当前位置:文档之家› 柔性与半刚性基层沥青路面抗车辙性能的差异

柔性与半刚性基层沥青路面抗车辙性能的差异

柔性与半刚性基层沥青路面抗车辙性能的差异
柔性与半刚性基层沥青路面抗车辙性能的差异

沥青路面车辙病害原因与处治方案

沥青路面车辙病害原因与处治方案 一、什么是车辙: 车辙是车辆在路面上行驶后留下的车轮永 久压痕。过去,人类广泛应用马车,在泥土路 上走,由于土路较软,车过后路面就有压痕, 雨后,路面有泥水压痕更深。古人云:“前面 有车,后面有辙。”车走多了,路上留下两条 平行的很深的车辙。现代路面车辙是路面周期 性评价及路面养护中的一个重要指标。路面车 辙深度直接反映了车辆行驶的舒适度及路面的 安全性和使用期限。路面车辙深度的检测能为 决策者提供重要的信息,使决策者能为路面的 维修、养护及翻修等作出优化决策。 二、沥青路面车辙的类型和产生原因: 沥青路面的车辙分为磨耗磨损型车辙、结构性车辙、失稳型车辙、压密型车辙四种类型1、磨耗型车辙 产生原因:在交通车辆轮胎磨耗和环境条件的综合作用下,路面磨损,面层内集料颗粒逐渐脱落;在冬季路面铺撒防滑料(如:砂)时,磨损型车辙会加速发展。 2、结构型车辙 产生原因:这类车辙主要是基层等路面结构层或路基强度不足,在交通荷载反复作用下产生向下的永久变形,作用或反射于路面。 3、失稳型车辙 产生原因:绝大多数车辙是由于在交通荷载产生的剪切应力的作用下,路面层材料失稳,凹陷和横向位移形成的。此类车辙的外观特点是沿车辙两侧可见混合料失稳横向蠕变位移形成的凸缘。一般出现在车辆轮迹的区域内,当经碾压的路面材料的强度不足以抵抗交通荷载作用于它上面的应力、特别是重载车辆高频率通过,路面反复承受高频重载时,极易产生此类车辙。

此外,在高速公路的进、出口,交费站或一般公路的交叉路口等减速或缓行区,这类车辙也较为严重。因为这些地区车速较低,交通荷载对路面的作用时间较长,易于引起路面材料失稳,横向位移和永久变形。 4、压密型车辙 在施工中碾压不足,开放交通后被车辆压密而形成车辙。不过这类车辙如果是由于路面施工质量控制不严造成的非正常病害,一般在讨论车辙时,多不考虑。 从车辙的形成过程来看,车辙主要是高温下沥青面层因沥青软化而进一步密实,以及沥青变软对矿质骨架的约束作用降低而使得骨架失稳,表明沥青对混合料的高温性能十分重要。当然骨架的稳定性和细集料的多少也会影响车辙形成的进程。在道路的交叉口或变坡路段,此类高温变形更易发生,这主要与较大的水平荷载作用下抗剪强度相对不足有关。 三、影响沥青路面车辙形成及其深度的主要因素: 1、沥青混合料 现行的沥青路面设计的主要依据指标是沥青混合料的强度,其取决于混合料的粘结力和内摩擦角,受集料物理化学性质的影响;粘结力又取决于沥青材料的化学结构、胶体结构、物理化学性质、稠度、沥青膜的厚度、沥青矿料比、沥青与矿粉系的分散结构特征以及沥青与矿料的相互作用,增加内摩擦角和矿料等颗粒间的嵌挤作用可以提高沥青混合料的抗剪稳定性。 ①材料性质。沥青的粘度和沥青与矿料之间的粘附性是影响沥青混合料高温稳定性的两个因素;沥青粘度越大,沥青与矿料之间的粘附越好,那么混合料的高温稳定性越好,因此要选用粘度大的沥青和非酸性矿料以提高混合料的高温稳定性和强度,以便产生较高的抗车辙能力;沥青改性是一种提高沥青高温稳定性的有效手段,据佐治亚洲的加载车轮检测结果证明,改性沥青混合料同标准混合料相比车辙深度有明显减少。 ②矿物集料的表面纹理、料颗粒大小、形状、级配、颗粒相互位置、矿料数量、可以影响混合料的孔隙结构,即孔隙的大小、形状与连通闭合情况、沥青用量状况以及沥青的用量和沥青同集料的互相作用情况,因而可以对车辙的大小表现出不同的影响。采用洁净坚硬的碎石,硬度大、棱角尖锐的砂以及高质量的矿粉对于抵抗永久性变形十分有利。在整个矿料混合料中对沥青温度稳定性影响最大的是矿粉,用石灰岩和冶金矿渣制成的矿粉掺拌的沥青混合料有较高的高温稳定性能。 ③矿料级配。为探讨集料级配对车辙大小的影响,有关研究人员将集料分为过细级配组、细级配组和粗级配组三种,环道试验结果表明:热拌沥青混合料在最佳沥青含量、8%空隙率时粗级配有较大的车辙深度,过细级配次之,细级配组车辙深度最小。另有单轴荷载试验资料:在最佳沥青含量时中粒式沥青混合料车辙最小,细粒式次之,粗粒式大于细粒式,沥青碎石车辙最大。可见,单纯增大矿料粒径并不能提高路面抗车辙能力,而良好的级配和最大的密实度因增加了矿料之间的嵌挤力,而提高了混合料的高温抗车辙能力。 ④空隙率。在进行沥青混合料配合比设计时,对空隙率的选择一般都是根据当地材料和经验进行的,当取值过高时,提高密实度可增加骨料间的接触压力,从而提高路面的抗车辙能力,相应地沥青和矿粉用量也要增加,从而又削弱其抗车辙能力。当空隙率小于某一临界值后,继续减小空隙率,使得混合料内部没有足够的空隙来吸收材料的流动部分,造成混合料外部的整体变形,由此而形成车辙。大量试验表明:各种级配的混合料在最佳沥青含量时,随空隙率的增大车辙有所增加。 2、路面结构组成 沥青路面的抗车辙能力除了受所用材料及其性能影响外,还与路基类型和路面厚度有关。沥青路面厚度与车辙的关系较为复杂,同样的材料在不同的路面结构中会表现出不同的性能,有关室内环道试验表明:当其路基为砂土材料时,面层厚度对车辙影响很大,面层沥青混合料较薄时车辙较深,而且较大部分来自路基的形变;而当面层较厚时,路基基本上不产生车

