当前位置:文档之家› 锂离子动力电池及其负极材料的研究现状及发展方向

锂离子动力电池及其负极材料的研究现状及发展方向

锂离子动力电池及其负极材料的研究现状及发展方向
锂离子动力电池及其负极材料的研究现状及发展方向

锂离子动力电池及其负极材料的研究现状及发展方向

景和技术经济效益。

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

锂离子电池三元正极材料的研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物 Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery; cathode; layered structure; synthesis methods; modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂(LiCoO2)制备工艺简单,充放电电压较高,循环性能优异而获得广泛应用。但是,因钴资源稀少、成本较高、环境污染较大和抗过充能力较差,其发展空间受到限制[3, 4]。镍酸锂(LiNiO2)比容量较大,但是制备时易生成非化学计量比的产物,结构稳定性和热稳定性差[5]。锰酸锂除了尖晶石结构的LiMn2O4外,还有层状结构的LiMnO2。其中层状LiMnO2比容量较大,但其属于热力学亚稳态,结构不稳定,存在Jahn-Teller效应而循环性能较差[6]。尖晶石结构LiMn2O4工艺简单,价格低廉,充放电电压高,对环境友好,安全性能优异,但比容量较低,高温下容量衰减较严重[7]。磷酸铁锂属于较新的正极材料,其安全性高、成本较低,但存在放电电

四大锂电池材料介绍

四大锂电池材料分析 一、锂电池材料组成 正极材料 负极材料 隔膜 电解液 锂电池 正极材料、负极材料、隔膜、电解液是锂电池最主要的原材料,占整个材料成本近80%。二、锂电池材料介绍1.正极材料 1) 正极材料分类及对比正极材料包括钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰三元材料(NMC)、磷酸铁锂(LFP)等。 1)正极材料行业现状 LCO最早实现商业化应用,技术发展至今已经比较成熟,并已广泛应用在小型低功率的便携式电子产品上,如手机、笔记本电脑、数码电子产品等。LCO的国产化已经接近十年,自2004年以来市场发展很快,2006年至今年平均增幅25%左右;据了解,目前国内锂电池企业的正极材料国产化近90%,供求关系比较稳定,从行业生命周期看,LCO市场经过近几年的高速发展,即将进入稳定期。目前,国内LCO

生产企业主要有湖南杉杉、湖南瑞翔、国安盟固利、北京当升等。 LMO主要作为LCO的替代产品,优点是锰资源丰富,价格便宜,安全性高,但其最大的缺点是容量低,循环性能不佳,这也是限制LMO发展的主要原因,目前通过掺杂等方法提高其性能。LMO应用范围较广,不仅可用于手机、数码等小型电池,也是目前动力电池主要选择材料之一,与LFP在动力电池领域形成竞争态势。国内LMO生产企业包括湖南杉杉、国安盟固利、青岛乾运、深圳源源等。 NMC,即三元材料,融合了LCO和LMO的优点,在小型低功率电池和大功率动力电池上都有应用。主要厂家包括深圳天骄、河南思维等。LFP是被认为最适合用于动力电池的正极材料,具有高稳定性,安全性,现已成为各国、各企业竞相研究的热点。慧聪邓白氏认为,目前,国内宣称可以生产LFP的企业很多,全国LFP产能规模近6,000吨,但实际量产数远低于产能数,主要原因在于技术性能仍达不到锂电池厂家的要求,并且LFP专利的国际纠纷仍然影响了其在国内的发展。目前,主要厂家包括天津斯特兰、北大先行等。 2.负极材料国内应用的负极材料主要包括人造石墨、天然石墨、CMS(中间相炭微球)、钛酸锂等,其中人造石墨分为人造石墨和复合人造石墨等,天然石墨分为天然石墨、改性天然石墨等。近几年负极材料行业发展迅速,国内企业增长较快,2008年全国负极材料实际供货量近9,000吨,同比增长41。目前,负极材料仍然以人造石墨与天然石墨为主,石墨材料在整个负极材料中占85%左右;其次是CMS。负极材料厂家包括深圳贝特瑞、上海杉杉、长沙海容等。 3.隔膜 随着国内锂电池生产规模扩大,对隔膜的需求也年年上升,自2006年来,整体隔膜市场容量年增幅均在30%左右。自2006、2007年多个国内隔膜企业投产以来,

