当前位置:文档之家› 抽象函数综合题的解题策略

抽象函数综合题的解题策略

抽象函数综合题的解题策略
抽象函数综合题的解题策略

抽象函数综合题的解题策略

重庆 慕泽刚

只给出函数符号或条件及一些间接关系,而没有给出函数的具体解析式或者图象,这样的函数称为抽象函数.这类试题,主要以函数的概念和性质为背景,以函数与方程、转化与化归、数形结合等数学思想为主线,以考查学生的各种能力为目的,在知识网络交汇处设计试题.此类试题往往具有概念抽象、隐蔽性与灵活性强、综合性高的特点,因此它既能考查函数的各种性质,又能考查学生对数学语言的阅读理解和转译能力,同时能考查出考生进入高校继续学习的潜能,因此在此有必要对抽象函数综合题的求解策略进行探讨.

一、适当赋值

赋值主要从以下方面考虑:①令x =…,﹣2,﹣1,0,1,2,…等特殊值求抽象函数的

函数值;②令x =x 2,y =x 1或y =1x 1

,且x 1

等来解答有关抽象函数的其它一些问题.

例1 已知函数的定义域为R ,对任意x 、y 满足f (x +y )=f (x )+f (y ),当x >0时,f (x )>0.试判断f (x )的奇偶性和单调性.

分析:在f (x +y )=f (x )+f (y )中,令x =y =0,得f (0)+f (0)=0,∴f (0)=0,

又令y =﹣x ,f (x )+f (﹣x )=f (x ﹣x )=f (0)=0,即f (﹣x )=﹣f (x ),∴f (x )是奇函数,

再设x 1、x 2∈R ,且x 1

由f (x )是奇函数得,f (x 2)﹣f (x 1)=f (x 2)+f (-x 1)=f (x 2﹣x 1),

∵x 2﹣x 1>0,∴f (x 2﹣x 1)>0,从而f (x 2)>f (x 1),∴f (x )在(﹣∞.+∞)上是增函数.

二、变量代换

根据题设条件中所给等式或不等式的结构特点及欲证的结论,将题中的某些量替换为的需要的量(要注意新换的变量的取值范围,要与原题设条件等价),可以得到较为简单的等式或不等式,然后再设法作进一步的转化从中获解,

例2 已知函数f (x )存在反函数且f (x )+f (﹣x )=2,则f -1(x ﹣1)+f -1(3﹣x )=________.

分析:本题无法直接求出f -1(x ),若将已知等式左边看成两个函数,利用变量代换,则

有如下简解:

令y 1=f (x ),y 2=f (﹣x ),则x =f -1(y 1),﹣x =f -1(y 2),且当y 1+y 2=2时,有f -1(y 1)+f -1(y 2)=x ﹣

x =0,

∵(x ﹣1)+(3﹣x )=2,∴f -1(x ﹣1)+f -1(3﹣x )=0.

三、利用函数性质

根据题目所给的条件,分析、探求函数具有哪些特殊的性质,比如:函数的单调性、奇偶性、周期性、对称性等等,然后充分利用这些性质进行求解.

例 3 f (x )是定义在R 上的函数,且满足如下两个条件:①对于任意x ,y ∈R ,有f (x +y )=f (x )+f (y );②当x >0时,f (x )<0,且f (1)=﹣2.求函数f (x )在[﹣3,3]上的最大值和最小值.

分析:设0≤x 1≤x 2≤3,由条件①得f (x 2)=f [(x 2﹣x 1)+x 1]=f (x 2﹣x 1)+f (x 1),即f (x 2﹣x 1)=f (x 2)﹣f (x 1),

∵x 2﹣x 1>0,由条件②得f (x 2﹣x 1)<0,∵f (x 2)﹣f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在[0,3]上是减函数,

在条件①中令x =y =0,则f (0+0)=f (0.)+f (0),∴f (0)=0.

再令x =﹣y ,得f (x ﹣x )=f (x )+f (﹣x ),∴f (﹣x )=﹣f (x ),∴f (x )是奇函数,

∴f (x )在[﹣3,0]上是减函数,

又∵当x <0时f (x )=﹣f (﹣x )>0,从而f (x )在[﹣3,3]上是减函数,

∴f (x )m a x =f (﹣3)=﹣f (3)=﹣f (1+2)=﹣f (1)﹣f (2)=﹣f (1)﹣f (1)﹣f (1)=﹣3f (1)=6,

f (x )m i n =f (3)=﹣f (﹣3)=﹣6.