沥青混凝土路面抗滑性能的影响因素及检测方法

沥青混凝土路面抗滑性能的影响因素及检测方法 引言 随着公路事业的发展,道路的行车速度有了很大提高,与此同时,交通事故的数量也在不断增加。路面的抗滑能力直接影响高速行驶车辆的安全性,因此公路建设部门和养护管理部门越来越重视路面的抗滑性能,并将其作为高等级公路交、竣工验收及养护质量检查评定中的一项重要指标。 路面抗滑性能是指车辆轮胎受到制动时沿表面滑移所产生的力,是保证公路行车安全及维护必要的允许行车速度的一项重要指标,同时该指标也是路面设计、筑路材料、施工工艺、养护等各项技术水平的综合反映。 1 影响沥青混凝土抗滑性能的因素 一般来说,影响沥青混凝土路面抗滑性能的因素主要有两大方面:一个是路面的外在因素,另一个是路面的内在因素。 1.1 外在因素 ○1.路面潮湿程度 当路表面处于潮湿、积水状态时,摩擦系数会减小很多。因此在公路交通事故中,雨天发生的事故所占比例很高。雨水在路表面积聚,形成水膜,车速越快,轮胎与水膜接触区的水越来不及排出,使轮胎与路面不能充分接触,因此路面抗滑能力大幅度下降。 ○2路面的污染 当路面有杂物,如矿物质的尘埃、路面的油渍、轮胎磨损产生的橡胶粉末等时,也会降低路面的抗滑能力。经测试,受污染路面的摩擦系数会降低5~20%。 1.2 内在因素 ○1沥青混凝土配合比设计中沥青的用量 沥青用量对沥青混凝土路面抗滑性能的影响是非常明显的。沥青在沥青混凝土中起粘合作用,沥青用量过大,除在混凝土中形成结构沥青外,还将有自由沥青存在,自由沥青在夏季高温状态下较不稳定,会溢出路面表面,形成路面沥青膜,俗称“泛油”。泛油的沥青路面被车辆碾压后形成高低不平的形状,造成雨水排不出去,路面抗滑性能大大下降,极易导致交通事故;另外在高温时的重交通情况下,由于沥青高温强度较低,会使路面表面矿料被压入下层,而使沥青被

半刚性基层060807

半刚性基层 一、概述 1.半刚性基层发展和应用概况 60~70年代:石灰土——经济 70年代:开始应用二灰类,但碎石无级配 80~90年代:大量应用二灰稳定类,悬浮型结构90年代:同时应用二灰稳定类和水泥稳定类 2. 半刚性基层类型 基层类型: (1)粒料类基层 (2)有机结合料稳定类——沥青稳定类 沥青稳定土 沥青碎石——沥青碎石、沥青贯入 沥青稳定碎石 沥青混凝土 (3)无机结合料稳定类——半刚性基层 此外还有刚性基层——混凝土、贫混凝土基层 半刚性基层类型: (1)石灰稳定类 (2)水泥稳定类 (3)综合稳定类 (4)工业废渣稳定类 常用半刚性基层类型: (1)二灰稳定类 二灰稳定碎石、二灰稳定砂砾——基层 二灰土——底基层 (2)水泥稳定类 水泥稳定碎石、水泥稳定砂砾——基层 水泥土——底基层

水泥稳定砂、水泥稳定石屑等,水泥稳定中粒土——低等级公路基层 、高等级公路底基层3. 半刚性基层的特点 (1)优点 ①强度高、承载力大、整体性好 ②稳定性好(水稳性、冻稳性) ③刚度大 ④对地方材料的质量要求较低 ⑤就地取材,经济性能好 (2)缺点 ①收缩系数较大、抗变形能力差 ②透水性差,表面易积水 ③破裂后不能愈合 ④对荷载大小的敏感性较大 (3)特点 ①较大的刚性、抗变形能力差 ②弯拉强度控制设计 目前沥青路面设计中,采用劈裂强度 ③环境温度和湿度对强度形成有很大的影响 ④强度和刚度均随龄期增长、后期衰减并逐渐疲劳 (4)再认识——结论 ①裂缝难以解决 ②排水性能不好 ③强度、模量会不断衰减 ④抗车辙能力并不比柔性基层好 ⑤对重载、超载交通敏感性大 ⑥铺筑过程易提前开裂 ⑦维修困难 养生时间长、破坏后无愈合能力,新老基层无法联结

抗车辙性能强的合理沥青路面结构初探

抗车辙性能强的合理沥青路面结构初探 孙兆辉 王铁滨 侯 芸 郭祖辛 (辽宁省交通高等专科学校,沈阳110122) (哈尔滨建筑大学交通学院,哈尔滨150008) 摘 要 本文利用系统车辙预估模型,分析研究不同沥青路面结构的车辙反应,为寻求抗车辙性能强的合理路面结构提供了一条研究途径。 关键词 沥青路面结构 车辙预估模型 车辙反应1 前言 综观国内外所进行的有关车辙问题的研究,可以看出普遍存在“重材料轻结构”的现象。大量的技术措施集中在表层材料的选择和沥青混合料的组成设计等方面,随着研究的深入,路面结构是一个不可忽视的因素。 由于缺乏同类地区各高等级公路的路况实测资料,本文仅以西安试验路13种路面结构为研究对象,认为应用系统车辙预估模型(简称V ESRM 模型)分析研究不同路面结构的车辙反应,为寻求抗车辙性能强的合理路面结构提供了一条研究途径。2 VESR M 模型 (1)数学模型 R D = ∫ N 2 N 1U ΒSYS N -ΑSYS dN (1) 式中:U -荷载重复作用下的路表位移(轮下位移); ΑSYS 、Β SYS -路面结构体系永久变形特征参数;N -标准轴载(B ZZ -100)作用次数。 假定每次荷载作用下轮下弯沉不变,故U 值可取在一次荷载作用下的轮下弯沉。本模型U 值采用后轴重为100kN 的汽车在路面投入使用后第n (n ≥1)年不利季节实测的轮下位移值。 (2)参数确定 本模型通过大量预估值与实测值的比较,建立了模型参数ΑSYS 与ΒSYS 二者之间的相关关系,即ΒSYS = U U r (1-ΑSYS )(2) 式中:U -荷载重复作用下的路表弯沉(意义同前);U r -荷载重复作用下的路表回弹弯沉(轮下回 弹弯沉); 其余同前。 其参数确定的具体步骤如下: 1)编制V ESRM 程序,采用高斯积分法计算车辙深度。 2)输入数据U 、N 1、N 2及参数初值ΑSYS0、ΒSYS0。根据服务中的道路车辙深度实测值反算其参数,建议路面结构体系永久变形特征参数初值ΑSYS0取0.75,再由ΒSYS 与ΑSYS 的相关关系确定ΒSYS0。 3)运行V ESRM 程序,将预测结果与实测数据相比较,如果二者数值相接近 ,误差不超过±5%,则停止运行,记录所确定的参数值,否则,通过V ESRM 程序调整参数,直至预估值与实测值非常 接近,误差控制在前述容许误差范围内,从而确定模 型参数ΑSYS 和ΒSYS 值 。其模型参数确定流程见图1。3 西安试验路概况 西安试验路铺筑在西三(西安-三原)线一级公 ?8?东 北 公 路2000年