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

动力电池材料体系及结构选择分析

动力电池材料体系及结构选择分析 材料体系选择分析 1、下表是理论上可以在锂离子电池中应用的正负及材料体系 正极材料(阳灿/^) 200 400 600 800 1000 负极材料比(阳八卜/妒 综合考虑材料体系的安全、成本、能量密度、电性能、原材料的自然界资源储量等条件,目前具备产业化条件,最有可能成为新一代车载动力电池的材料主要分为以下几个体系,1、 2、0^111204/01^11116 3、 4、 5、1^1^11204/1-14115012 几种常用的正极材料的特性以及优缺点分析

700:^3;^1:十2;胞:44; 7^1是材料容量的主要来源,^2^-14; 705在高电位时才能发生反应,^3^44,起到稳定晶体结构的作用; 7―保持44价不变,在―含量偏高时易出现价态变小的趋势,出现十3的\111; ^^的容量要高于尺0从,是目前容量最高的正极材料,其安全性能差是突出的问题;解决层状晶体材料安全性能差的问题主要从以下几个方面入手 ^表面涂层,减少反应活性区域的直接接触(八1203、 ^陶瓷隔膜技术; ^活性低的负极材料 ^正极材料的掺杂改性; 2、1^1^10204 ^成本低,储量丰富; 7能量密度偏低’高温性能差是其主要缺点; 改善高温循环的方法 ^元素掺杂,掺入低价态元素提高锰价态(灰1、^); ^表面修饰,包覆氧化物,减少材料与电解液的接触; ^采用新型电解质盐,0608; ^活性低的负极材料 3、01^?04 7成本低、储量丰富; 7循环性能优良、安全性能优良; 7材料稳定性差、合成过程质量控制困难; ^加工性能差工艺要求高; 7材料电子导电性差、低温性能差、能&密度偏低; 改善电子传导性差的手段 ^元素掺杂与表面包覆扣材料 ^纳米级导电材料、高效分散技术; ^箔材预处理技术; 几种常见的外部包装结构及分析 目前,在传统锂离子电池基础上发展起来的锂离子动力电池呈现出结构多样化,缺乏统一 的标准,而外部的结构对工艺布局有着决定性的影响,目前主流电池在外部封装结构上主 要可分为以下几类: 1、圆柱型电池 2、方型硬壳电池 3、方型软包装电池 几种不同类型结构的优缺点分析 1、圆柱型电池代表厂家(江森自控、八123、531^0、300)0 7工艺成熟度高、生产效率高、过程控制严格,成品率及产品一致性都较其他结构电池 高; 7壳体结构成熟,成本低; 7极片过长,卷绕方向上集流体电流密度分布不均匀,造成内部各部分反应程度不一致;^直径过大,电芯内部产生的热量很难得到快速释放,内部的热量累积,给电池的安全

