华师大版七年级数学上册2.2.2在数轴上比较数的大小
- 格式:ppt
- 大小:247.00 KB
- 文档页数:7
教学计划一、教材分析:本册书体现学生主动学习的过程,以学生发展为本,让学生亲身参与活动,进行探索与发现,以自己体验获取知识与技能。
二、教学内容:走进数学世界:让学生对数学有一个良好的认知感,初步体验到什么是“做数学”;有理数:理解有理数、数轴、乘方的意义,掌握有理数加、减、乘、除、乘方及简单的混合运算。
认识科学记数法,了解近似数的意义。
会用有理数的运算解决简单的问题。
整式的加减:了解代数式、单项式、多项式的概念,掌握单项式系数与次数及多项式的次数、项与项数的区别,并能按某个字母的升、降序排列;掌握合并同类项的法则,能进行简单的整式加减法运算。
图形的初步认识:认识并会画立体图形以及其展开图,了解几何体、平面、直线、点等几何概念,理解两点间距离的意义,认识角并能比较角的大小,会计算角的和、差,掌握余角、互为补角、同角(等角)及之间的关系。
学会用圆规和直尺准确的画出线段和角。
相交线与平行线:了解对顶角、同位角、内错角、内错角、同旁内角,会识别;会作平行线,并且学会平行线的判定和性质。
第一课时一、课题§1.1 数学伴我们成长二、教学目标1. 知识与技能:结合具体例子,体会数学与我们的成长密切相关。
2. 过程与方法:通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
3. 情感态度与价值观:通过对小学数学知识的归纳,感受到数学学习促进了我们的成长;尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
三、教学重点和难点重点:1. 结合具体例子,体会数学与我们的成长密切相关。
2. 通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
难点:结合具体例子,体会数学与我们的成长密切相关。
四、教学手段交互一体机、剪刀、长方形纸片。
五、教学方法启发式教学六、教学过程设计一、导入人来到世界上的第一天就遇到数学,数学将哺育着你的成长。
数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。
2.2.1数轴同步讲义基础知识1、在数轴上表示的两个数,右边的数总比左边的数大;2、正数都大于零,负数都小于零,正数都大于负数。
例题例、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.2-,1,0,54-,3,2.5【答案】见解析,5201 2.534-<-<<<<【分析】首先在数轴上表示出各数,然后根据在数轴上,右边的数总比左边的数大即可得到答案.【详解】解:如图所示:由数轴可知,这些数从小到大的顺序为:5201 2.534-<-<<<<.【点睛】本题考查有理数的比较大小、数轴,解题的关键是掌握在数轴上,右边的数总比左边的数大.练习1.在5-、1-、0、3这四个有理数中,最小的有理数是()A.5-B.1-C.0 D.32.如图,a与b的大小关系是()A.a<b B.a>b C.a=b D.a=2b3.大于-4.2且小于3.8的整数有()A.5个B.6个C.7个D.8个4.在数轴上表示数1-和2020的两点分别为点A和点B,则A、B两点之间的距离为()A.2018 B.2019 C.2020 D.20215.实数,a b在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0a >B .2b >C .a b <D .a b =6.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列关系正确的是( )A .a >b >cB .b >a >cC .c >b >aD .b >c >a7.实数a 在数轴上对应点的位置如图所示,若实数b 满足﹣a <b <a ,则b 的值可以是___(任填一个即可).8.四个数在数轴上的对应点分别为A ,B ,C ,D ,这四个数中最小的数的对应点是______.9.有理数a 、b 在数轴上的位置如图所示,则a 、b 大小是:a ______b .10.大于2-而小于3的负整数是_______.11.利用数轴比较132-,2,0,1-,12,4-的大小,并用“<”把它们连结起来.12.在数轴上表示下列各数:0,2,﹣1.5,13-,并按从小到大的顺序用“<”号把这些数连接起来.13.将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.练习参考答案1.A【分析】由5-<1-<0<3,从而可得答案.【详解】-解:由5-<1-<0<3,可得:最小的有理数是 5.故选:.A【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较的方法是解题的关键.2.B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:由数轴可知,b<0<a,即a>b,故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.3.D【分析】在数轴上表示出-4.2与3.8的点,进而可得出结论.【详解】解:如图所示,,由图可知,大于-4.2且小于3.8的整数有-4,-3,-2,-1,0,1,2,3共8个.故选:D.【点睛】本题考查的是数轴,根据题意画出数轴,利用数形结合求解是解答此题的关键.4.D【分析】由数轴上两点间距离可得AB=|-1-2020|=2021.【详解】解:AB=|-1-2020|=2021,故选:D.【点睛】本题考查数轴上两点间距离;会求数轴上两点间的距离是解题的关键.5.C【分析】根据点在数轴上的位置分别判断即可.【详解】解:由图可得:-1<a<0,1<b<2,,∴a<0,b<2,a b故选项A、B、D错误,故选C.【点睛】本题考查了实数与数轴,利用数轴比较数的大小是解决问题的关键.6.A【分析】根据数轴左边的点所表示的数小于右边的点所表示的数解答即可.【详解】由数轴得:a>b>c,故选:A.【点睛】本题考查了数轴和有理数的大小比较,熟练掌握数轴上的点所表示的数的大小关系是解答的关键.7.0(答案不唯一)【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【详解】解:由数轴可知,1<a<2,﹣2<﹣a<﹣1,∵﹣a<b<a,∴b可以在﹣1和1之间任意取值,如﹣1,0,1等,故答案为:0(答案不唯一).【点睛】此题主要考查数轴的性质,解题的关键是熟知有理数的大小关系.8.A【分析】根据数轴的定义即可得.【详解】由数轴的定义得:数轴上的点表示的数,左边的总小于右边的,则这四个数中最小的数的对应点是A,故答案为:A.