抗车辙剂沥青混凝土施工工艺

抗车辙剂施工工艺 1、施工控制要点 1.1施工准备 施工现场的抗车辙剂应选择较高较平的位置存放,避免雨淋和长时间浸泡。 1.2拌和 (1)控制集料的加热温度为185~200 ℃。只有在高温条件下,抗车辙剂才能被充分熔融和分散,发挥出最佳效果。 (2)混合料拌和时间以沥青均匀裹覆矿料为度,干拌时间应在原来的基础上延长5~10s左右为宜。 1.3 摊铺 摊铺前熨平板应提前0.5~1小时预热至不低于120℃。 1.4 碾压 (1)根据抗车辙剂沥青混合料的温度特性,抗车辙剂沥青混合料必须在高温区(120~145℃)范围内完成达到规定压实度所必需的压实遍数,最后在80℃进行终压收光。 (2)碾压过程若出现推移现象,应立即停止钢轮压路机碾压,改用胶轮碾压。 1.5 质量控制 施工过程中,不得随意更改混合料的配合比例,施工现场油石比的检测建议采用燃烧炉法。 2、沥青混合料的拌和 为使抗车辙剂能够均匀地分散到沥青混合料中,抗车辙剂加入后应与集料进行干拌,然后再喷入热沥青进行湿拌。掺加抗车辙剂沥青混合料的施工温度应高于普通沥青混合料5℃~10℃。应严格控制拌和温度及拌和时间,每盘料拌和温度差异应小于5℃,拌和时间差异小于5秒。 (1)干拌时间:在拌合加料计量控制下,将抗车辙剂和热集料同时加入到拌合缸中进行干拌。干拌时间比常规集料干拌时间延长5~10秒左右,建议干拌总时间为20秒左右,不超过30秒;

(2)沥青温度:普通沥青预热温度控制在160℃-170℃; (3)湿拌时间:在抗车辙剂和热集料干拌后,喷入预热到160℃-170℃的热沥青,进行湿拌。湿拌时间比常规湿拌时间延长5秒左右,建议湿拌总时间控制在35~40秒左右,以拌合均匀无花白料为宜; (4)出料温度:沥青混合料出厂温度约为170℃-180℃。 3、沥青混合料的运输 3.1运输车辆 根据运距、拌和产量配备数量足够的自卸汽车,要求运力必须大于拌和机产量,要求每台汽车载重量不小于15吨。汽车应有紧密、清洁、光滑的金属底板和墙板,底板应涂一薄层适宜的防粘剂,不得有余残液积留在车厢底部。 防粘剂可以采用洗衣粉水、废机油水等,但不宜采用柴油水混合液。汽车必须备有用于保温、防雨、防污染用的毡布,其大小应能完全覆盖整个车厢。 3.2装料 装料时汽车应按照前、后、中的顺序来回移动,避免混合料级配离析。无论运距远近,无论气温高低,装完料后必须覆盖保温毡布,以防止混合料温度离析。 3.3运输 车辆在进入工程现场时,可以在沥青面层前设置湿草袋等措施,确保轮胎洁净,以免造成污染。 4、沥青混合料的摊铺 4.1施工准备 ⑴抗车辙剂沥青路面的施工,严禁在10℃以下以及雨天、路面潮湿的情况下施工。 ⑵透层油宜采用高渗透性透层油,用量为1.0~1.2kg/m2(沥青含量50%)。 ⑶粘层油宜采用SBS改性乳化沥青,应保证路面均匀满布粘层油,用量0.5~ 0.7 kg/m2(沥青含量50%)。 4.2摊铺机 抗车辙剂沥青混合料应采用履带式摊铺机,每台摊铺机应配备两套长度不小于16m的平衡梁和两套自动滑橇。 4.3找平

半刚性基层材料的强度形成和缩裂特性

半刚性基层材料的强度形成和缩裂特性 半刚性基层材料的强度形成和缩裂特性 摘要:通过分析半刚性基层材料包括石灰稳定类材料、水泥稳定类材料、综合稳定类材料的强度形成和缩裂特性,充分认识沥青路面裂缝的产生原因,提出对裂缝的预防和处理措施。 关键词:半刚性基层材料强度形成缩裂特性 中图分类号: U416.223 文献标识码: A 文章编号: 近年来,我区的公路建设迅猛发展。由于独特的地理环境,新建的无论是一般公路、还是高速公路,90%以上都采用半刚性基层。这种结构形式具有较高的强度、承载力和使用性能,为实现“强基薄面”结构提供了可靠保证,使得其在全区公路路面建设中得以广泛应用。但与此同时,随着半刚性基层的大量采用,这种结构形式存在的难以克服的缺点也日益显现,导致路面使用质量和寿命达不到应有的水平。因此,充分认识半刚性基层材料的强度形成和缩裂特性,有针对性的进行研究和利用,对进一步改善路面实际使用效果具有非常重要的现实意义。 一、半刚性基层材料的强度形成 半刚性基层材料的强度由于稳定材料与土石材料在掺配、拌和、压实过程中发生了一系列的物理、化学反应而形成。 石灰稳定类材料的强度形成。其强度形成主要是石灰与细粒土的相互作用。土中掺人石灰,石灰与土发生强烈的相互作用,从而使土的工程性质发生变化。初期表现为土的结团、塑性降低、最佳合水量增大和最大密实度减小等;后期变化主要表观在结晶结构的形成,从而提高土的强度与稳定性。影响石灰土强度与稳定性的主要因素有:土质、石灰的质量与剂量、养生条件与龄期等。各种成因的亚砂土、亚粘土、粉土类土和粘士类土都可以用石灰来稳定。各种化学组成的石灰均可用于稳定土。但白云石石灰的稳定效果优于方解石石灰。石灰剂量是按消石灰占干土重的百分率计。石灰剂量较低时(小于

