于信息技术的前沿尖端产品,尤其是温度传感被广泛用于工业生产究和生活领域,数量高居各种传感器之首。温度传感器的发展大致经历了一下三个阶段:传统的分离式温度传感器(含敏感元件)、模拟集成温度传感器/控制器和数字温度传感器。目前,国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向发展,同时具有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。

数字式温湿度传感器:就是能把温度物理量和湿度物理量,通过温、湿度敏感元件和相应电路转换成方便本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。计算机、PLC、智能仪表等数据采集设备直接读取得数字量的传感器。数字式传感器的接口形式有RS232数据格式接口;RS485数据格式接口、一总线数据格式接口、CAN总线数据格式接口、ZIGBEE数据格式接口、TCP/IP数据格式接口等。在信息化程度越来越高的今天,担当信息处理与交换重任的机房是整个信息网络工程的数据传输中心、数据处理中心和数据交换中心。为保证机房设备正常运行及工作人员有一个良好的工作环境,对机房温湿度的监测是必不可少的,合理正常的温湿度环境是机房设备正常运行的重要保障。温湿度监测除用于机房监测外,还可以广泛应用于如生物制药、无菌室、洁净厂房、电信银行、图书馆、档案馆、文物馆、智能楼宇等各行各业需要温湿监测的场所和领域。随着我国经济的高速发展,我国在科技和生产各领域都取得了飞速的发展和进步,发展以温度传感器为载体的温度测量技术具有重大意义。

1.3 课题设计任务

本设计要求系统测量的温度的点数为4个,测量精度0.1℃测量范围为25℃~80℃。采用液晶显示温度值,显示格式为:温度的整数部分,小数部分,温度符号,最后一位温度的报警判断,显示数据不断刷新。

本设计的难点主要是软件方面,其中软件开发的难点在于DS18B20的序列号读出和液晶温度符号的显示以及温度的精度显示如何实现,如果DS18B20的序列号读出不正确,将无法正确的匹配和读出的温度值;温度符号的显示需要对LM016L的CGROM进行读写。温度显示的精度的实现需要编程人员对程序熟悉。

2 系统硬件设计

2.1系统硬件组成

本设计使用单片机作为控制核心,采用多个温度传感器对多点温度进行检测,以液晶显示屏显示检测温度,通过2×2矩阵键盘模块对检测温度进行选择显示。系统总体控制框图如图1所示:

图1 系统总体控制框图

单片机选用市场上常见的美国ATMEL 公司的AT89C51作为控制元件,温度传感器选用DS18B20数字温度传感器,它的输入/输山采用数字量,以单总线技术,接收单片机发送的命令,根据DSl8B20内部的协议进行相应的处理,将转换的温度以串口发送给单片机。主机按照通信协议用一个I /0口模拟DSl8B20的时序,发送命令(初始化命令、ROM 命令、RAM

命令)给DSl8B20,转换完成之后读取温度值,在内部进行相应的数值处理,用液晶显示屏LM016L 显示各点的温度,液晶显示该传感器的制作人姓名、路数、实际温度值及报警显示,从而实现了对各点温度的实时监控。

2.2 单片机的典型电路:

(1)时钟电路:如图2连接即可构成自激振荡电路,振荡频率取决于适应晶体的振荡频率,范围可取1.2~12MHZ ,C1、C2主要起频率微调和稳定作用,电容可取5~30pF 。

图2 单片机时钟电路

(2)复位电路

上电复位电路:RC 构成微分电路,在接电瞬间产生一个微分脉冲,其宽度若大于2个机器周期,MCS —51型单片机将复位。选用22uF 电容、1k Ω电阻。如图3所示:

图3 单片机复位电路

2.3 DS18B20温度传感器和单片机接口技术

2.3.1 DSl8B20简介

DSl8B20温度传感器是美国DALLAS半导体公司继DSl820之后最新推出的只用改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据要求通过简单的编程实现9~l2位的数字直读方式。可以分别存93.75ms和750ms内完成9位和12位的数字量,并且从DSl8B20读出的信息或写入DSl8B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接DSl8B20供电,而无需额外电源。因而使用DSl8B20可使系统结构更趋简单,可靠性更高。他在测温精度,转换时时间,传输距离,本文系统地介绍了基于DS18B20的多点温度测量控制系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM 序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。分辨率等方面较DSl820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。DSl8B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如4所示:

图4 DSl8B20的内部结构图

DS18B20的内部结构主要有四部分组成:64位光刻ROM、温度传感器、非挥发的温

度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图5所示:

图5 DS18B20的管脚

DS18B20的引脚说明如下:

GND :地

DQ :数据I/O

VDD :电源

NC :空脚

64位激光ROM开始8位是产品类型的编号,接着是每个器件的惟一的序号共有48

位,最后8位是前56位的CRC校本文系统地介绍了基于DS18B20的多点温度测量控制

系统的组成、设计方案、电路原理、程序设计以及系统仿真过程。DS18B20多点温度测

量系统是以AT89C51单片机作为控制核心,智能温度传感器DS18B20为控制对象,用

LM016L液晶显示,运用汇编语言实现系统的各种功能。设计完成了读DS18B20的ROM 序列号电路和四点温度选择检测及分屏显示电路。借助EDA设计与仿真工具Proteus和单片机编程软件Keil实现了系统软、硬件的交互仿真,并结合液晶显示器1602C、DS18B20和STC89C52RC单片机开发板进行了电路焊接和调试,实现了课题设计目的。验码,这也是多个DSl8B20可以采用一线进行通信的原因。64位激光ROM的机构如表1所示:

表1 64位激光ROM的结构

MSB LSB MSB LSB MSB LSB

DSl8B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除EEPRAM。后者用于存储TH,TL值。数据先写入RAM,经校验后再传给EEPRAM。而配置寄存器为高速暂存器中的第5个字节,他的内容用与确定温度值的数字转换分辨率,DSl8B20 工作时按此寄存器中的分辨率将温度转换为相应精度的数值。低5位一直都是1,TM是测试模式位,用于设置DSl8B20在工作模式还是在测试模式。如表2所示。在DSl8B20出厂时该位被设置为0,用户不要去改动,Rl和R0决定温度转换精度位数。

表2 字节各位的定义

由表3可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如表4所示。其中温度信息(第l,2字节),TH和TL值第3,4节,第6~8字节,表现为全逻辑1;第9字节读出的是前面所有的8字节的CRC码,可用来保证通信正确。

表3 数据分辨率和转换时间

当DSl8B20接收到温度转换命令后,开始启动转换,如表4所示。转换完成后的温度值就以16位带符号扩展到二进制补码形式储存在高速暂存存储器的第l,2字节。单片机可通过单线接口读到该数据,读取时低位在前面,高位在后,数据格式以0.0625℃/LSB形式表示。对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。

表4 码制转换

在DSl8B20完成温度变换之后,温度值与贮存TH和TL内的触发值相比较因为这些寄存器仅仅是8位,所以0.5℃位在比较时被忽略。TH或TL的最高有较位直接对应于l6位温度奇存器的符号位。如果温度测量的结果高于TH或低于TL,那么器件内告警标志将置位。每次温度测量更新此标志。只要告警标志置位,DSl8B20将对告警搜索命令做出响应。这允许并联连接许多DSl8B20,同时进行温度测量。如果某处温度超过极限,那么可以识别出正在告警的器件并立即将其读出而不必读出非告警的器件。部分温度转换如表5所示:

表5 部分温度转换值

2.3.2 DSl8B20具体参数及工作方式

参数特性:

(1)独特的单线接口只需l个接口引脚即可通信

(2)多点综合测温能力使分布式温度检测应用得以简化

(3)不需要外部元件

(4)可用数据线供电

(5)需备份电源

(6)测量范围从-55℃至+125℃增量值为0.5℃

(7)以9位数字值方式读出温度

(8)在1秒(典型值)内把温度变换为数字

(9)用户可定义的非易失性的温度告警设置

(10)告警搜索命令识别和寻址温度在编定的极限之外的器件温度告警情况

(11)应用范围包括恒温控制工业系统消费类产品温度计或任何热敏系统

极限参数:

(1)任何引脚相对于地的电压-0.5V至+7.0V

(2)运用温度-55℃至+125℃

(3)贮存温度-55。C至+125℃

(4)焊接温度260℃/l0秒

2.3.3 DS18B20与单片机接口电路

如图6所示,为单片机与DS18B20的接口电路。DS18B20只有三个引脚,一个接地,一个接电源,一个数字输入输出引脚接单片机的P3.7口电源与数字输入输出脚间需要接一个4.7K的电阻。

图6 DS18B20与单片机接口电路

DSl8B20使用中注意到事项:

DSl8B20虽然具有测温系统简单,测温精度高、连接方便、占用I/O 口线少等优点,但在实际应用中也应注意以下问题:

(1)在实际片使用中发现,应使电源电压保持在5v左右,如果电压过低,会使所测得到温度与实际温度出现偏高现象,使温度输出定格在85℃

(2)连接DSl8B20的总线电缆是有长度限制的。当采用普通信号电缆传输长度超过50m时,读取的测温数据发生错误,当采用双绞线带屏蔽电缆为总线电缆时,正常通讯距离可达l50m,当采用每米胶合次数更多的双绞线带屏蔽电缆时,正常通讯距离可以进一步加长。这种情况主要由总线分布电容使信号波形产生畸变造成的。因此,存进行长距离测量时要充分考虑总线分布电容和阻抗匹配问题。

2.4 LM016L液晶显示器和单片机接口技术

2.4.1 LM016L显示器简介

LM016L字符型液晶显示模块是一种专门用于显示字母、数字、符号等点阵式LCD,

目前常用16*1,16*2,20*2和40*2行等的模块。显示字符时,由于LM016L内带字符发生器的控制器,可以让控制器工作在文本方式,根据在LCD上开始显示的行列号及每行的列数找出显示RAM对应的地址,设立光标,在此送上该字符对应的代码即可。

2.4.2 1602LCD的基本参数及引脚功能

1602LCD分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别,两者尺寸差别如图7所示。

图7 LM016L结构图

LCD1602主要技术参数:

容量:16×2个字符

芯片工作电压:4.5—5.5V

工作电流:2.0mA(5.0V)

模块最佳工作电压:5.0V

字符尺寸:2.95×4.35(W×H)mm

引脚功能说明:

1602LCD采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如表6所示:

表6引脚接口说明表

第2脚:VDD接5V正电源。

第3脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度。

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS

和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

2.4.3 LM016L与单片机接口电路

系统显示电路由单片机AT89C51、字符液晶显示器LM016L和1k×8的排组构成。单片机实现对LCD命令和显示数据的读写控制功能,P0口作数据口,与LM016L的D0~D7相接,在P0口与D0~D7数据线之间分别接8个上拉电阻,以确保电路能够正常显示。AT89C51的P1口作为LCD的控制线,P2.0~P2.2分别接LM016L的RS、RW和E端;LM016L

的其它三个控制端V

DD 和V

SS

、V

EE

分别接电源和地。系统显示电路组成如图8所示。

2.5 键盘电路设计

2.5.1 行列式键盘与单片机接口电路

根据本设计需要,本系统采用2×2键盘实现对温度值和功能键的设定。

行列式键盘与单片机接口电路如图9所示,H0-H1为行线,接单片机P2口的P2.0、P2.1口,L0-L1为列线,接单片机的P2.4、P2.5口。初始化时键盘列线为高电平,行线为低电平。列线上需接10K的上拉电阻。

图9 2×2键盘结构

2.5.2 Proteus中2×2键盘的制作

首先在Proteus中画出键盘面板,如图10所示,并指定键盘的左上角为坐标圆点,用软件中的坐标跟踪功能检测出面板按键的边长为300mm和中心坐标,分别为:

(-300,400 )(-300,700)(-700,400)(-700,700)。

图10 2×2键盘面板

在Proteus中选中制作的面板右击鼠标,选Make Device选项,制作步骤如下图11所示:

(a) (b)

(c) (d)

(e) (f)

(g) (h)

图11 矩阵键盘制作步骤

2.6 读DS18B20温度传感器序列号电路设计

每个DS18B20温度传感器的序列号都不相同,在使用DS18B20温度传感器多点测温时要先读出其序列号。硬件设计如图12所示:在P1.0口接DS18B20温度传感器,在片2.0口接发光二极管显示电路,发光二极管亮,与其相连的接口为低电平,发光二极管灭,与其相连的接口为高电平,在程序中把DS18B20的序列号读出后以8位为单位存放在单片机的RAM中,共放8个存储单元,依次把每个单元送到P2口显示,即可读出DS18B20温度传感器的序列号。