例4 已知函数f (x )=a x 5+bsi nx +3,且f (﹣3)=7,求f (3)的值.

解析:f (x )的解析式中含有两个参数a 、b ,却只有一个条件f (﹣3)=7,无法确定出a 、b 的值,因此函数f (x )(解析式不确定)是抽象函数,注意到g(x )=a x 5+bsi nx =f (x )﹣3是奇函数,可得g(﹣3)=﹣g(3),即f (﹣3)﹣3=﹣[f (3)﹣3],f (3)=6﹣f (﹣3)=﹣1.

四、正难则反

当关于某些抽象函数的命题不易从正面直接证明时,可采用反证法,它往往需结合其它一些求解策略,而此法是处理“是否存在”型函数综合题的常用方法.

例 5 已知函数f (x )在区间(﹣∞,+∞)上是增函数,a 、b ∈R ,(1)求证:若a+b≥0,则f (a)+f (b)≥f (﹣a)+f (﹣b);(2)判断(1)中命题的逆命题是否正确,并证明你的结论.

证明:(1)由a+b≥0,得a≥﹣b ,

由函数f (x )在区间(﹣∞,+∞)上是增函数,得f (a)≥f (﹣b),同理,f (b)≥f (﹣a),

∴f (a)+f (b)≥f (﹣b)+f (﹣a),即f (a)+f (b)≥f (﹣a)+f (﹣b).

(2)中命题的逆命题是:若f (a)+f (b)≥f (﹣a)+f (﹣b),则a+b≥0,此逆命题为真命题, 现用反证法证明如下:

假设a+b≥0不成立,则a+b <0,a <﹣b ,b <﹣a ,

根据单调性,得f (a)<f (﹣b),f (b)<f (﹣a),f (a)+f (b)<f (﹣a)+f (﹣b),

这与已知f (a)+f (b)≥f (﹣a)+f (﹣b)相矛盾,故a+b <0不成立,

即a+b≥0成立,因此(1)中命题的逆命题是真命题.

五、利用模型函数探路

抽象型函数问题的设计或编拟,常以某个基本函数为模型,在解题前,若能从研究的抽象函数的“模型”入手,根据已知条件,寻找其模型函数,通过分析、研究其图象及性质,找出问题的解法或证法.

例6 已知定义域为R +的函数f (x )满足:(1)x >1时,f (x )<0;(2)f (12

)=1;(3)对任意的x ,y ∈R +,都有f (xy )=f (x )+f (y ).求不等式f (x )+f (5﹣x )≥﹣2的解集.

解析:由题设(3)知f (x )以y =log a x 为模型函数,由题(1)知0<a <1,从而y =log a x 在(0,+∞)上为减函数,故本题可先证f (x )在(0,+∞)上为减函数为突破口.

设0<x 1<x 2,则x 2x 1>1,且由f (xy )=f (x )+f (y ),得f (x 2)=f (x 2x 1·x 1)=f (x 2x 1

)+f (x 1), 又由条件x >1时,f (x )<0,得f (x 2x 1

)<0,∴f (x 2)<f (x 1),∴f (x )在R +上为减函数, 又由f (1)=f (1)+f (1),得f (1)=0,又f (12)=1,∴f (2·12)=f (2)+f (12

)=0,∴f (2)=﹣1, ∴f (x )+f (5﹣x )≥﹣2=2f (2)=f (4),于是??? 0<x <5x(5﹣x)≤4

,解得0<x ≤1或4≤x <5, ∴解集为x ∈(0,1]∪[4,5).

六、数形结合

根据题目所给的函数的有关的性质和背景,作出大致符合条件的函数的图象,再根据图象的直观性作出正确解答.

例7 若f(x)为奇函数,且在(﹣∞,0)内是增函数,又f(﹣2)=0,则xf(x)<0的解集为( )

A.(﹣2,0)∪(0,2)

B.(﹣∞,﹣2)∪(0,2)

C.(﹣∞,﹣2)∪(2,+∞)

D.(﹣2,0)∪(2,+∞)

解析:本题可根据题设条件先作出函数f(x)在(﹣∞,0)内的大致图象,如图,由对称性(奇函数的图象关于原点对称)及单调性(在(﹣∞,0)内是增函数)得出f(x)在(0,+∞)的图象,如图所示.

∵f(x)为奇函数,且,f(﹣2)=0,∴f(2)=0.由图象可知:

当﹣20,∴xf(x)<0;当0

故不等式xf(x)<0的解集为(﹣2,0)∪(0,2),选A.