层间接触对沥青路面抗车辙性能的影响

层间接触对沥青路面抗车辙性能的影响 ? 层间接触对沥青路面抗车辙性能的影响层间接触对沥青路面抗车辙性能的影响彭妙娟,赵文宣(上海大学,上海200444) 摘要:针对沥青路面车辙的影响因素,建立了沥青路面车辙分析的有限元模型,采用黏弹塑性理论,利用有限元软件ABAQUS分析了层间接触对沥青路面车辙的影响。对不同荷载、不同层间接触和不同路面结构的沥青路面的剪应力和车辙深度进行了计算。结果表明:对半刚性基层路面和柔性基层路面,良好的层间接触均能提高沥青路面的抗车辙能力;在相同荷载和层间摩阻力下,柔性基层沥青路面的车辙变形要大于半刚性基层沥青路面;对于半刚性基层路面,基面层的接触状态对沥青路面车辙的影响要比中下面层的接触状态大;在不同的层间接触和不同的沥青路面结构下,随着荷载的增大,层间接触较差的路面车辙变形大,超载对柔性基层路面车辙变形的影响要大于半刚性基层路面。关键词:道路工程;沥青路面;有限元法;车辙;黏弹塑性理论;层间接触0引言车辙是在渠化交通的道路上,沥青路面在车辆荷载反复作用下产生的竖向累积永久变形,表现为沿行车轨迹产生纵向的带状凹槽,严重时车辙的两侧会有隆起变形,是沥青路面主要的早期破坏形式之一,而层间接触状态直接影响车辙的产生。我国的道路设计一般

假设道路是层状弹性体系,然而在道路设计与施工中,由于各层材料的差异性,要达到完全黏结的状态几乎无法实现,特别是铺筑沥青面层之前,由于水稳性基层需要经过一段时间的养护,表面的灰尘清除不净等问题,经常造成层间不连续程度的加剧,导致沥青道路的使用寿命大大缩短。因此,对沥青路面层间接触的研究非常必要。Romanoschi应用弹性层状理论对层间接触和水平轮载对柔性路面使用寿命的 影响进行了研究,研究结果表明应力和应变分布受沥青路面层间接触条件影响很大[1]。Mariana对柔性路面路用性能的影响进行了研究,通过水平剪切模量定量反映层间接触情况,利用层状线弹性程序对路面结构进行了分析。结果表明,由于联结层与基层的不良接触导致路面寿命缩短可多达80%;在表面层和联结层接触不良的情况下,路面寿命对水平交通荷载特别敏感,水平力是引起表面层和联结层层间接触不良的主要原因[2]。Hyunwook等人利用大型有限元软件ANSYS对考虑层间接触状态下的半刚性基层沥青路面结构进行了模拟计算[3]。张起森根据弹性层状体系层间接触的实际状态,提出了一种考虑层间非线性的有限元增量子结构分析法,研究结果表明,这种分析方法较弹性层状体系理论假定接触界面完全滑动或完全连续的分析结果更为合理[4]。关昌余等引用古德曼(Goodman)层间结合力学模型来描述多层柔性路面结构层间的半结合状态,并基于这种力学模型给出

沥青路面车辙测试

实训九沥青路面车辙测试 车辙是路面经汽车反复行驶产生流动变形、磨损、沉陷后,在车行道行车轨迹上产生的纵向带状辙槽,车辙深度以mm计,车辙面积以2 m计。车辙的控制指标,国内没有统一指标,国外以车辙深度作为评价指标。 一、仪器与材料 可选用下列仪具与材料: (1)路面横断面仪,如图9.1所示。其长度不小于一个车道宽度,横梁上有一个位移传感器,可自动记录横断面形状,测试间距小于20cm,测试精度1mm。 图 9.1 路面横断面仪 (二)激光或超声波车辙仪,包括多点激光或超声波车辙仪等类型。通过激光测距技术或激光成像和数字图像分析技术得到车道横断面相对高程数据,并按规定模式计算车辙深度。 要求激光或超声波车辙仪有效测试宽度不小于3.2m,测点不小于13点,测试精度1mm。 (3)路面横断面尺,如图9.2所示。横断面尺为硬木或金属制直尺,刻度间距5cm,长度不小于一个车道宽度。顶面平直,最大弯曲不超过1mm。两端有把

手及高度为10~20cm的支脚,两支脚的高度相同。 图 9.2 路面横断面尺 (4)量尺:钢板尺、卡尺、塞尺,量程大于车辙深度,刻度至1mm。 (5)其他:皮尺、粉笔等。 二、方法步骤 (一)确定车辙测定的基准测量宽度 (1)对高速公路及一级公路,以发生车辙的一个车道两侧标线宽度中点到中点的距离为基准测量宽度。 (2)对二级及二级以下公路,有车道去划线时,以发生车辙的一个车道两侧标线宽度中点到中点的距离为基准测量宽度;无车道区划线时,以形成车辙部位的一个设计车道宽度作为基准测量宽度。 (二)确定车辙测定的间距 以一个评定路段为单位,用激光车辙仪连续检测时,测定断面间隔不大于10m。用其他方法非连续测定时,在车道上每隔50m作为一测定断面,用粉笔画上标记进行测定。根据需要也可按《公路路基路面现场测试规程》(JTG E60—2008)中随机选点方法在车道上随机选取测定断面,在特殊需要的路段如交叉路口前后壳予以加密。 (三)各种仪器的测定方法