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

动力电池用正极材料磷酸铁锂的研究进展

2010年第7期广东化工 第37卷总第207期https://www.doczj.com/doc/565494754.html, · 59 · 动力电池用正极材料磷酸铁锂的研究进展 侯贤华,胡社军,彭薇 (华南师范大学物理与电信工程学院,广东广州 510006) [摘要]文章综述了锂离子动力电池关键正极材料磷酸铁锂的产业化制备方法,市场状况分析和近年来国内外对该正极材料的研究进展情况。结果表明:产业化制备方法目前主要是固相反应法和水热合成,市场需求大于市场供给,具有很好的市场前景,高倍率磷酸铁锂将成为未来的一个重要研究方向。 [关键词]磷酸铁锂;正极材料;倍率性能 [中图分类号]TM912 [文献标识码]A [文章编号]1007-1865(2010)07-0059-02 Research Progress of LiFePO4 Cathode Materials for Power Lithium-ion Battery Hou Xianhua, Hu Shejun, Peng Wei (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China) Abstract: The research progress in LiFePO4 Cathode materials for lithium ion battery was reviewed. The emphasis was expressed preparation method of industrialization, market analysis and cathode materials progress for the past few years. The result suggested that the industrialized method have solid state reaction and hydrothermal synthesis, market requirement is more than supply, this product has excellent market prospects, high rate property will become one of the research fields in the future. Keywords: LiFePO4;cathode material;rate property 锂离子电池因具有电压高、比能量高、工作温度范围广、 环境友好等优点,而被广泛应用于各种便携式电子产品[1-2], 如手机、数码相机、笔记本电脑和电动工具等,并有望成为未 来混合动力汽车和纯动力汽车的能源供给之一[3]。正极材料是 决定锂离子电池综合性能优劣的关键因素之一,目前商业化正 极材料主要是LiCoO2,因钴为战略资源,由此导致电池的成 本较高(目前在整个电池成本中,正极材料成本占35 %),且 LiCoO2安全性较差,因而限制了其使用范围。LiFePO4具有稳 定的橄榄石结构,理论容量约为170 mAh/g,原材料价格低廉 丰富,工作电压适中、电容量大、高放电功率、可快速充电且 循环寿命长、稳定性高,是一种理想的动力电池用正极材料。 1 磷铁铁锂晶体结构 LiFePO4晶体是有序的橄榄石型结构,属于正交晶系,空间群为Pnma,晶胞参数a = 1.0329 nm,b = 0.60072 nm,c= 0. 46905 nm。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据四面体空隙,锂原子和铁原子占据八面体空隙。八面体结构的FeO6在晶体的bc面上相互连接,在b轴方向上八面体结构的LiO6相互连接成链状结构。1个FeO6与2个LiO6共边,1个PO4和FeO6共用一条边,与LiO6共用两条边。 充放电反应是在LiFePO4和FePO4两相之间进行,如图1所示。在充电过程中,LiFePO4逐渐脱出锂离子形成FePO4,在放电过程中锂离子插入FePO4形成LiFePO4。在锂离子反复嵌入与脱出的过程中,当晶格结构由LiFePO4转变为Li1-x FePO4时,磷酸根离子(FePO4-)可稳定整个材料的晶格结构。由于在这2种物相互变过程中铁氧配位关系变化很小,故此电极材料虽然存在物相的变化,但是没有影响电化学效应的体积效应产生。当磷酸铁锂进行充电时,材料本身的体积约减少6.5 %,这也是材料具有良好循环性能的主要原因。LiFePO4的电化学曲线非常平坦,具有较高的理论容量,约为170 mAh/g。 2 磷酸铁锂产业化制备方法 目前产业化制备LiFePO4材料最常用的方法是固相法,此法工艺简单,制备条件容易控制和规模化,缺点是球磨的均匀程度以及强度同样制约了产物的性能,产物颗粒不均匀,晶形无规则,粒径分布范围广,实验周期长。S.A.Anna等测试了LiFePO4在不同温度下的充放电性能,发现即使在85 ℃下,它仍然能稳定工作,而且经过20次循环以后,60 ℃下测试的样品比23 ℃下测试的样品中的Fe3+含量低了14 % ,说明在较低温度下,锂离子的嵌入比较困难。 图1 充放电前后LiFePO4和FePO4两相图 Fig.1 The structural modes of LiFePO4 and FePO4 before and after charge/discharge 水热法也是制备磷酸铁锂的另一种常见方法,具有操作简单、物相均匀、粒径小的优点。在密闭体系中,以水为溶剂,在一定温度下,在水的自生压强下,溶液内部的金属盐具有较高的活性,在溶液中进行结晶反应。S.Yang等对水热法合成LiFePO4晶体进行了大量研究。他们发现pH值对实验结果的影响不大,而且水热法比高温固相法合成的晶体颗粒要小,Fe2+含量高。A.K.Padhi等发现用水热法在还原性条件下可得LiFePO4晶体,在氧化性条件下则得LiFePO4(OH) 晶体。当锂盐的量很少时,则会有多孔的FePO4·2H2O生成,它在高温时失水生成电化学非活性的FePO4。在用水热法合成LiFePO4晶体时要保证锂盐的量,以防止电化学非活性的FePO4晶体的生成。 除了固相法和水热法两种产业化方法外,在研究过程中还有各种各样的合成方法涌现出来,包括共沉淀法,乳化干燥法,机械化学激活法,微波炉加热法等。 3 磷酸铁锂的市场状况 采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池(简称铁电池),由于铁电池的众多优点被广泛使用于各个领域。其中主要应用领域有: (1)储能设备:风力发电系统的储能设备,太阳能电池的储能设备,如太阳能LED路灯(比亚迪已经生产出该类电池); (2)电动工具:高功率电动工具、电钻、除草机等;(3)电动车辆:电动摩托车、电动自行车、电动婴儿车、电动轮椅和电动 [收稿日期] 2010-4-19 [基金项目] 国家自然科学基金资助项目(50771046) [作者简介] 侯贤华(1977-),男,湖北恩施人,博士后,主要研究方向为清洁能源材料。LiFePO4 FePO4 充电 放电