图12 读DS18B20的序列号原理图

2.7 系统在PROTUSE中原理图的设计

恒温箱温度控制系统的设计任务书

编号: 毕业设计任务书 题目:恒温箱温度控制系统的设计 学院:机电工程学院 专业:电气工程及其自动化 学生姓名:孙卉 学号:1200120304 指导教师单位:机电工程学院 姓名:韦寿祺 职称:教授 题目类型:?理论研究?实验研究?工程设计?工程技术研究?软件开发 2015年12月28日

一、毕业设计(论文)的内容 恒温箱广泛应用在医疗、工业生产和食品加工等领域,其对温度稳定性要求较高,如何实现对温度的精确控制是恒温箱温度控制系统的关键。温度控制系统通常由被控对象、测量装置、调节器和执行机构等组成。目前,测量装置大多采用温度传感器采集温度,但是在常规的环境中,温度受其它因素影响较大,而且难以校准,因此,温度也是较难准确测量的一个参数,常规方法测量温度误差大、测量滞后时间长。当前,普遍使用单片机或者PLC实现恒温箱温度的智能控制,两种控制方式各有优势。本课题要求设计一种智能恒温控制系统,选择合适的控制方式实现温度的智能控制,具体任务如下: 1、收集有关恒温箱的文献资料,了解恒温箱的工作原理、工艺要求等,重点学习掌握恒温箱温度控制系统的构成、运行参数、控制特点等,选择合适的控制方式,制定恒温箱电热温度控制系统的控制方案。 2、建立恒温箱电热温度控制系统的数学模型,应用仿真软件进行仿真,选择调节器参数,分析系统稳态和动态控制性能指标。 3、完成恒温箱电热温度控制系统的硬件电路设计和相关控制软件程序的编写,绘制系统原理图,计算元器件参数,选择元器件型号。 4、制作演示模拟样机,进行软硬件联调。 二、毕业设计(论文)的要求与数据 1、收集恒温箱温度控制系统的工作原理和控制方法的相关文献资料15篇以上,其中英文文献不少于2篇。 2、恒温箱电热温度控制系统的输入电源为单相220V,电加热额定功率5kW,温度调节范围室温~200℃,温度控制精度在±1℃以内。 3、恒温箱对加热电源电流的传递函数为18.4 e ,采用PID调节器或九点 1.2s 控制器设计恒温箱电热温度控制系统,选择单片机或PLC作为控制器。 4、演示模拟样机采用单相220V供电,自行定义加热功率,最高温度100℃,温度控制精度在±1℃以内。 三、毕业设计(论文)应完成的工作 1、完成二万字左右的毕业设计说明书,要求原理正确,数据详实,文理通顺,格式规范;毕业设计说明书的英文摘要要求300个单词以上,内容与中文摘要一致,语句通顺,无语法错误;附15篇以上参考文献,其中英文文献不少于

基于单片机的温度控制系统设计文献综述

文献综述 题目基于单片机的温度控制 系统设计 学生姓名 X X X 专业班级自动化07-2 学号20070x0x0x0x 院(系) xxxxxxxxxxxxxxxx 指导教师 x x x 完成时间 2011年06月10日

基于单片机的温度控制 系统设计文献综述 1.前言 温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制。而有很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的