运用QC提高沥青路面抗车辙性能

运用QC提高沥青路面抗车辙性能 李建松 一、选题理由据国际性的统计资料表明,大约80%的沥青路面维修养护都因车辙变形引起。与其他开裂、水损害等病害相比,车辙病害的危险性最大,它直接威胁交通安全。与其它病害相比,车辙的维修也最难,因为它不仅发生在表面层,也经常发生在中下面层。在我国,随着汽车重车数量急剧增加及轴载的加大(特别是超载重车),车辙破坏表现为沥青混凝土路面最主要的破坏形式。产生车辙破坏的根本原因是因为沥青混凝土高温稳定性不足。如何提高沥青混合料的抗高温性能?通常采取的措施,一选用较粗级配类型,即增加粗集料用量减少细集料用量使沥青混合料类型为骨架密实结构;二采用改性沥青,仅靠混合料级配优化提高抗车辙能力是有限的,大量试验结果表明,再利用重交通A级沥青的条件下,通过减少细集料和增加粗集料将悬浮密实结构优化到骨架密实结构混合料,最多将动稳定度提高到原来的2~2.5倍。在此情况下可采用高温粘度大的低标号沥青或改性沥青,可将动稳定度在提高1~2倍。三添加外掺剂,比如说抗车辙剂、纤维、水泥、石灰等。 连霍国道主干线红山口—鄯善高速公路建设项目第十三合同段,起点:ZK3785+000,终点:ZK3844+600,全长59.6Km。本合同段位于戈壁荒漠地,属百里风区,夏季地表温度高达60多度;冬季风沙大,温度低至零下28.7度;年平均降水量25.5mm。其沥青路面设计型式为: 上面层:12.25米宽4cm中粒式沥青混凝土(AC-16C型); 下面层:12.33米宽6cm粗粒式沥青混凝土(AC-25F型)。 此结构设计与现行规范存在冲突;1结构层厚度与最大公称粒径,规范要求沥青层一层的压实厚度厚度不小于最大公称粒径的2.5~3.0倍,即AC—25沥青混凝土单层铺筑厚度为7~8CM,AC-16沥青混凝土单层铺筑厚度为5CM(在内地基本上如此设计)。结构层厚度与

沥青路面抗滑性能的分析

沥青路面抗滑性能的分析

沥青路面抗滑性能的分析 论文关键词:沥青路面抗滑性能措施 论文摘要:分析影响路面抗滑性能的主要因素,提出提高路面抗滑性能的措施。 目前,随着国民经济的发展,高等级、重交通道路越来越多,对其要求也越来越高,而高等级公路的特点是通过能力大,支行速度快,客观上要求其行车安全舒适。由于大的通过能力加剧了对路面的磨耗作用,使路面的抗滑能力降低,而高速行车又要求路面有较高的抗滑能力来保证行车安全。我国干线公路沥青路面的抗滑性能较差,摆值小于45的路段占75%,小于40的占53%,因此雨天行车交通事故比较多。据报道,广东207国道某200米长路段,1987年春的雨季中,有一天发生交通事故9起,创我国单位长度

路段内的交通事故之最。江苏淮扬二级公路高邮县某段500米长路段内,在1987年6月13日二个雨天,发生交通事故11起,列1人,伤数人,直接经济损失达10万元以上,触目惊心的交通事故,给国家和人民的生命财产带来极大的威胁,当然,交通事故的发生是与人、车路、环境密切相关的,但与路面抗滑性能也是有密切关系的。 1、影响路面抗滑性能的主要因素 路面抗滑能力的大小用路面表面摩擦系数F(通常以摆式仪测定)来评价。而面层石料的性质、颗粒级配、路面潮湿程度、滑流性污染、沥青性质与用量又决定了摩擦系数的大小。 1.1路面石料的性质 1.1.1石料的磨光值(SPV)路面面层的微观构造是指面层石料表面的粗糙度,用石料的磨光值表示。它是决定轮胎

与路面之间湿摩擦力水平的决定因素,它反映了石料抵抗被磨光能力的大小。磨光值越高的石料,在轮胎的长期作用下,越能长时间保持其粗糙的微观构造,路面的抗滑能力也就越好。前面提到的高邮路段,面层石料为石灰岩,磨光值为33,路面摩擦系数为27-33,均达不到规范要求。所以,选用磨光值大的石料铺筑沥青面层是提高路面抗滑性能的主要措施之一。 1.1.2石料的磨耗值和压碎值石料的磨耗值是评价石料抵抗磨擦、撞击剪切等综合作用的性能指标。石料的压碎值是评价石料抵抗压碎性能的指标。路面石料长期经受轮胎的摩擦、冲击、碾压等综合作用,要维持较高水平的抗滑能力,必须要求石料的轮胎作用下,不至于磨损太大、压碎太多。因此,规范要求面层石料为石灰岩,经钻孔发现路面上层6-12mm为沥青和石屑的混和物,无粗滑料,这就是石料被磨耗的结果。 1.2颗粒级配路面面层的宏观构造指面层表面石料间的孔隙,即构造深度。而级配则是形成构造深度的关键,构造深度越大,则抗滑能力越强。集料的级配还影响着集料的裸露程度、尺寸大小、相互间距,而它们又影响着路面摩擦系数的大小。

路面抗滑性能试验(DOC)

§ 8-1 手工铺砂法测定路面构造深度试验 一、目的与适用范围 本方法适用于测定沥青路面及水泥混凝土路面表面构造深度,用以评定路面表面的宏观粗糙度,路面表面的排水性能及抗滑性能。 二、仪具与材料 本试验需要下列仪具与材料: 1 、人工铺砂仪:由圆筒、推平板组成。 (1 )量砂筒:形状尺寸如图8-1 所示,一端是封闭的。容积为25 ± 0.15mL ,可通过称量砂筒中水的质量以确定其容积V ,并调整其高度,使其容积符合规定要求,带一专门的刮尺将筒口砂刮平。 (2 )推平板:形状尺寸如图8-2 所示,推平板应为木制或铝制,直径50mm ,底面粘一层厚1.5mm 的橡胶片,上面有一圆柱把手。 (3 )刮平尺:可用30cm 钢板尺代替。 2 、量砂:足够数量的干燥洁净的匀质砂,粒径0.15~ 0.3mm 。 3 、量尺:钢板尺、钢卷尺,或采用按式(8 -1 )将直径换算成构造深度作为刻度单位的专用的构造深度尺。 4 、其它:装砂容器(小铲)、扫帚或毛刷、挡风板等。 8-1 量砂筒(单位:㎜)图8-2 推平板(单位:㎜)