锂离子电池的组成部分之负极(非常详细)

锂离子电池的组成部分之负极(非常详细) 2、负极(1) 此主题相关图片如下: 2、负极(2) 在负极材料部分,锂电池的负极材料主要是: A、石墨系碳(graphite) a、天然石墨 b、人工石墨 c、类石墨(如 MCMB , Meso Carbon Micro Beads) B、非石墨碳材(如焦碳系,coke) 由于石墨系的重量能量密度较高且材料本身的结构具有较高的规则性,所以第一次放电的不可逆电容量会较低,另外石墨系负极材料具有平稳工作电压作用,对电子产品的使用和充电器的设计较具优势。而另一种类的焦炭系与碳黑系﹝carbon black﹞的负极材料在第一次充放电反应的不可逆电容量很高,但是此材料可以在较高的C- rate下作充放电,另外此材料的放电曲线较斜,有利于使用电压来监控电池容量的消耗。 负极(3) 石墨为层状结构,由碳网平面沿C轴堆积而成,层间距为3.36A。平面碳层由碳原子呈六角形排列并向二维方向延伸,碳层间以弱的范德华力结合,锂嵌在碳层之间 石墨的实际比容量为320—340mAh/g。平均嵌锂电位约为0.1V(VS Li+/Li),第一周充放电效率约为8 2—84%,循环性能好,且价格低廉(<10元/Kg)。 A、石墨类的制备 ①中间相碳微球(Mesophase Carbon Micro Beads, MCMB)是用煤焦油沥青、石油重质油等在350—5

00℃温度下加热并经分离、洗涤、干燥和分级等过程制得的平均粒径6-10微米的碳微球,然后于28000C 下进行石墨化热处理制得的碳材料。其外形呈球形,晶体结构同石墨基本一致。 MCMB的实际比容量约为310—330mAh/g,平均嵌锂电位约为0.15V(VS Li+/Li),第一周充放电效率约为88%—90%,循环性及大电流性能好,是目前为止最为理想的负极材料,但价格昂贵(约300元/Kg) 负极(4) A、石墨类的制备 ②气相成长碳纤(Vapor-Grown Carbon Fiber, VGCF) 以碳氢化合物经化学蒸镀(CVD)反应,再用不同温度经热处理而成 负极(5) B、非石墨类的制备 ①可石墨化碳类 ---- 软碳主要为焦碳﹝Coke﹞类,可由沥青或煤渣而来 2、负极(6) B、非石墨类的制备 ②不可石墨化类 ---- 硬碳(最具发展潜力) 硬碳不易石墨化。是一种与石墨不同的近似非晶结构的碳材料,晶体尺寸较小,通常在几个纳米以下,呈无规则排列,有细微空隙存在,是利用高分子先驱物(polymer precursor),在不同温度下经热解所形成的无次序碳材而得到。其主要特点:嵌锂容量高,一般可达600mAh/g以上。问题: A、第一周充放电效率低,一般不超过60% B、循环性能差 此主题相关图片如下: 负极(7)-锡基金属间化合物及复合物、锡基复合氧化物 Sn与Li能可逆地形成组成为Li4.4Sn的合金,七十年代开始就引起了人们的广泛关注。由于Sn贮锂—脱锂过程体积膨胀超过200%,极易引起电极粉化,导致循环性能迅速衰减。如何稳定材料结构,防止电极 粉化是一直以来研究的重点。 近年来,人们发现将Sn均匀的分布在对锂惰性的金属或化合物、复合物中,可较好地缓冲电极的膨胀, 抑制电极粉化问题,从而获得比较好的循环性能。