【点睛】本题考查了数轴,掌握理解数轴的定义是解题关键.9.<【分析】数轴上原点右边的数都大于0,原点左边的数都小于0,数轴右边的数始终大于数轴左边的数.【详解】a b、都在数轴原点的左边∴<<a b0,0观察数轴得,a在b左边,a b∴<<故答案为:<.【点睛】本题考查数轴、利用数轴比较有理数的大小等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.-1【分析】在数轴上找出-2与3之间的数,进而可得出结论.【详解】由图可知,大于-2而小于3的负整数是-1,故答案为:-1.【点睛】本题考查的是有理数分类与大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.11.数轴见解析,114310222-<-<-<<<【分析】根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.【详解】解:如图所示:114310222-<-<-<<<.【点睛】本题考查了有理数大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.数轴见解析,11.5023-<-<<【分析】先将各数表示在数轴上,再依据数轴上右边的数大于左边的数进行判断即可.【详解】解:在数轴上表示下列各数如下:故11.5023-<-<<.【点睛】本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的方法是解题的关键.13.见解析,11 54200.424-<-<-<<【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】解:如图所示:故1154200.424-<-<-<<.【点睛】本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.。
华师大版七年级上册全册知识点总结第二章有理数1. (4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。
相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类 正整数正整数整数 0 正有理数 有理数负整数有理数正分数正分数 0 负整数分数负有理数 负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
正分数负分数正整数0负整数4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
华师大版数学七年级上册在数轴上比较数的大小教学设计课题在数轴上比较数的大小单元 2.22 学科数学年级七年级学习目标1、会利用数轴比较有理数的大小;2、通过数轴比较有理数的大小,归纳总结有理数大小比较的法则;3、利用数轴比较有理数的大小,体验数形结合的思想和方法;重点会利用数轴比较有理数的大小难点利用数轴比较分数的大小教学过程教学环节教师活动学生活动设计意图导入新课一、复习与练习指出数轴上的点A、B、C、D、E分别表示什么数。
二、提出问题在小学里,我们已经学会比较两个正数的大小,那么,引进负数后,怎样比较有理数的大小呢?你能用“<“号把上面的数连接起来吗?直接回答交流讨论复习巩固引出新课讲授新课一、从温度计得到启发把温度计横过来放,就像一条数轴。
从这个事实中,能得到怎样的启发?1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?-3℃与-4℃哪个温度高?这些关系在温度计上表现为怎样的情形?二、利用数轴比较大小1、法则:在数轴上表示的两个数,右边的数总比左边的数大。
2、步骤:首先在数轴上标出有理数对应的点,然后右边的数大于左边的数得出结果。
三、有理数大小比较法则1、法则:正数都大于零,负数都小于零,正数都思考直接回答读直接回答类比启发突出步骤大于负数。
2、步骤:首先区分该数的类型,然后用法则比较得出结果。
四、例题讲解例1、比较下列各组中两个数的大小。
(1)-3和-1; (2)-100和0; (2)-50和0.01 (4)4.5和9.3;分析:1、有理数大小比较法则是什么?2、如何用数轴比较大小?解:(1)-3和-1在数轴上表示的点如图所示:∵在数轴上表示的两个数,右边的总比左边的大, ∴-1>-3; (2)∵负数小于零; ∴-100<0; (3)∵正数大于负数;∴0.01>-50;(4)两个正数,用小学的方法直接比较4.5<9.3小结:有理数大小比较,能够用有理数大小比较法则的,直接用法则进行比较,不能用法则比较的,就利用数轴比较大小。
第 2 章 有理数 2.1 有理数华东师大版数学七年级上册课后习题答案1、正数和负数练习 1. 略2. 8844 表示海平面以上 8844 米,-155 表示海平面以下 155 米。
海平面的高度用 0(米)表示。
3. 正数:+6,54, 22 ,0.0017负数:-21,-3.14,-9994. 不对,因为一个数不是正数,还可能是 0,而 0 不是负数。
2、有理数练习1. 举例略,这些数都是有理数。
2. 只有一个,是 0。
习题 2.11. 整数:1,-789,325,0,-20;分数:- 0.10 510.10,100.1,- 5% ; ,, 8正数:1 5 ; ,,325,10.10,100.1 8负数:-0.10,-789,-20,-5%。
, 2. 本题是开放性问题,答案不唯一,例如:重叠部分填:1, 2,3…(注意要添上省略号);左圈内填:0.1,0.2,0.3;右圈内填 0,-1,-2。
两个圈的重叠部分表示正整数的集合。
3. 按照第 2 题的不同填法本题有不同的答案。
4. (1)1,-1,1;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-1,-1,-1,1。
(2)9,-10,11;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-10,-100,-200,201。
(3) 1,- 1 1 ;第 10 个数,第 100 个数,第 200 个数,8 9 10 11 1 1第 201 个数分别为 , , ,- 。
10 100 200 2012.2 数轴 1. 数轴练习1(1)正确,符合数轴的定义;(2) 不正确,单位长度不一致; (3) 不正确,负数标注错误。
2. -3 位于原点左边,距离原点 3 个单位长度; 4.2 位于原点右边,距离原点 4.2 个单位长度; -1 位于原点左边,距离原点 1 个单位长度;1位于原点右边,距离原点 12 2个单位长度。
