当前位置:文档之家› 脱水污泥薄层干燥特性及动力学模型分析

脱水污泥薄层干燥特性及动力学模型分析

脱水污泥薄层干燥特性及动力学模型分析
脱水污泥薄层干燥特性及动力学模型分析

弹簧模型的动力学分析方法

弹簧模型的动力学分析方法 【例二】如图所示,劲度系数为21,k k 的轻质弹簧竖直悬挂,两弹簧之间有一质量为1m 的重物,最下端挂一质量为2m 的重物,用一力竖直向上缓慢托起2m ,当力为多少时,两弹簧的总长等于弹簧原长之和? 解析: 两弹簧的总长等于弹簧原长之和,必定是弹簧1k 伸长, 1k 弹簧2k 压缩,且形变量21x x = 1m 对1m 物体有 g m x k x k 12211=+ 2k 对2m 物体有 222x k g m F += 2m 21121k k g m x x +==∴ 2 1122k k g m k g m F ++= 【变式3】如图所示,竖直放置的箱子内,用轻质弹簧支撑着一个重G 的物块, 静止时物块对箱顶P 的压力为2 G ,若将箱子倒转,使箱顶向下,静止时物块对箱顶P 的压力是多少?(物块和箱顶间始终没有发生相对滑动) P 【变式4】如图所示,在倾角为θ的光滑斜面上有两个轻质 弹簧相连的物块B A ,,它们的质量分别为B A m m ,,弹簧的 劲度系数为k ,C 为一固定挡板,现开始用一恒力F 沿斜面 方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位置d (重力加速度为g ) (变式3图) C A B θ (变式4图) 【变式5】如图所示,水平面上质量均为m 的两木块B A ,用劲度系数为k 的轻质弹簧连接,整个系统处于平衡状态,现用一竖直向上的力F 拉动木块A ,使木块A 向上做加速度为a 的匀加速直线运动,取木块A 的起始位置为坐标原点,图乙

中实线部分表示从力F 作用在木块A 到木块B 刚离开地面这个过程中,F 和木块A 的位移x 之间的关系,则( ) A.k ma x /0-= F F B.k g a m x /)(0+-= A 0F C.ma F =0 B D.)(0g a m F += 0x O x 甲 乙 【2】如图所示,B A ,两个物快的重力分别是N G N G B A 4,3==,弹簧的重力不计,系统沿着竖直方向处于静止状态,此时弹簧的弹力N F 2=,则天花板受到的拉力和地板受到的有压力有可能是( ) A.N N 6,1 A B.N N 6,5 C.N N 2,1 B D.N N 2,5 【5】如图所示,一辆有力驱动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 左 右 【6】如图所示,质量均为m 的物体B A ,通过一劲度系数为k 的轻质弹簧相连,开始时B 放在地面上,B A ,都处于静止状态,现通过细绳缓慢地将A 向上提升距离1L 时,B 刚要离开地面,若将A 加速向上拉起,B 刚要离开地面时,A 上升的距离为2L ,假设弹簧一直都在弹性限度范围内,则( ) A.k mg L L = =21 B. k mg L L 221== A C.121,L L k mg L >= C.121,2L L k mg L >= B

干燥特性曲线实验报告

洞道干燥特性曲线测定实验 一、实验目的 1. 了解洞道干燥装置和流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ= =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。 计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间i τ作图,如图11-1,即为干燥曲线。