动力电池的研究进展

动力电池的研究进展 作者:胡信国来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了动力电池的研发历程,对各类车载电池的性能、价格等进行了比较,介绍了动力电池在EV、HEV和EB的应用市场。着重讨论了VRLA电池作为HEV和电动自行车(EB)的车载动力存在的问题和解决方案,以及Li-ion动力电池的安全问题和新型安全正极活性材料。 关键词:动力电池,VRLA,Li-ion,Ni-MH,DMFC,PEMFC Abstract:The research history of motive power batteries was reviewed. The properties and price of various batteries for vehicle were compared. The applications of motive power batteries in EV, HEV and EB were introduced. The emphasis lies in the problems and solutions of VRLA batteries for HEV and EB, the safety and advanced positive active material of lithium-ion power battery. Key words: Motive battery; VRLA; Ni-MH; Li-ion; DMFC; PEMFC 1、前言 图1 世界石油消耗趋势 全球石油危机日益严重,石油储量仅剩人类使用约40年。但是石油消耗量的快速增长趋势仍没有得到缓解,世界石油消耗量统计与预测如图1所示。从美国石油消耗的结构(图2)来看,美国汽车消耗的石油占总消耗的60%,2004年全球汽车消耗8亿多吨汽油,占石油总消耗的50%。汽车燃油排放大量的CO、NOx等有害气体,严重地污染了人类的生活环境,目前全球汽车饱有量约8亿辆,2005年中国汽车产量600万辆,到2010年汽车饱有量也将达到7000万辆,高速发展的中国汽车业对世界环境和能源的影响越来越大。据统计,全球大气污染42%来源于交通车辆的污染,大城市的交通车辆更使大气污染的比例高达60%。为此,世界各国对发展电动车和混合电动车高度重视,2002年美国推出“Freedom car &Technologies”计划;2000年以来,中国政府实施“清洁汽车行动”,电动自行车业有了巨大发展,电动车列入了863计划,加快了EV和HEV的研发进程,作为车载动力的动力电池的研发,成为EV和HEV发展的主要瓶颈。