第1章 走进数学世界1.在n ·n 的正方形方格中,有1²+2²+3²+…2.幻方: 三阶幻方:四阶幻方: 第2章 有理数2.1.1正数和负数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)☀注意:零既不是正数,也不是负数.2.1.2有理数分类:方法1:整、分法方法2:正、零、负法16 2 313 5 11 108 9 7 612 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.2.2.1数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.2.2.2在数轴上比较数的大小方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)☀注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较除(2.2.2)在数轴上比较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.2.6.1有理数的加法法则法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)☀注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.2.6.2有理数加法的运算律加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.2.9.1有理数的乘法法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)2.9.2有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.☀注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在aⁿ中,a叫做底数,n叫做指数,aⁿ读作a的n次方,aⁿ看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10ⁿ的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.☀注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.☀注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10ⁿ看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.☀注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减3.1.1用字母表示数☀注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.3.1.2代数式定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.3.1.3列代数式列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.3.3.1单项式定义:由数与字母的乘积组成的代数式叫做单项式.☀注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.3.3.2多项式定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.3.3.3升幂排列与降幂排列定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.☀注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.3.4.1同类项定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.3.4.2合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.3.4.3去括号与添括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.☀注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.3.4.4整式的加减运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.☀注意:圆柱、球体等含有曲面的立体图形不称为多面体.4.2.1由立体图形到视图视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.4.2.2由视图到立体图形☀注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.4.5.1点和线点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.4.5.2线段的长短比较比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.☀注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)4.6.1角角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)☀注意:描述物体运动的方向时,要以正北、正南方向为基准.4.6.2角的比较和运算题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.6.3余角和补角余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.☀注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线5.1.1对顶角对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.5.1.2垂线垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.1.3同位角、内错角、同旁内角同位角的定义:内错角的定义:同旁内角的定义:5.2.1平行线平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”. 两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.5.2.2平行线的判定判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.5.2.3平行线的性质性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。