三、方法与步骤 1 、准备工作 (1 )量砂准备:取洁净的细砂晾干、过筛,取粒径为0.15~ 0.3mm 的砂置于适当的容器中备用。量砂只能在路面上使用一次,不宜重复使用。回收砂必须干燥、过筛处理后方可使用。 (2 )按公路路基路面现场测试随机选点的方法,对测试路段进行随机取样选点,决定测点所在横断面位置。测点应选在行车道的轮迹带上,距路面边缘不应小于1m 。 2 、试验步骤 (1) 用扫帚或毛刷子将测点附近的路面清扫干净,面积不小于30cm × 30cm 。 (2) 用小铲将砂沿筒向圆筒中注满砂,手提圆筒上方,在硬质路表面上轻轻叩打 3 次,使砂密实,补足砂面用钢尺一次刮平。 注:不可直接用量砂筒装砂,以免影响量砂密度的均匀性。 (3) 将砂倒在路面上,用底面粘有橡胶片的推平板,由里向外重复做摊铺运动,稍稍用力将砂细心地尽可能的向外摊开,使砂填入凹凸不平的路表面的空隙中,尽可能将砂摊成圆形,并不得在表面上留有浮动余砂。注意摊铺时不可用力过大或向外推挤。 (4) 用钢板尺测量所构成圆的两个垂直方向的直径,取其平均值,准确至5mm 。 (5) 按以上方法,同一处平行测定不少于3 次,3 个测点均位于轮迹带上,测点间距3~ 5m 。该处的测定位置以中间测点的位置表示。 四、计算 1 、路面表面构造深度测定结果按(8 — 1 )计算:

沥青路面车辙产生的原因及处理措施

沥青路面车辙产生的原因及处理措施 【摘要】沥青路面一旦产生车辙,其交通安全就会受到影响。因此,对沥青路面车辙产生的原因及相应处理措施进行研究具有非常大的意义。本文根据沥青路面车辙产生的原因对其提出相应的处理措施,以供同仁参考。 【关键词】水泥;混凝土;道路;质量通病;防治措施 随着近年经济的快速发展,车流量在不断的增加,其沥青路面就出现了各种各样的病害,比如车辙、裂缝、泛油等病害,这些病害的出现将严重影响到了交通安全。因此,就需要对其产生的原因进行研究,并提出科学合理的改善措施。本文主要研究的是车辙产生的原因及相应的处理措施。车辙的出现将会对通行的车辆和路面产生影响,其主要的影响表现在以下几个方面:①车辙的产生会使沥青路面产生变形,其路面平整度受到影响;②车辙会使轮迹处沥青层厚度变得更加薄,其路面的结构和面层的整体强度将会变弱,其他病害很容易就诱发出来了; ③车辙的产生会使雨天的排水变得更加不畅,路面的抗滑能力大大的下降,其交通安全就会受到严重的影响;④车辙的出现会使车辆在更换车道或超车时方向失控,其交通的安全就会受到影响。综上可知,车辙的出现将会严重影响到路面的服务质量和使用状况。 1、车辙产生的原因分析 根据相关研究资料发现,车辙产生的原因有很多种,大致可以分为两个方面:内部影响因素和外部影响因素。内部影响因素主要是指路面施工技术及沥青混凝料性质,外部因素则是指气候、车流量、荷载以及路面坡度等影响因素。其中内部影响因素是可以进行控制的,外部因素就很难控制。 1.1路面结构及材料组成 我国路面大部分采用的材料是沥青混合料。沥青层材料是会发生变形的,其变形量会随着路面结构中厚度的增大而变大。此外,沥青路面中级配碎石也是随之发生一定程度的永久变形。沥青路面采用的材料是半刚性基层或刚性基层,这两种材料具有比较高的高温抗剪变形和稳定性能力,因此,沥青层是产生车辙主要部位,其中土基和刚性基层产生车辙的概率是非常小的。 1.2施工因素 施工质量是造成沥青路面出现车辙病害的内部原因之一,在沥青路面施工过程中如果没有做好以下几个方面的施工工作,那么就很容易导致路面产生车辙病害。其主要的施工因素有:①沥青混合料的离析比较严重时就会造成级配偏差,使得配成的混合料偏软,未达到一定强度;②片面的看重路面的平整度,没有对压实度进行严格要求;③油石比控制不准确等因素;④沥青路面的施工技术和施工过程,在对沥青路面施工时需要做好中间的施工,防止路面层间出现滑动现象。

沥青路面抗滑性能的分析

沥青路面抗滑性能的分析 沥青路面抗滑性能的分析论文关键词:沥青路面抗滑性能措施 论文摘要:分析影响路面抗滑性能的主要因素,提出提高路面抗滑性能的措施。 目前,随着国民经济的发展,高等级、重交通道路越来越多,对其要求也越来越高,而高等级公路的特点是通过能力大,

支行速度快,客观上要求其行车安全舒适。由于大的通过能力加剧了对路面的磨耗作用,使路面的抗滑能力降低,而高速行车又要求路面有较高的抗滑能力来保证行车安全。我国干线公路沥青路面的抗滑性能较差,摆值小于45 的路段占75 %,小于40 的占 53 %,因此雨天行车交通事故比较多。据报道,广东207 国道某200 米长路段,1987 年春的雨季中,有一天发生交通事故9 起,创我国单位长度 路段内的交通事故之最。江苏淮扬二级公路高邮县某段500 米长路段内,在1987 年6 月13 日二个雨天,发生交通事故11 起,列1 人,伤数人,直接经济损失达10 万元以上,触目惊心的交通事故,给国家和人民的生命财产带来极大的威胁,当然,交通事故的发生是与人、车路、环境密切相关的,但与路面抗滑性能也是有密切关系的。 1、影响路面抗滑性能的主要因素 路面抗滑能力的大小用路面表面摩擦系数 F (通常以摆 式仪测定)来评价。而面层石料的性质、颗粒级配、路面潮湿程度、