如何选择动力锂电池的正极材料及安全性分析

如何选择动力锂电池的正极材料及安全性分析 目前,在锂离子电池中使用量最多的正极材料有以下几种:钴酸锂(LiCoO2),锰酸锂(LiMn2O4),镍钴锰酸锂(LiCoxNiyMnzO2)以及磷酸铁锂(LiFePO4)。究竟选择哪种正极材料的锂电池?下文会做详细地分析。 测试锂离子电池的安全问题,过充(指充电电压超过其充电截止电压,对锂离子电池来说,一般可以将10V/节定为过充电压)是一个很好的方法。谈到过充,我们应该首先了解一下锂离子电池的充电原理(如图1所示)。锂离子电池的充电过程是Li 从正极跑出来,通过电解液游到负极并得到电子,嵌入到负极材料中,而放电的过程则相反。 衡量正极材料安全性主要考验: A:容不容易在充电时形成枝晶。 锂离子电池的充电过程就是Li 从正极跑出来,通过电解液游到负极被还原并嵌入到负极材料中;放电的过程则相反,负极材料中的锂被氧化,通过电解液,嵌入正极材料。 基于循环性地考虑,钴酸锂(LiCoO2 )材料的实际使用容量只有其理论容量的二分之一,即使用钴酸锂作为正极材料的锂离子电池在正常充电结束后(即充电至截止电压4.2 V左右),LiCoO2正极材料中的Li 将还有剩余。可用以下的简式表示:LiCoO2→0.5Li Li0.5CoO2 (正常充电结束)。此时如果充电电压继续升高,那么LiCoO2正极材料中的剩余的Li 将会继续脱嵌,游向负极,而此时负极材料中能容纳Li 的位置已被填满,Li 只能以金属的形式在其表面析出。一方面,金属锂的表面沉积非常容易聚结成枝杈状锂枝晶,从而刺穿隔膜,造成正负极直接短路;另外,金属锂非常活泼,会直接和电解液反应放热;同时,金属锂的

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展 2010-11-10 14:45:06 中国石墨碳素网 文/苗艳丽杨红强岳敏 天津市贝特瑞新能源材料有限责任公司 随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。 国外政府及企业在动力锂离子电池研发上均做出了很大的努力。我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。 与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。 一、动力锂离子电池负极材料简介 1.动力锂离子电池负极材料特性 锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。 2.动力锂离子电池负极材料主要类型 早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。本文将主要介绍3类负极材料:碳材料、合金材料(锡(Sn)、硅(Si)等)和钛酸锂。 (1)碳材料 碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料,至今仍然为大家关注和研究的重点。碳材料根据其结构特性可分成3类:石墨、易石墨化碳及难石墨化碳(也就是通常所说的软碳和硬碳)。软碳主要有中间相炭微球、石油焦、针状焦、碳纤维等;硬碳主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C 等),有机聚合物热解碳(包括聚乙烯醇基、聚氯乙烯基、聚丙烯腈基等)以及碳黑等。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。 石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。天然石墨和天然石墨改性材料价格比较低,但是在充放电效率和使用寿命方面有待进一步提高。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5~40μm之间,该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。石油焦类的产品在放电效率和循环寿命方面比较突出,但存在着高成本和制备工艺复杂的问题。 近年来,随着研究工作的不断深入,研究者发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,有利于锂在其中的嵌入-脱

锂离子电池负极材料发展历程

锂电池是一类由锂金属或锂合金为正极材料、使用非水电解质溶液的电池。优点:绿色环保,不论生产、使用和报废,不产生任何铅、汞、镉等有毒有害重金属元素和物质。 电池原理: 组成材料主要包括:负极材料、正极材料和隔膜。 在充放电过程中,锂离子在正负极之间来回运动。充电时,锂离子从正极脱出,经过隔膜嵌入到负极中。放电时,锂离子再从负极中脱出,重新回到正极。由此可以看出锂电池的正、负极材料都要有良好的嵌入、脱出锂离子的能力。一般来说,锂离子电池的总比容量是由正极材料的比容量、负极材料的比容量及电池的其它组分决定的,因此,我们迫切需要提高正负极材料的比容量。 负极材料: 碳材料:商业化锂电池负极材料一般为碳作为基质的材料,包括石墨、中间相碳微球、碳纳米管等。虽然碳材料作为锂离子电池负极具有较好的循环性能,但已基本达到其理论极限容量(石墨理论比容量为372mAh/g),限制了电池的性能。另外实际应用中也暴露出碳负极存在许多缺陷:在快速充电或低温充电易发生“析锂”现象引发安全隐患;有机电解液中会形成钝化层,引起初始容量损失;这些因素直接制约了锂离子电池的进一步发展。因此,高能动力型锂离子电池的发展需要寻求高容量、长寿命、安全可靠的新型负极来取代碳负极材料。 其中锡基负极材料具有质量与体积比能量高,价格便宜,无毒副作用,加工合成相对容易等优点,因此一经提出就受到研究者的广泛关注。 研究表明,当负极材料的比容量在1000~1200 mAh/g时可以显著提高锂离子电池的总比容量。在各种非碳负极材料中,硅的理论比容量为4200mAh/g,具有明显的优势,因此吸引了越来越多研究者的目光。 硅-非金属体系:在此复合体系中,硅颗粒作为活性物质,提供储锂容量;非金属相作为分散基体,缓冲硅颗粒嵌脱锂时的体积变化,保持电极结构的稳定性,并维持电极内部电接触。目前主要有硅-碳复合体系、硅-玻璃/陶瓷体系、硅的氧化物、金属氮化物等体系。其中,碳类负极材料具有良好的导电性,在充放电过程中体积变化很小,循环稳定性能好。与硅结合可以很好的改善硅的体积膨胀,提高其电化学稳定性。因此,硅-碳复合材料成为当前负极材料的研究的热点。