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

抽象函数解题方法与技巧

抽象函数的解题技巧 1.换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x) 解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2) 故f(x)=-x 2+3x+1 (0≤u ≤2) 2.方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。 例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x 1)x (f 2)x 1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥?-≥?得由 例3.f(x).1),x 0(x ,x 1)x 1x ( f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且 ,x 1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x -11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x 1x 2)x (f )x -11f( ,x 111)x 111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。 例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0) 代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1. 4.赋值法

高中数学 对抽象函数问题的具体解法教案

抽象函数问题的具体解法 所谓抽象函数,就是指没有明确给出具体的函数解析表达式,只是给出一些特殊条件的函数,它在高中数学教材中没有具体涉及到,但在高考及各类模拟试题中经常见到, 该类问题比较抽象,考察学生能力,学生普遍感到束手无策,下面就抽象函数问题类型及解题策略作总结: 1、 定义域问题 ]1[02 113]1[2 10122 121111111010]10[1k k k k k k k k k k k k k k k k k k k x k k x k k x k x k x f k x f x F x f y +-≤≤-+≤-≤-≤≤-≤≤->-<->+>-???+≤≤-≤≤-???≤-≤≤+≤--+==,时,定义域为即)当(,时,定义域为即)当(时,函数定义域为或即或)当(得分析:由定义域。 )的()()(,求函数,)的定义域为(、若函数例φ 2、函数值和最值问题 处取得。和数。最大最小值在数满足条件,且为减函学过的函数中正比例函,在 指、对函数不满足条件分析:二次函数、幂、上的最大值与最小值 ,)在区间(求, )(且)(时,)当(), ()()(,有,)对任意(,且同时满足条件:)的定义域为(、已知函数例)(所以)()()()(分析:) (,求)() ()()(,若)的定义域为(、函数例33 ]33[21002134 3 23 24424482382---=<>+=+∈= ===+==+=++x f f x f x y f x f y x f R y x R x f f f f f f f f y f x f y x f R x f

10 0432 222<<--<->>+>+∞+∞-a a a R x f a f a f a f a f x f a a f a f R x f 所以上递减,则)在(而) ()(所以)()()是奇函数,(分析:因为的取值范围。 的实数)()(求满足)上是减函数, ,(上的奇函数,且在区间)是(、例、单调性问题 )为偶函数 (,即)(,所以)(因为)()(所以) ()()。(,则分析:令)的奇偶性 (,试判断)(且), ()()(,函数都满足,、若对于一切实数例、奇偶性问题 x f x f f x f f f x f x f y x f f y f x f y x f y x 1000 ]1[000000.54=≠=-==≠= 为周期。上的周期函数,且以)是(这表明),()(代换,得 以将上式中),()(),所以()()是偶函数知(又由),()(对称,所以)关于直线(分析;依题设)是周期函数 (证明:)(),且()()(都有,,对于任意对称, 于直线上的偶函数,其图象关)是定义在(、设例、周期性问题 2222101]2 10[165212121R x f R x x f x f x x R x x f x f x f x f x f R x x f x f x x f y x f a f x f x f x x f x x x R x f ∈+=-∈-=-=-∈-===>==+∈= 22120098 482tan tan 1tan 14tan 11220092211]1[27+===? ==-+=+-+=+= +=+=-+)()(从而)的周期是(,由此猜想并证明,而的周期为而)(,联想到)()()(分析:由)(,则)(又)()()(的函数,且)是定义域为(、设函数例f f x f y x y x x x x f x f x f f f x f x f x f R x f πππ