多片微机应用系统。 2.历史研究与现状 在工业生产温控系统中采用的测温元件和测量方法不相同,产品的工艺不同,控制温度的精度也不相同,因此对数据采集的精度和采用的控制方法也不相同。 通常由位式或时间比例式温度调节仪控制的工业加热炉温度控制系统,其主回路由接触器控制时因为不能快速反应,所以控温精度都比较低,大多在几度甚至十几度以上。随着电力电子技术及元器件的发展,出现了以下几种解决的方案: (1)主回路用无触点的可控硅和固态继电器代替接触器,配以PID或模糊逻辑控制的调节仪构成的温度控制系统,其控温精度大大提高,常在±2℃以内,优势是采用模糊控制与PID 控制相结合,对控制范围宽、响应快且连续可调系统有巨大的优越性。 (2)采用单片机温度控制系统。用单线数字温度传感器采集温度数据,打破了传统的热电阻、热电偶再通过A/D 转换采集温度的思路。用单片机对数字进行处理和控制,通过RS - 232 串口传到PC 机对温度进行监视与报警,设置温度的上限和下限。其优势是结构简单,编程不需要用专用的编程器,只需点击电脑鼠标就可以把编好的程序写到单片机中,很方便且调试、修改和升级很容易。 (3)ARM(Advanced RISC Machine)嵌入式系统模糊温度控制。利用ARM处理器的强大功能,通过读取温度传感器数据,并与设定值进行比较,然后对温度进行控制。通过内嵌的操作系统μCLinux获得极好的实时性,并且通过TCP/IP协议能与PC机

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

恒温箱的控制设计毕业设计论文

摘要 温度与生物的生活环境密切相关,不同的生物或物体对温度的要求都不同。随着智能控制技术不断的发展,在现代工业生产以及科学实验的许多场合,为了获取生物或物体所需求的温度,需要及时准确的获取温度信息,同时完成对温度的预期控制,这时候温度检测与控制系统就显得尤其的重要。因此,温度检测系统的设计与研究一直备受广大科研者重视。 本次课题设计了一个低成本,高精度的恒温箱。该设计主要从硬件和软件两个方面出发: 1)在硬件上,选择AT89C52单片机为核心,采用了TL431组成2.5V的恒流源,并以Pt100温度传感器作为温度检测仪器,通过ICL7135模数转换器采集数据,用LED数码管作为显示器,构成了一个恒温箱; 2)在软件上,设计了温度检测算法,并在C语言编程环境下,编写了相应的程序来实现所设计的算法。最后通过Proteus ISIS与Keil的联合仿真,保证了算法的可行性。 通过仿真实验可以发现所设计的系统可以较好的检测、控制并且保持温度。但是由于温度调节的迟滞性以及设计上的不足,该系统具有一定的局限性。 关键词:温度检测;AT89C52单片机;恒温箱;C语言编程

ABSTRACT Temperature is closely related to life and environment. Different creature or object have different requirements to temperature. With the development of the intelligent-control- technology, and in order to arrive to the creature's or object's temperature-demand, we should take the information of temperature timely and accuratly, and control the temperature to the expected degree, in the modern industrial production and scientific experiment many occasions . I n this situation, the testing and controlling system for temperature is especially important. Therefore, the designs for temperature detection system attract researchers' attentions. In this dissertation, we designed a box with constant temperature which has low cost as well as high accuracy. We designed the system mainly from two aspects: hardware and software 1)Hardware's design: At first, we chosed AT89C52 SCM as the core of the system. And then we selected TL431 to compose the 2.5 V constant and Pt100 temperature sensor for testing temperature. At last, we collecte data througn the ICL7135 ADC and display data them on the LED. All of this consists of a the constant-temperature-box; 2)Software's design: In this papar, we designed a algorithm detecte temperature and implemented it based on the C programming language's environment. Finally we did a series of simulation experiment through the Proteus ISIS and Keil to ensure that the algorithm is feasible. Simulation results show that the system designed had a very good effect on temperature's detection, controlling and keeping . Because of the adjustmentand of the temperature and the insufficiency of the design, this system has some limitations. Keywords:Temperature detection;AT89C52 SCM; Box of constant temperature ; C language programming

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统的设计

前言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的。单片机在测控领域中具有十分广泛的应用,它既可以测量电信号,又可以测量温度湿度等非电信号。由单片机构成的温度检测、温度控制系统可广泛应用于很多领域。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。时下,家用电器和办公设备的智能化、遥控化、模糊控制化己成为世界潮流,而这些高性能无一不是靠单片机来实现的。 温度控制系统广泛应用于社会生活的各个领域 ,如家电、汽车、材料、电力电子等 ,常用的控制电路根据应用场合和所要求的性能指标有所不同 , 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用 ,但由于继电器动作频繁 ,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。