在数轴上比较数的大小一、学习目标确定的依据1、课程标准结合数轴,会在用数轴比较有理数的大小。
2、教材分析本节课是初中数学华师大版七年级上册第2章有理数的第二部分的第二课时,是学生进一步学习有理数的基础,通过上一节数轴的学习,进一步学会如何比较数的大小,为学生下一节的学习奠定基础。
3、中招考点本节知识点较少都是较为简单的基础知识考查题型一般为填空题或解答题。
4、学情分析对于不等号链接几个有理数第一次接触,学生不会熟练的运用数轴来进一步比较数的大小关系。
二、学习目标1、知识与技能⑴使学生进一步巩固绝对值的概念⑵使学生会利用绝对值比较两个负数的大小⑶培养学生逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力⑷掌握有理数的大小比较的两种方法——利用数轴和绝对值2、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会数形结合的数学方法,培养学生分析、归纳的能力3、情感态度价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值三、评价任务向同桌说出数轴上表示的数比较法则,会用数轴比较数的大小并用不等号连接。
四、教学过程自学指导一:1、内容:17页和18页的内容。
2、时间:5分钟。
3、方法:前4分钟自学后1分钟小组讨论自学中所遇到的问题。
4、要求:自学后能独立完成下列问题:课本的第18页练习自学检测一:1、画一根数轴并把下列个数表示在数轴,并且按从左至右的顺序重新排列。
-4 -1 0 42、用“>”或“<”号填空。
(1) 0 (2)- 0(3)--(4)0 -4 (5)-7 -33.用不等号把下列数字连接起来-0.333,-,-34%,-0.3334当堂检测一1.将有理数4,0,,-4,按从小到大的顺序排列,用“<”连接起来。
2.比较下列各数的大小。
,,-3,-6课堂小结本节你学到了哪些知识,你还有哪里不懂的不明白的地方。
布置作业课本习题第4,5题。
数轴知识点1 数轴(重点)1.数轴的概念画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度.规定直线上向右的方向为正方向,就得到数轴。
如下图2.数轴的画法(1)画直线、定原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选靠右些;正数的个数较多时,原点选的靠左些.(2)定方向:通常取原点向右的方向为正方向.(3)定单位长度:选取适当的长度(如0.5cm(4)标数:在数轴上依次标出1,2,3,4,-1,-2,-3,-4等各点.3.任何一个有理数都可以用数轴上的一个点来表示.注意:(1)在取原点位置和确定单位长度时,要根据题目的不同特点,灵活选取.(2)所有的有理数都可以用数轴上的点来表示,但数轴上的点不都可以表示有理数.(今后要学的无理数也可以用数轴上的点来表示)【例1】指出下图中的数轴上各点表示的数.解析读出在数轴上的点表示的有理数分两步:(1)根据点在原点的左右边确定有理数的符合;(2)根据点与原点的距离确定数值.答案 A点表示-212;B点表示-1,C点表示0;D点表示2;E点表示212.【类型突破】画出数轴,并用数轴上的点来表示下列各数:+4,-2,-4.5,113,0.答案知识点2 有理数大小的比较(重点)利用数轴可比较有理数的大小,即(1)在数轴上表示的两个数,右边的数总比左边的数大.(2)由正数、负数、0在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.提示:正负数的表示方法:因为正数都大于0,反过来,大于0的数都是正数,所以可用a>0表示a是正数;反之,知道a是正数也可以表示为a>0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.【例2】将下列各数在数轴上描出其对应点,并用“<”将它们连接起来.-312,3,-2,32,-0.5,12,1,0.解析将给出的数在数轴上表示出来,再根据数轴上两个点表示的数,右边的总比左边的大的规律来比较大小.答案在数轴上表示如下图所示.用“<”连接为:113 320.5013 222-<-<-<<<<<方法总结:比较数的大小时,利用数轴,把这些数用数轴上的点来表示,根据右边的总比左边的大比较,这种方法是数学结合思想的初步运用.【类型突破】写出所以大于132-而小于314的整数 .答案 -3,-2,-1,0,110.4 三元一次方程组一、单选题1.有甲、乙、丙三种货物,若购进甲3件,乙7件,丙1件,共需64元,若购进甲4件,乙10件,丙1件,共需79元。
《2.在数轴上比较数的大小》本课是在学习了正负数的意义和数轴的概念后,利用数轴比较有理数的大小;数轴作为数形结合的典范,是用“长度”度量各类量的抽象。
本课的学习将对理解相反数,绝对值的概念具有承上启下的作用,同时为推导有理数的运算法则,求不等式组的解集,以及研究平面直角坐标系等奠定了坚实的基础;另外,数轴概念的产生所渗透的类比、化归等数学思想方法对学生今后的数学学习也有着重要的意义。
【知识与能力目标】1.理解利用数轴上的点的位置关系比较有理数大小的法则;2.理解负数小于零、正数大于零的合理性。
【过程与方法目标】通过对温度计的观察和用数轴上的点来表示有理数,探索有理数大小的比较法则,进一步感受数形结合的思想方法。
【情感态度价值观目标】1、使学生初步了解数学来源于生活实践,反过来又服务于生活;2、通过画数轴,给学生以图形美的教育感受,同时由于数形的结合,学生会得到和谐美的享受。
负数和零的大小比较【教学难点】如何启发学生自己得到有理数的大小比较的约定,并认识其合理性。
教师准备:课件、多媒体、三角板学生准备:三角板、直尺一.创设情境和学生一起讨论:(1)数轴怎么画?它包括哪几个要素?(2)任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?(3)大于0的数在数轴上位于原点的哪一侧?小于0的数呢?二、探索归纳在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?想一想:1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?让学生从讨论中发现,在数轴上表示的两个数,右边的数总比左边的大。
由此容易得到以下的有理数大小的比较法则:正数都大于零,负数都小于零,正数大于负数。
三.实践应用四.例1:将有理数3、0 、-4、516按从小到大的顺序排列,用“<”号连接起来。