抽象函数+解题技巧

抽象函数与解题策略 上海南洋模范中学 熊晓东 2005年11月19日 (一)抽象函数的定义、特征和一般解题策略 (1)什么是抽象函数? 那些没有给出函数的具体解析式,只给出一些特殊条件或特征的函数称为抽象函数。 (2)抽象函数与一般函数的有什么联系? 抽象函数往往有它所对应的具体的函数模型。例如,)x (f )x (f )x x (f 2121+=+对应的是指数函数2 1 2 1x x x x a a a ?=+;)x (f )x (f )x x (f 2121+=对应的是对数函数 2a 1a 21a x l o g x l o g )x x (l o g +=等等。当然,也有的时候并没有我们比较熟悉的函数模型,而是新定义的一种函数。 抽象函数也可以与我们熟悉的函数,如指数函数、对数函数等一样,有自己的性质,如奇偶性、周期性、单调性等。有自己的特殊点,有自己的对称性,能画出大致图像。 (3)抽象函数的解题策略一般有哪些? 面对抽象函数数学题,我们的解题思路一般不外乎①合理赋值,化抽象为具体;②作恒等变形,找出该函数规律性、特征性特点;③分类讨论,归纳出抽象函数的实质问题。 (二)高考中的抽象函数 (1)抽象函数在高考中的地位 函数是高考数学中非常重要的一部分,根据上海卷命题的要求,每年函数部分的内容将占到整个卷面分值的三分之一左右,2005年高考上海卷中,函数相关的内容将近55分。而抽象函数是函数中考核要求较高,难度较大的内容。2000年开始,不论是全国卷还是上海卷都对学生提出了考查抽象函数的要求。03年上海卷一年中考了两道与抽象函数有关的题目,03、04、05年连续三年上海高考试卷中均有与抽象函数有关的题目。

抽 象 函 数 的 解 题 方 法

解 抽 象 函 数 的 常 用 方 法 抽象函数是指没有给出具体解析式的函数。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。 我在多年的教学中,积累了一些解题方法,供大家参考. 一、 利用线性函数模型 在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。常见的抽象函数模型有: 例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2, f (x )在区间[-4,2]上的值域为 。 0a a ≠且

解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得 k=2,∴ f (x )的值域为[-8,4]。 例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时, f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。 分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果 这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则 , 即,∴f (x )为单调增函数。 ∵, 又∵f (3)=5,∴f (1)=3。∴2(22) (1)f a a f --,∴2221a a --, 解得不等式的解为-1 < a < 3。 例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有 ()()()f x y f x f y +=成立。求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。 分析:由题设可猜测f (x )是指数函数()(01)x f x a a a =≠且的抽象函数, 从而猜想f (0)=1且f (x )>0。 解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =, ∴[]()1(0)0f x f -=。若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,

抽象函数的解题方法与技巧窍门

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords: abstract function; property; evaluation; analytic method; problem solving skills; 1.提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

抽象函数问题的解题策略

抽象函数问题的解题策略Last revision on 21 December 2020

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x >5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

赋值法解答抽象函数的赋值

赋值法解答抽象函数问题的赋值技巧与策略 函数是高中数学的重要内容,也是高考的热点.对于没有明确给出具体表达式的函数,称之为抽象函数.解答抽象函数问题的方法较多,其中用赋值法进行解答就是一种行之有效的方法.赋值主要从以下方面考虑:①令x=…、﹣2、﹣1、0、1、2…等特殊值求抽象函数的函数值;②令x=x 2,y=x 1或y=1 x 1,且x 10、y>0时,恒有f(xy)=f(x)+f(y). (1)求证:当x>0时,f(1 x )=﹣f(x);(2)若x>1时恒有f(x)<0,求证:f(x)必有反函数; 解析:(1)在f(xy)=f(x)+f(y)中,令x=y=1,得f(1)=0,又令y=1x ,得f(x)+f(1x )=f(x ·1 x )= f(1)=0, ∴当x>0时,f(1 x )=﹣f(x); (2)设x 1>0、x 2>0且x 11,∴f(x 2x 1)<0,又在f(xy)=f(x)+f(y)中,令x= x 2,y=1 x 1 , ∴f(x 2·1x 1)=f(x 2)+f(1x 1).由(1)得,f(1x 1)=﹣f(x 1),∴f(x 2 x 1 )=f(x 2)﹣f(x 1) <0,∴f(x 2)0时,f(x)>0.试判

高考抽象函数技巧全总结

高考抽象函数技巧全总结 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学 生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量 表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常 用的方法,此法解培养学生的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+= --∴ 2()1x f x x -= - 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换 即可求 ()f x .此解法简洁,还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111 ()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+ ≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则 22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22 f x x x = ++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴ ()lg(1)lg(1)f x x x -=-+=-,

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21 (+=x f y 而言,有1124x -≤ +<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与 21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的图象;由函数)(x f y =的图象关于y 轴对称得到函数)(x f y -=的图象,再向右平移1个单位,得到)1()]1([x f x f y -=--=的图象。如图所示,选D 。 解法三(特值代入法):由已知可得点))1(,0(-f P 在函数)1(-=x f y 的图象上,点))1(,2(-f Q 在函数)1(x f y -=的图象上,又点P 、Q 关于直线1=x 对称,选D 。

抽象函数问题的解题策略

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)2 1()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x>5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

相关主题
文本预览
相关文档 最新文档