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

污泥的定义与几种分类方式

污泥的定义与几种分类方式 污泥的特性 目前常用的给水和废水处理方法有物理法、化学法、物理化学法和生物法。|污泥干燥机|无论哪种方法都或多或少会首开沉淀物、颗粒物和漂浮物等,所产生的物质统称为污泥。污泥是一种由有机残片、细菌体、无机颗粒和胶体等组成的非均质体。它很难通过沉降进行彻底的固液分离。|污泥干燥机|由于污泥的来源及水处理方法不同,产生的污泥性质也有所不同。污泥的性质主要取决于被处理废水的成分、性质及处理工艺。虽然污泥体积比处理废水体积小得多,但污泥处理设施的投资却占到总投资的30%~40%,甚至超过50%.因此从污染物无害化处理的角度来看,污泥处理|污泥烘干机|占有十分重要的地位。 污泥的分类与形式 污泥的种类很多,分类也比较复杂,目前一般可按以下方法分类。 1、按来源分 大致可分为给水污泥、生活污水污泥和工业废水污泥三类。 生活污水还可按处理方法进一步分类。工业废水污泥可以按其来源分类: 食品加工、印染工业废水等污泥:挥发性物质、蛋白质、病原体、植物和动物废物、动物脂肪、金属氢氧化铝、其他碳氢化合物; 金属加工、无机化工、染料等废水污泥:金属氢氧化物、挥发性物质、动物脂肪和少量其他有机物 钢铁加工工业废水污泥:氧化铁(大部分)、矿物油油脂;|污泥干燥机| 钢铁工业等废水污泥:疏水性物质(大部分)、亲水性金属氢氧化物、挥发性物质 造纸工业废水污泥:纤维、亲水性金属氢氧化物、生物处理构筑物中的挥发性物质。 2、按污泥成分及性质分 以有机物为主要成分的污泥可称为有机污泥,|污泥烘干机|其主要特性是有机物含量高,容易腐化发臭,颗粒较细,密度较小,含水率高且不易脱水,呈胶状结构的亲水性物质,便于用管道输送。 生活污水处理产生的混合污泥和工业废水产生的生物处理污泥是典型的有机污泥,|污泥干燥机|其特性是有机物含量高(60%~80%),颗粒细(0.02~0.2mm),密度小(1002~1006kg/m3),呈胶体结构,是一种亲水性污泥,容易管道送,但脱水性能差。 以无机物为主要成分的污泥常称为无机污泥或沉渣,沉渣的特性是颗粒较粗,密度较大,含水率较低且易于脱水,|污泥烘干机|但流动性较差,不易用管道输送。给水处理沉砂池以及某些工业废水物理、化学处理过程中的沉淀物均属沉渣,无机污泥一般是疏水性污泥。 3、按污泥从污水中分离的过程分 1>初沉污泥。指污水一级处理过程中产生的沉淀物,|污泥干燥机|其性质随污水的成分,特别是混入的工业废水性质而发生变化。 2>活性污泥。指活性污泥处理工艺二次沉淀池产生的沉淀物,扣除回流到曝气池的那部分后,剩余的部分称为剩余活性污泥。 3>腐殖污泥。指生物膜法(如生物滤池、生物转盘、部分生物接触氧化池等)污水处理工艺中二次沉淀池产生的沉淀物。 4>化学污泥。指化学强化一级处理(或三级处理)后产生的污泥。

活性污泥法的反应动力学原理及其应用

活性污泥法的反应动力学原理及其应用 活性污泥法反应动力学可以定量或半定量地揭示系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 它主要包括:① 基质降解的动力学,涉及基质降解与基质浓度、生物量等因素的关系;② 微生物增长动力学,涉及微生物增长与基质浓度、生物量、增长常数等因素的关系;③ 还研究底物降解与生物量增长、底物降解与需氧、营养要求等的关系。 在建立活性污泥法反应动力学模型时,有以下假设:① 除特别说明外,都认为反应器内物料是完全混合的,对于推流式曝气池系统,则是在此基础上加以修正;② 活性污泥系统的运行条件绝对稳定;③ 二次沉淀池内无微生物活动,也无污泥累积并且水与固体分离良好;④ 进水基质均为溶解性的,并且浓度不变,也不含微生物;⑤ 系统中不含有毒物质和抑制物质。 一、活性污泥反应动力学的基础——米—门公式与莫诺德模式 1、米—门公式 Michaelis—Menton 提出酶的“中间产物”学说,通过理论推导和实验验证,提出了含单一基质单一反应的酶促反应动力学公式,即米—门公式: S K S v m += m ax ν 式中:v ——酶促反应中产物生成的反应速率; m ax v ——产物生成的最高速率; m K ——米氏常数(又称饱和常数,半速常数); S ——基质浓度。

中间产物学说:P E ES S E +??+ 米门公式的图示: 2、莫诺德模式 ① 莫诺德模式的基本形式: Monod 于1942年和1950年曾两次进行了单一基质的纯菌种培养实验,也发现了与上述酶促反应类似的规律,进而提出了与米门公式想类似的表达微生物比增殖速率与基质浓度之间的动力学公式,即莫诺德模式: S K S s +?= m ax μ μ 式中: ( )x dt dx /=μ——微生物的比增殖速率,d kgVSS kgVSS ?/; m ax μ——基质达到饱和浓度时,微生物的最大比增殖速率, S ——反应器内的基质浓度,mg/l ; s K ——饱和常数,也是半速常数。 随后发现,用由混合微生物群体组成的活性污泥对多种基质进行微生物增殖实验,也取得了符合这种关系的结果。 可以假定:在微生物比增殖速率与底物的比降解速率之间存在下列比例关系: v max v=v max O K m

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

干燥特性曲线实验.