滑流性污染、沥青性质与用量又决定了摩擦系数的大小。 1.1路面石料的性质 1.1.1石料的磨光值 (SPV )路面面层的微观构造是指面层石料表面的粗糙度,用石料的磨光值表示。它是决定轮胎 与路面之间湿摩擦力水平的决定因素,它反映了石料抵抗被磨光能力的大小。磨光值越高的石料,在轮胎的长期作用下,越能长时间保持其粗糙的微观构造,路面的抗滑能力也就越好。前面提到的高邮路段,面层石料为石灰岩,磨光值为33 ,路面摩擦系数为27 -33 ,均达不到规范要求。所以,选用磨光值大的石料铺筑沥青面层是提高路面抗滑性能的主要措施之一。 1.1.2石料的磨耗值和压碎值石料的磨耗值是评价石料抵抗磨擦、撞击剪切等综合作用的性能指标。石料的压碎值是评价石料抵抗压碎性能的指标。路面石料长期经受轮胎的摩擦、冲击、碾压等综合作用,要维持较高水平的抗滑能力,必须要求石料的轮胎作用下,不至于磨损太大、压碎太多。因此,规范要求面层石料为石灰岩,经钻孔发现路面上层6 -12mm 为沥青和石屑的混和物,无粗滑料,这就是石料被磨耗的结果。 1.2颗粒级配路面面层的宏观构造指面层表面石料间的孔隙,

柔性基层与半刚性基层沥青路面重载适应性分析

柔性基层与半刚性基层沥青路面重载适应性分析摘要:论文以路面力学软件bisar3.0为计算工具,分析标准轴载、超载50%、超载100%的情形下对这两种不同基层沥青路面的力学响应,对比研究其路表弯沉、路面结构各层次(面层、基层、底基层)的力学特性。结果表明,柔性基层沥青路面与半刚性基层沥青路面的重载适应性存在明显差异。只有对其合理优化组合,才能实现这两种路面结构的优势互补。 关键词:柔性基层;半刚性基层;重载适应性 abstract: the paper to pavement mechanics for computing tools bisar3.0 software, analysis standard axle load, overload, overload 100% 50% of cases of the two different the mechanical response of the asphalt pavement, the contrast of the way the table deflection, pavement structure all levels (surface, basic level, subbase) mechanical properties. the results show that the asphalt pavement and flexible grassroots semi-rigid base of the asphalt pavement overloaded adaptability differences. only for the rational optimized combination, can realize the two complementary advantages of pavement structure. keywords: flexible grassroots; semi-rigid base; overloaded adaptability 中图分类号:u416.217文献标识码:a 文章编号:

抗车辙新型沥青路面Word版

得分:_______ 研究生课程论文 2014~2015学年 第2学期

二〇一五年五月 抗车辙新型沥青路面 摘要:我国高速公路沥青路面早期破坏现象严重,其中高温车辙破坏是一个重要的原因。我国从混合料的级配设计方法、改性沥青方法和外掺剂方法三个方面入手研发抗车辙沥青路面,其施工需要注意拌合、运输、摊铺、碾压等关键技术。 关键词:抗车辙;沥青;混合料的级配设计;改性沥青;外掺剂。 0 引言 高速公路沥青路面早期破损问题,己成为影响我国公路健康发展的突出问题,主要表现在三个方面:(1)损坏时间早。有的建成使用后1-2年,就出现严重的损坏现象,个别路段通车当年就出现大面积损坏,远远达不到设计寿命。(2)损坏范围宽。全国各地都不同程度地存在着路面过早损坏问题。(3)损坏程度重。有的损坏不是局限在沥青表面层,而是基层也发生损坏,不得不进行路面重建。在沥青路面的早期损坏中尤其以高温车辙破坏最为突日。 1 车辙的形成 车辙是行车道轮迹带上产生的永久变形,由轮迹的凹陷及两侧的隆起组成。根据车辙的不同形成过程,可将车辙分成三大类型:失稳型车辙,是指当沥青混合料的高温稳定性不足时,沥青路面结构层在车轮荷载作用下,其内部材料因流动而产生横向位移,通常发生在轮迹处,这也是车辙的主要类型;结构型车辙,指沥青路面结构在交通荷载作用下产生的整体永久变形。这种变形主要是由于路基变形传递到路面层而产生的;磨耗型车辙,为沥青路面结构层的材料在车轮磨耗和自然环境因素作用下不断地损失而形成的车辙。汽车使用了防滑链和突钉轮胎后,这种车辙更易发生。 以上三种车辙中以失稳型车辙最为严重,其次为磨耗型车辙。由于我国大多数沥青路面