1.总体设计方案 1.1 总方案设计与选择 实现温度的测量,我们要考虑的主要是以下三个方面的内容: ◆ 温度随时都在变化,要做到对温度的时时监控。 ◆ 温度的精度很重要,要做到高精度。 ◆ 测量温度时系统的稳定性要好才行。 本设计是以这三个部分为核心内容。为了实现温度的时时测量,提供以下方案以供参考: 方案一、按照系统设计的功能要求,主控芯片使用51系列STC89C52单片机。显示模块采用MAX7219驱动数码管显示。初步确定系统由主控模块、MAX7219驱动显示模块以及DS18B20接口模块共三个模块组成,电路系统构成框图如图1所示。 图1 基于STC89C52单片机的温度测试设计框图 方案二、按照系统设计的功能要求,主控芯片使用Cortex-M3系列lm3s615单片机。显示模块采用数码管显示。初步确定系统由主控模块、显示模块以及DS18B20接口模块共三个模块组成,电路系统构成框图2所示。 图2 基于lm3s615单片机的温度测试设计框图 DS18B20接口电路 晶振电路 单 片机STC89C52 复位电路 数码管显示电路 Lm3s615 数码管显示电路 复位电路 DS18B20接口电 路 晶振电路

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温控器调整方法

E5AZ-R3-38数字式温度控制器调整说明 一、接线方式: 接线柱1、2――-AC220V电源 接线柱4、6―――低温输出101、103 接线柱7、8―――高温输出101、102 接线柱9、10、11―――PT100温度传感线A\B\B 二、界面图形 三、设定方法: 1.温度设置(此部分用于常规调整) 1)在运行菜单下,设置高温值为26.0。 2)按一次菜单键,再按一次模式键,设置高温回差1.5。 3)按一次菜单键返回运行菜单。 4)按两次模式键,设置低温值为25.5。 5)按一次模式键,返回运行菜单。 2.系统设置(以下调整为系统模式设置,请不要改动) 1)菜单键+模式键同时按下3秒以上,进入保护菜单,按模式键切换 选项,依次按如下设置: 2)同时按菜单+模式1秒以上,返回运行菜单。

3.第二步:模式设置 1)按菜单3秒以上,进入初始菜单,按模式键切换选项,依次按如下 设置: ?设置温度传感器类型为1。 ?设置温度单位为℃。 ?设置最高温度限制值: ?设置最低温度限制值: ?设置ON/OFF方式为ONOF。 ?设置控制方式为标准方式。 ?设置动作方向为正方向。 ?设置报警1种类为0。 ?设置报警2种类为8。 ?设置报警3种类为0。 ?设置密码为-169,等待3秒,自动进入高级模式: ?设置 ?设置低温回差为1.5。

设置 2)按菜单键3秒以上,返回运行菜单。 4.第三步:状态设置 1)按一次模式键,进入状态设置,按上调或下调键设置为RUN。则温 控器开始工作。 2)如设置为STOP,则温控器STOP灯亮,停止工作。 TMC229-HT-DAA038数字式温度控制器调整说明 一、接线方式: 与E5AX相同,内芯可互换。 二、界面图形 三、设定方法: 1.温度设置(此部分用于常规调整) 1)在运行菜单下,设置低温值SV为24.0 2)按2次SET键,设置高温值SV2为26.0(一般要求SV2=SV1+2) 2.系统设置(以下调整为系统模式设置,请不要改动) 1)解锁:同时按SET和︽5秒,出现画面LOC-3,将3改为0后,先 按下SET不松开,再按︽后立即全部松开,解锁完毕。 2)调整:同时按下SET和︾键5秒,出现设置界面,按SET切换设置