一、实验课程名称:化工原理 二、实验项目名称:干燥特性曲线测定实验 三、实验目的和要求: 1. 了解洞道式干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 四、实验内容和原理实验内容:测定时间与物料质量的变化关系,计算含水量、干燥速度,绘制干燥曲线与干燥速率曲线。 实验原理:在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。 按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。 1. 干燥速率的定义 干燥速率的定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分 GdX质量。即- 2. 干燥速率的测定方法 将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。若记录物料不同时间下质量G,直到物料质量不变为止,也就是物料在该条件下达到干燥极限为止,此时留在物料中的水分就是平衡水分X。再将物料烘干后称重得到绝干物料重Gc,则物料中瞬间含水率X为 *

动力学模型

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

7-2 动力学之“三大基本模型”

专题7.2、动力学之三大基本模型 题型一、过程分析之板块模型 由滑块和木板组成的相互作用的系统一般称之为“木板—滑块模型”,简称'板块模型'。 此类问题涉及的相关知识点包括:静摩擦力、滑动摩擦力、运动学规律、牛顿运动定律、动能定理、能量转化与守恒等多方面的知识。此类问题涉及的处理手段包括:受力分析、运动分析、临界条件判断、图像法处理、多过程研究等多种方法。因此对大家的综合分析能力要求极高,也是高考的热点之一。 “滑块——木板”模型 【解题方略】 两种类型如下: 木板 条件是物块恰好滑到木板左端时二者速度相等,则位 移关系为 物块 条件是物块恰好滑到木板右端时二者速度相等,则位 移关系为 例1、如图所示,质量为M=8kg的小车放在光滑的水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到v0=1.5m/s时,在小车前端轻轻放上一个大小不计、质量为m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2。已知运动过程中,小物块没有从小车上掉下来,取g=10m/s2。求: (1)经过多长时间两者达到相同的速度; (2)小车至少多长,才能保证小物块不从小车上掉下来; (3)当小车与物块达到共速后在小车合物块之间是否存在摩擦力? (4)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少; (5)二者共速后如果将推力F 增大到28N ,则二者的加速度大小分别为; 【答案】(1)1s.(2)0.75m. (3)有,1.6N .(4)2.1m (5)2m/s2. 8m/s2 【解析】

对木块受力分析得:)1...(1ma mg =μ 对小车受力分析得:)2...(2Ma mg F =-μ 解得: ... /5.0.../22 221s m a s m a == 分别对两车进行运动分析:假设经过时间t 两车达到共速,且达到共速时物块恰好到达木板的左端; 对物块: ) 4...(2 1) 3...(2 1111t a x t a v == 对小车: ) 4...(2 1 ) 5...(2202202t a t v x t a v v +=+= 根据题意: ) 6...()5...(2121l x x v v v =-==共 联立1、2、3、4、5、6式得:t=1s , l=0.75,v 共=2m/s (3)当物块与小车共速后对整体受力分析: 2 /8.0)7...()(s m a a m M F =+= 此时小车与物块之间的摩擦力转化为静摩擦力,隔离物块对物块受力分析得:N ma f 6.18.02=?==。 所以当二者共速后在小车物块之间存在静摩擦力大小为:1.6N . (4)二者共速后将以0.8m/s 2的加速度继续前进,所以在1.5s 内物块经历了两段运动(0-1s 与1-1.5s ),对物块进行运动分析得: )8...(/11x x x += 代入参数得:m x 1122 1 21=??= , m x 1.15.08.02 1 5.022/1=??+?= m x 1.2= (5)当外力F 增加到28N 时,需要先判断,物块与小车之间是否发生相对运动是处理该问的关键; 设:当外力F 增大到F0时。小车与物块之间刚好发生相对运动,此时AB 之间的静摩擦力达到最大值;结合叠加体临界问题的求解方法(见专题06)可得:

稻谷自然干燥特性与品质的研究

谷物化学与品质分析 稻谷自然干燥特性与品质的研究 刘建伟 徐润琪 包清彬 (四川工业学院包装与食品工程系,成都 610039) 摘要 研究了不同自然干燥条件下的稻谷干燥特性及其对稻谷干燥品质,特别是对稻谷爆腰发生的影响。结果表明:采用控制干燥速度和避免过度干燥的室外阴干的方法,可以有效地降低稻谷爆腰率,提高稻谷干燥品质。 关键词 稻谷 自然干燥 干燥特性 干燥品质 爆腰率 稻谷干燥是稻谷收获后在产地进行的加工过程,其目的是为了防止稻谷霉烂变质、提高稻谷的储藏性和加工性。稻谷干燥就是利用自然的(太阳能)或人工的加热方法,使稻谷水分蒸发除去的一个过程。自然干燥方法,由于不受场地限制、不需要设备投资和能源消耗,至今仍被包括我国在内的大多数发展中国家广泛采用。但是,自然干燥方法受人为因素和自然条件的影响较大,干燥品质难以保证。随着社会经济的进步,我国也会向先进国家广泛采用的人工(机械)干燥方向发展。但从环境保护、节省能源及绿色食品考虑,利用太阳能进行农产品干燥的应用研究同样受到重视并取得一定成果。【1】 表1 1998年稻谷试样及干燥实验结果 试样编号品种(产地)采集时间干燥条件 环境空气 温度(℃)湿度(%)干燥时间 (h) 干燥速度 (%/h) 含水率(%wb) 初始干燥终储藏终 爆腰率 (%) 398B1桂朝2号(红光)9月5日室内阴干26.566.027.615.6 2.0 398B1A桂朝2号(红光)9月5日室外晒干31.750.78.0 3.4627.613.183.2 398B1B桂朝2号(红光)9月5日室外晒干31.750.717.00.8527.613.228.0 398B1C桂朝2号(红光)9月5日室外晒干31.750.717.00.9127.613.220.4 398B1D桂朝2号(红光)9月5日室外阴干31.750.725.00.5427.613.88.4 398B2桂朝2号(红光)9月5日室外阴干31.750.711.5 1.2427.614.115.09.2 398B3桂朝2号(红光)9月5日室外晒干31.750.78.5 2.8627.611.514.136.5 98B4冈优22(红光)9月7日室内阴干26.566.024.615.910.6 98B4A冈优22(红光)9月7日室外晒干33.046.5 6.0 2.1224.613.031.6 98B4B冈优22(红光)9月7日室外阴干33.046.58.0 1.3324.613.618.0 98B4C冈优22(红光)9月7日室外阴干33.046.511.0 1.0624.613.618.0 98B4D冈优22(红光)9月7日室外阴干33.046.517.00.6224.614.111.6 98B4E冈优22(红光)9月7日室外阴干33.046.518.00.5924.614.210.8 98B5冈优22(红光)9月7日室外阴干33.046.511.50.6924.615.115.712.8 98B6冈优22(红光)9月7日室外晒干33.046.58.5 1.3324.613.314.526.0 98B7汕优149(银丰)9月10日室外晒干15.846.7 98B82优838(银丰)9月10日室外晒干15.67.6 398B9小香谷(郫筒)9月11日室外晒干15.639.2 注:3为常规稻谷,其余为杂交稻谷。

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨 摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。 关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算 活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d)

可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。 污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法

干燥特性曲线实验报告

洞道干燥特性曲线测定实验 一、实验目的 1. 了解洞道干燥装置和流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ==- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量 iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。