四种锂电池负极材料的PK

四种锂电池负极材料的PK 作者:中国储能网新闻中心来源:电池中国网发布时间:2016-8-8 18:46:00 中国储能网讯:负极材料作为锂电池四大组成材料之一,在提高电池 的容量以及循环性能方面起到了重要作用,处于锂电池产业中游的核心环节。调研显示,2015年中国负极材料产量7.28万吨,同比增长42.7%,国内产值为38.8亿元,同比增长35.2%。这标志着锂电池负极材料市场 迎来了发展的春天。 负极材料分类众多,其中石墨类碳材料一直处于负极材料的主流地位。编辑总结发现,近日受到追捧的石墨烯概念、业内使用较为普遍的人工石墨、性能稳定的中间相碳微球以及有“新大陆”之称的硅碳复合材料,在 负极材料领域形成了“四方争霸”的局面。下面就让编辑带大家了解一下 这“四方霸主”的厉害吧。 独占一方的石墨烯 石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,因为质地薄、硬度大且电子移动速度快而被科学家广泛推崇,并冠以“新材料之王”的

美誉。尽管这位“王者”优异的化学性能被新能源市场所看好,但是至今 为止依然停留在“概念化”的阶段。 如果将石墨烯用作锂电负极材料的话,需要独立的上下游产业链、昂 贵的价格还有复杂的工艺,这让众多负极材料厂商望而却步。尽管如此, 国内依然有一些企业砥砺前行,目前中国安宝、大富科技以及贝特瑞等知 名企业已经开始布局石墨烯产业。 但是,行业内关于石墨烯用作负极材料的质疑也在不断发酵,有人认 为石墨烯的振实和压实密度都非常低,又加之成本昂贵,作为电池负极材 料前景十分渺茫。但是鉴于它的热潮还在持续,说它是“一方霸主”也不 为过。 控制“主场”的人工石墨 目前负极材料主要以天然石墨和人造石墨为主,这两种石墨各有优劣。湖州创亚总经理胡博表示:“天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安 全性能较好。通过各种手段的技术改进,这两种石墨负极材料都可以‘扬 长避短’,但就目前来看,人造石墨用于动力电池上占据一定的优势”。 而这一说法也在市场中得到了印证。相关媒体调研数据显示,今年第 一季度中国天然石墨产量4770吨,同比增长16.3%;人造石墨出货15160吨,同比增长110.5%。从以上数据来看,人造石墨出货量远高于天然石墨,而造成这一现象的重要原因,是今年以来市场对动力电池的强 劲需求。 性能稳定的中间相碳微球 中间相碳微球具有高度有序的层面堆积结构,是典型的软碳,石墨化 程度较高,结构稳定,电化学性能优异。据中咨网研究部统计数据显示,2012年中国负极材料出货量为27650吨,其中天然石墨出货量占比59%,人造石墨30%,石墨化中间碳微球8%。就此说来,中间相碳微球是仅次于天然石墨和人工石墨的第三大主流碳类负极材料。

相关主题
文本预览
相关文档 最新文档