温箱温度控制系统的模拟

温箱温度控制系统设计及实物仿真 该题目包括MATLAB软件仿真和硬件实物调试部分,软件仿真的目的是对系统先进行建模,然后设计控制器使其满足任务书上的性能指标,并调整控制参数分析控制器各参数对系统稳定性的影响。 硬件调试的目的是为了实现理论与实践的结合,将仿真得到的心得体会在硬件平台上加以验证,以便得到更加形象具体的认识。 2.1 软件仿真单元 2.1.1设计要求 (1)分别利用频域法和Ziegler-Nichols 法对系统调节器加以设计,并整定相关参数 (2)对校正前后的系统的性能指标以及频域性进行计算和对比,并分析校正结果 (3)要求整定后的系统性能指标满足:σ 2.1.2实验设备 计算机—MATLAB软件 2.1.3设计原理 图1.1是系统的结构框图,由于调节阀的传递函数可以等效成比例环节,测量变送环节也等效成比例环节,因此系统的传递函数大大简化。 图1 温度控制系统框图 由于系统的输入和输出的变化规律与带延迟的一阶惯性环节的阶跃响应曲线相似,所以可以将系统的传递函数模型结构等效成 Ke s G sτ =-Ts 1 / ) (+ 式中:K为放大系数,T为过程时间常数,τ为纯滞后时间。 温控系统参数K=2 T=180sτ=30s 根据系统等效传递函数,可采用频域法实现,在求解PID参数时,先不考虑延时环节,在初步求出PID参数之后,再考虑延时环节的影响,重新调整PID 参数,使得系统的阶跃响应满足 σ℅<15℅,ts<135s

据系统的开环单位阶跃响应可知系统等效成带有延迟的一阶系统,这个结论正好与Ziegler-Nichols整定方法相吻合。因此可以采用该方法实现PID参数的整定。 2.1.4 软件设计内容 一、利用MATLAB软件设计串联超前校正 (1)将模块载入SISO设计工具 在MATLAB命令窗口先定义好模型,代码如下: num=4.4 den=[340 1] G=tf(num,den) 得到结果: Transfer function: 4.4 ----------- 340 s +1 输入SISO Design Tool,通过file/import命令,可以将模型G载入SISO 设计工具中 (2)加入积分器 点击鼠标右键,在弹出的快捷菜单中选择”Add Pole/Zero”下的” Intergrator”菜单,这时系统将加入一个积分器,系统的穿越频率随之改变。 (3)加入超前校正网络 在点击开环Bode图中鼠标右键,选择”Add Pole/Zero”下的”Lead” 菜单,该命令将在控制器中添加一个超前校正网络。这时鼠标的光标将变成“X”形状,将鼠标移到Bode图幅频曲线上接近最右端极点的位置按下鼠标。 (4)调整超前网络的零极点 将超前网络的零点移动到靠近原来最左边的极点位置,接下来将超前网络的极点向右移动,并注意移动过程中相角裕度的增长,一直到满足超前网络的设计要求,即σ%<15%,<135s。 此时得到的阶跃响应LTI图为

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

恒温恒湿控制系统设计

生化处理的恒温恒湿控制系统设计 2007年第11期(总第108期) 宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 ) 【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,组成 一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应电压, 经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差量,然后 根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器开关担任, 采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从而调节高温电 磁阀开关的导通时间,达到蒸汽控制目的。 【关键词】生化处理;PLC;恒温恒湿 引言 生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。 1米粉生化处理的恒温恒湿系统现状与分析 1.1 现状 由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。 一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节; 二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果; 三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量; 四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