数学模型在污水处理厂中的应用

数学模型在污水处理厂中的应用 发帖人: bluesnail 点击率: 487 郝二成,常江,周军,甘一萍 (北京城市排水集团有限责任公司,北京 100063) 摘要:综述了数学模型的发展历史,以及它在国内外污水处理厂中的应用情况,并对模型应用的问题和前景进行了分析。 关键词:数学模型;模拟;污水处理厂 模拟是污水处理设计和运行控制的本质部分,数学模型的核心是从反应机理出发,在一定条件下,在时间和空间范围内模拟、预测污水处理的实际过程。数学模型的应用可以大大减少我们的实验工作量,不仅提高了工作效率,而且节省了大量人 力、物力和财力。 在发达国家,应用数学模型从事污水处理工艺开发、设计及实现污水处理厂运行管理的精确控制,已相当普遍,而我国 在这一方面尚处于起步阶段,扩展的空间很大。 1 数学模型的发展 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已 成为国际废水生物处理领域的研究热点。 传统静态模型以20世纪50 ~ 70年代推出的Eckenfelder、Mckinney、Lawrence-McCarty模型为代表,这些模型所采用的是生长-衰减机理。传统静态模型因为具有形式简单、变量可直接测定、动力学参数测定和方程求解较方便,得出的稳态结果基本满足工艺设计要求等优点,曾得到广泛应用。然而,长期实际应用也表明,这种基于平衡态的模型丢失了大量不同平衡生长状态间的瞬变过程信息,忽视了一些重要的动态现象,应用到具有典型时变特性的活性污泥工艺系统时,存在许多问题:无法解释有机物的“快速去除”现象;不能很好的预测基质浓度增大时微生物增长速度变化的滞后,要突破这些局限,必须建 立动态模型。 污水生物处理的动态模型主要包括Andrews模型、WRC模型、BioWin模型、UCT(University of Cape Town)模型、活性污泥数学模型、生物膜模型和厌氧消化模型等,其中以活性污泥数学模型研究进展最快,应用也最广。1983年,IAWQ(国际水质协会)成立了一个任务小组,以加快污水生物处理系统的设计和管理实用模型的发展和应用。首要任务是测评现有的模型,

干燥特性曲线测定实验

浙江科技学院 实验报告 课程名称:化工原理 实验名称:干燥特性曲线测定实验学院:生物与化学工程学院专业班:化工111 姓名:王建福 学号:5110420016 同组人员:杨眯眯张涛 实验时间: 2013 年11 月28 日指导教师:诸爱士

一、 实验课程名称:化工原理 二、实验项目名称:干燥特性曲线测定实验 三、实验目的和要求: 1. 了解洞道式干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 四、实验内容和原理 实验内容:测定时间与物料质量的变化关系,计算含水量、干燥速度,绘制干燥曲线与干燥速率曲线。 实验原理:在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。 按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。 1. 干燥速率的定义 干燥速率的定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量。即 C G dX dW U Ad Ad ττ= =- (1) 式中,U -干燥速率,又称干燥通量,kg/(m 2 s );A -干燥表面积,m 2; W -汽化的湿分量,kg ; τ -干燥时间,s ; Gc -绝干物料的质量,kg ; X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。 2. 干燥速率的测定方法 将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。若记录物料不同时间下质量G ,直到物料质量不变为止,也就是物料在该条件下达到干燥极限为止,此时留 在物料中的水分就是平衡水分X * 。再将物料烘干后称重得到绝干物料重Gc ,则物料中瞬间含水率X 为 G Gc X Gc -= (2) 计算出每一时刻的瞬间含水率X ,然后将X 对干燥时间τ作图,如图1,即为干燥曲线。 图1恒定干燥条件下的干燥曲线

污泥烘干机的主要特点及工艺流程

污泥烘干机的主要特点及工艺流程 污泥烘干机是针对污泥这一类具有高水分、高粘性、高持水性和低热值等特点的物料,专门研发设计的污泥专用干燥设备,在烘干机简体内部结构上做了特殊设计,不仅提高了热效率,而且有效避免了污泥在干燥机内的沾粘和过分干燥现象。 污泥烘干机的主要特点: (1)热容量系数大,热效率高。通过破碎搅拌装置和圆筒回转的复合效果,使总传热系数提高至普通回转干燥机的2~3倍。破碎搅拌装置破碎物料,物料和热风的接触面积增大,同时亦防止了热风的短路,使热风的热量得到充分利用。 (2)产品粒径均一。由于城市污水厂的污泥在脱水的过程中投加了絮凝剂,使污泥粘性增大,在烘干过程中容易结块,既影响了烘干的效果,又增加了利用的难度(需上一套泥块破碎设备)。在本干燥设备中,通过搅拌破碎装置和筒内的窑式活动板作用,使泥块结硬之前就被破碎,最终的出料为粒径均一的颗粒(约2mm左右),使污泥的后续处理或利用工序更加简便。 (3)运转、操作容易。该设备配备了自动控制系统,沼气燃烧器具有大、小火头燃烧方式。烘干转筒末端设有温度传感器,通过温度传感器控制燃烧器火头的大小转换,从而控制烘干滚筒内部的湿度,防止温度过高造成污泥的焦化。转筒的转速可通过控制柜进行调节。(4)环保、节能。采用污泥消化处理中产生的沼气为加热能源,大大降低了污泥干燥的成本,为沼气的综合利用又开创了一个新的应用领地。 (5) 独特的破拱、振打装置,有效地解决了物料同机体、扬料装置相互粘结及烘干过程中物料结块、运动受阻的问题。 新型污泥烘干机特点:1、高效节能污泥烘干机,污泥烘干机采用新型传动装置,相比一般污泥烘干机,节约用煤量近20%,为客户节约成本,就是为我们的客户创造价值。 2、绿色环保污泥烘干机,污泥烘干机采用多级净化除尘设备,达到和高于国家要求的环保标准,降低设备对于环境的污染。 污泥烘干机工艺流程如下图:

汽车动力学仿真模型的发展

!汽车动力学发展历史简介 汽车动力学是伴随着汽车的出现而发展起来的 一门专业学科。人们很早就认识到“$%&’()*+”转向和应用弹性悬架可使乘客感到更加舒适等基本原 理[,],但那只是一种感性的认识。在各国学者的不懈 努力下,这门学科逐渐发展成熟。-’.’/在,00#年1)’%23举行的题为“车辆平顺性和操纵稳定性”的会议上发表的论文,对,00"年以前汽车动力学的发 展做了较为全面的总结[ !],见表,。近年来汽车动力学又有了进一步发展,大量的高水平学术论文和经典的汽车动力学专著相继被发表,而且开发出许多专为汽车动力学研究建立模型的软件,如美国密西根大学开发的$456%*(、$45678)等商业软件。汽车是一复杂的连续体系统,要想对其进行动力特性的预测和优化需建立经合理简化的抽象汽车模型,以达到缩短产品开发周期、保证整车性能指标和降低产品成本的目的。 "汽车动力学模型的发展 汽车动力学从严格意义上来讲包括对一切与车 辆系统相关运动的研究,然而最为核心的是平顺性和操纵稳定性这两大领域,一般认为平顺性主要研究影响车身的垂向跳跃、俯仰、侧倾振动的因素,而操纵稳定性主要研究车辆的横向、横摆和侧倾运动。建模时一般假设平顺性和操纵稳定性之间无偶合关系。 "#!汽车平顺性模型 在汽车平顺性的早期研究阶段,限于当时数学、 力学理论、计算手段及试验方法,把系统简化成集中质量—弹簧—阻尼模型,如图,所示。 图,整车集中质量—弹簧—阻尼模型 此类模型一般先以函数的形式给出其动能!和势能"以及表达系统阻尼性质的物理量耗散能 !的表达式: 【摘要】汽车动力学包括对一切与车辆系统相关运动的研究,其最核心的是平顺性和操纵稳定性这两大领域。在简要说明了汽车动力学发展过程的基础上介绍了平顺性和操纵稳定性两大领域的模型发展过程。平顺性模型主要经过集中质量—弹簧—阻尼模型、有限元模型和动态子结构模型阶段;而操纵稳定性模型从低自由度线性模型、非线性多自由度模型发展到多体模型。最后提出了汽车动力学仿真模型的发展动向。 主题词:汽车动力学模型发展 中图分类号:9:;,<,文献标识码:$ 文章编号:,"""=#>"#(!""#)"!=""",=": $%&%’()*%+,(-.%/01’%$2+3*0140*5’3,0(+6(7%’ ?2*+.@’8A?2*+.B8+.2*8AC48D*8/8+AB8*D6+.E’8 (B8/8+9+8F’(785G ) 【89:,;31,】H’28%/’IG+*)8%7754I8’7*//)6F’)’+57(’/’F*+556F’28%/’7G75’)*+I 857%6(’8752’5J6E8’/I76E (8I’K *L8/85G *+I 2*+I/8+.75*L8/85G<1+52’M*M’(AI’F’/6M8+.M(6%’776E )6I’/76E F’28%/’(8I’*L8/85G *+I 2*+I/8+.75*L8/85G *(’8+K 5(6I4%’I *E5’(I’F’/6M)’+5%64(7’6E F’28%/’IG+*)8%78778)M/G 8+5(6I4%’I

相关主题
文本预览
相关文档 最新文档