沥青路面抗滑性能的测试方法及评价指标

沥青路面抗滑性能的测试方法及评价指标 摘要:高速公路沥青混凝土路面使用状况直接决定着路面的养护决策,在规范已有的评价指标的基础上建立了车辙的评价指标及指标建议值,提出了在高温多雨地区路面综合评价指数PQI模型各指标权重的建议值,并采用决策树模型建立了高速公路沥青混凝土路面养护决策模型。 高速公路建成通车后,在交通荷载和自然因素的相互作用下,其路面使用性能有逐年下降的趋势,当这种趋势达到一定的程度时将出现各种病害。对高速公路管理部门而言,不单是要对局部出现病害的部位进行及时维修,更重要的是如何根据路面的使用性能下降的趋势有针对性地采取经济合理的养护策略。本文就此进行初步的探讨。 1沥青混凝土路面使用性能评价 高速公路沥青混凝土路面的养护决策,在很大程度上取决于对沥青混凝土路面使用性能的合理评价。对于沥青混凝土路面使用性能,主要从路面的破损状况、结构承载力、行驶质量、抗滑性能以及车辙状况等方面进行评价。 1.1路面破损状况评价 通过路面破损状况的调查全面掌握沥青混凝土路面出现的病害情况,同时进行量化。路面破损状况采用路面综合破损率DR进行评价,以路面状况指数PCI为评价指标,即: PCI一100—15×DR^0.412 对DR可按照《公路沥青路面养护技术规范》(JTJ 073.2—2001)的相关要求进行调查计算。一般说来,P CI越大表明路面的路况越好。 1.2沥青混凝土路面结构承载力评价 沥青混凝土路面的承载力是指路面达到预定的损害状况之前,还能承受行车荷载的作用次数或还能使用的年数。对沥青混凝土路面承载力通常用弯沉来评价,以路面强度指数(SSI)来作为评价指标,即: SSI=ld/lD 式中:SSI为路面强度指数;ld为沥青混凝土路面设计弯沉值,O.1 mm;lD为检测路段代表弯沉值,0.1 mm。 检测沥青混凝土路面弯沉的主要仪器有贝克曼梁、自动弯沉仪和落锤式弯沉仪(FWD)。对高速公路弯沉的检测宜使用FWD,因为FWD能较好地模拟行车荷载的作用,而且能够快速、安全、准确地采集所需的数据。1.3行驶质量评价 对路面而言,行驶质量是用纵向的平整度来评价的,其评价指标为行驶质量指数(RQI),即: RQI=11.5—0.75×IRI 式中:RQI为行驶质量指数;IRI为国际平整度指数,m/km。 对路面平整度进行检测的主要仪器有3 m直尺、连续式平整度仪、车载颠簸累积仪和激光平整度测试仪。对于高速公路沥青混凝土路面平整度的检测宜采用测试精度高、测试速度快的激光平整度测试仪。 1.4抗滑性能评价 路面的抗滑能力直接影响高速行驶车辆的安全性,为了保证路面在湿润状态下也能提供足够的摩阻力,必须对沥青混凝土路面的抗滑性能进行检测。沥青混凝土路面的抗滑性能主要取决于路表面的宏观构造和微观构造。常用的测试方法有摆式仪法、SCRIM摩擦系数测定车法以及测试构造深度的灌砂法。评价指标主要有横向力系数SFC、摆式仪摆值BPN和构造深度TD。为了保证检测数据的精度、检 测过程的安全以及减少对交通的干扰,对高速公路沥青混凝土路面的抗滑性能宜采用以SFC为主、TD为辅的评

沥青路面车辙测试方法探讨

龙源期刊网 https://www.doczj.com/doc/548072443.html, 沥青路面车辙测试方法探讨 作者:耿晓栋 来源:《城市建设理论研究》2013年第04期 摘要:车辙检测是我国公路养护的重要课题。本文首先阐述了沥青路面车辙产生的原因,进而说明沥青路面的测试方法,并提出了相关的预防及处理措施,对道路工作者施工应用可以提供一些合理的参考。 关键词:沥青路面;车辙;测试方法;防治措施 Abstract: the rut detection is an important subject of our country highway maintenance. This article discussed the causes of asphalt pavement rutting, then explain the asphalt test methods, and puts forward some prevention and treatment measures of road construction workers can be used to provide some reasonable reference. Keywords: asphalt pavement; Rutting; Test methods; Prevention and control measures 中图分类号:U416.217文献标识码:A 文章编号:2095-2104(2013) 引言 随着我国公路系统的发展,沥青公路占总公路里程的比例日益增加。但是,由于我国高速公路的建设起步比较晚,优质的道路沥青比较缺乏,而且在铺设高速公路时路面结构也存在种种问题,因此路面破损的情况也经常出现,公路养护就成为建后公路最主要的问题。车辙是道路破损的最常见的病害,对道路的危害最大。 一、沥青路面车辙的产生原因 沥青路面在缓慢移动或重交通作用下会产生变形并留下永久性的微变形。随着时间的推移,这些微变形会积累并产生车辙现象。车辙随交通荷载的增大而增加。车辙是沥青混凝土路面沿轮迹纵向方向的凹陷。 1.半刚性基层路面的车辙主要产生于沥青混凝土面层,而产生车辙的主要原因是沥青混合料的高温稳定性不足,在车辆的重复荷载作用下产生变形累积。影响沥青混合料高温稳定性主要是沥青混合料的高温抗剪切能力及内摩阻力,沥青混合料产生塑性流动变形,最终骨架结构破坏失稳。 2.由于荷载作用超过路面各层的强度。发生在沥青面层以下包括路基在内的各结构层的永久性变形。成为结构性车辙。这种车辙的宽度较大,两侧没有隆起现象。横断面成v字形。

半刚性基层和柔性基层路面运营期养护对比分析

半刚性基层和柔性基层路面运营期养护对比分析 半刚性基层和柔性基层路面运营期养护对比分析 摘要:公路半刚性基层和柔性基层路面由于力学性能的不同, 在运营期间会出现不同的路面病害,通过对公路运营期间养护的对比分析,为公路改建和新建沥青路面方案比选提供参考意义。结合安徽省宣城市S322水仙路宣城至泾县段的运营期养护工作,从半刚性基 层路面和柔性基层路面受力特性、路面病害类型、养护对策和费用等方面进行了对比分析,全面阐述了半刚性基层和柔性基层路面的优缺点。 关键词:半刚性基层;柔性基层;路面养护;对比 Abstract: The highway semi-rigid and flexible base pavement due to the different mechanical properties, during the operation period will appear different pavement distress, through comparative analysis of highway maintenance operation period, for the highway reconstruction and new asphalt pavement scheme selection of reference significance. Unifies the Anhui province Xuancheng city Xuancheng road to Jingxian County S322 Narcissus operation maintenance work, are compared and analyzed from the semi-rigid base pavement and flexible base pavement stress characteristics, pavement type, maintenance and cost etc, a comprehensive exposition of the advantages and disadvantages of semi-rigid base and flexible base pavement. Key words: semi-rigid base; flexible base pavement maintenance; comparison; 中图分类号:U415 一、前言 我市升级改造后国省干线公路绝大部分都采用半刚性基层沥青 混凝土路面,半刚性基层具有一定的抗拉强度、抗疲劳强度、良好的水稳定特性。这些都符合路面基层的要求,使得路面基层受力性能良

相关主题
文本预览
相关文档 最新文档