远程温度控制系统毕业设计

引言 温度是工业生产中常见的被控参数之一。从食品生产到化工生产,从燃料生产到钢铁生产等等,无不涉及到对温度的控制,可见,温度控制在工业生产中占据着非常重要的地位,而且随着工业生产的现代化,对温度控制的速度和精度也会越来越高。近年来,温度控制领域发生了很大的变化,工业生产中对温度的控制不再局限于近距离或者直接的控制,而是需要进行远距离的控制,这就产生了远程温度控制。 远程温度控制的通信方式有多种,如通过网络,无线电等等。每一种方式都有其优点和缺点。利用无线电通信,方便、灵活,而且经济。它不需要像网络控制耗费巨大的通信资源,也不受网络速度的影响。 在温度控制的方法上,传统的控制方法(包括经典控制和现代控制)在处理具有非线形或不精确特性的被控对象时十分困难。而温度系统为大滞后系统,较大的纯滞后可引起系统不稳定。 在温度采集方法上,通常是利用热电偶把热化为电信号,再通过A/D转换得到温度值。这种方法速度慢,而且精度不是很高。综合上面的考虑以及自己的爱好,设计了基于无线电通信的远程温度控制系统。本文详细的介绍了系统的硬件设计,软件设计,以及调试等,希望它能给初级电子制作爱好者带来一些无线电通信和温度控制的基本常识,以及应该注意的一些事项。 1、温度控制的发展及意义 在人类的生活环境中,温度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80的工业部门都不得不考虑着温度的因素。 现代工业设计、工程建设及日常生活中常常需要用到温度控制,早期温度控制主要应用于工厂中,例如钢铁的水溶温度,不同等级的钢铁要通过不同温度的铁水来实现,这样就可能有效的利用温度控制来掌握所需要的产品了。在现代社会中,温度控制不仅应用在工厂生产方面,其作用也体现到了各个方面,随着人们生活质量的提高,酒店厂房及家庭生活中都会见到温度控制的影子,温度控制将更好的服务于社会。 2 总体设计与可行性分析 2.1 设计任务 1、利用所学的知识设计远程温度控制系统。电烤箱温度可在一定范围内由人工设定,温度信号检测方案自行确定,用单片机采用PID控制算法实现温度实时控制,静态误差1度,超调量〈2.5%,系统温度调节时间ts〈4分钟。控制输出采用脉冲移相触发可控硅来调节加热有效功率。控制温度范围室温--125℃,用十进制数码显示箱内的温度。

基于单片机的温度控制系统设计报告

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第 1 页 (二)温度信号采集电路选择和数据处理--------------------------------第 3 页 (三)软件设计------------------------------------------------------第 3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第 5 页 (二)步进电机电路------------------------------------------------- 第 5 页(三)液晶显示模块---------------------------------------------------------- 第6 页 (四)晶振复位电路--------------------------------------------------第 7 页三、总结体会--------------------------------------------------------------------------------------第 7 页 四、参考文献-------------------------------------------第 8 页 附录:程序清单------------------------------------------第 8 页

温控电路PID参数调节方法

在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。调节器就是根据设定值与实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量就是加热或制冷的功率。PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。PID调节按基本理论就是属于线性调节。但由于直接控制量的幅度总就是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。这时系统就是非线性工作。手动对PID进行整定时,总就是先调节比例环节,然后一般就是调节积分环节,最后调节微分环节。温度控制中控制功率与温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。许多文献对PID整定都给出推荐参数。 PID就是依据瞬时误差(设定值与实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动、大家讲的都不错、比例:实际温度与设定温度差得越大,输出控制参数越大。例如:设定温控于60度,在实际温度为50与55度时,加热的功率就不一样。而20度与40度时,一般都就是全功率加热、就是一样的、积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点就是随时间延长而增大、在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡、方法就是按比例、微分、积分的顺序调、一次调一个值、调到振荡范围最小为止、再调下一个量、调完后再重复精调一次、要求不就是很严格、 先复习一下P、I、D的作用,P就就是比例控制,就是一种放大(或缩小)的作用,它的控制优点就就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。举个例子:如果您煮的牛奶迅速沸腾了(您的火开的太大了),您就会立马把火关小,关小多少就取决于经验了(这就就是人脑的优越性了),这个过程就就是一个比例控制。缺点就是对于具有自平衡性的被控对象存在静态误差,加大Kp可以减小静差,但Kp过大时,会导致控制系统的动态性能变坏,甚至出现不稳定。所谓自平衡性就是指系统阶跃响应的终值为一有限值,举个例子:您用10%的功率去加热一块铁,铁最终保持在50度左右,这就就是一个自平衡对象,那静差就是怎样出现的呢?比例控制就是通过比例系数与误差的乘积来对系统进行闭环控制的,当控制的结果越接近目标的时候,误差也就越小,同时比例系数与误差的乘积(控制作用)也在减小,当误差等于0时控制作用也为0,这就就是我们最终希望的控制效果(误差=0),但就是对于一个自平衡对象来说这一时刻就是不会持续的。就像此时您把功率降为0,铁就是不会维持50度的(不考虑理想状态下),铁的温度开始下降了,误差又出现了(本人文采不就是很好,废这么多话相信大家应该明白了!)。也就就是比例控制最终会维持一个输出值来使系统处于一个固定状态,既然又输出,误差也就不等于0了,这个误差就就是静差。

相关主题
文本预览
相关文档 最新文档