当前位置:文档之家› 电化学技术与环境保护

电化学技术与环境保护

电化学技术与环境保护
电化学技术与环境保护

电化学读书报告

——电化学技术与环境保护

班级: 031122班

姓名:黎宁

指导老师:杨丽霞

时间: 2015年01月07日

电化学技术与环境保护

[摘要]

伴随着经济、科技的快速发展,环境问题越来越引起人们的关注,电化学技术有着高效、环保、节能等优点,在现代各个领域中都有着举足轻重的地位。随着电化学技术的发展, 其应用范围也不断扩大,现已广泛应用于电子、材料、航天、能源、化工、冶金、机械、环境保护等领域。与电化学紧密结合的边缘学科的不断出现,使电化学获得了新的生命力。尤其是在人们共同关注的环境保护问题上,电化学技术发挥着越来越重要的作用。

[关键词] 电化学技术;环境保护;清洁生产;污水处理;环境监测

[正文]

一、电化学技术在清洁生产的应用

1、化学电源

化学电源是俺电化学方式直接将化学能转化为电能的一种装置。传统的能量转化方式是热机过程,由于卡诺循环的限制,不仅造成能源浪费,同时产生大量的粉尘、二氧化碳、氮的氧化物和硫的氧化物等有害物质以及噪声,造成大气、水质、土壤等污染。而化学电源具有高效、清洁、经济、安全的优点。经过多年的发展,化学电源已被广泛用于航空航天、机动车辆、大型电站、移动通讯、家用电器等领域。因此,化学电源为保护环境、减轻污染治理的压力做出了重大的贡献。

化学电源按活性物质的保存方式可分为3种主要类型: 一次电池、二次电池(蓄电池)和燃料电池。

⑴一次电池:日常使用的干电池,如1号、5号、7号电池及各种纽扣电池等都是一次电池,使用完就丢弃,不仅造成资源的浪费,也严重误污染了环境,但由于一次性电池的使用范围十分广泛。所以,必须设法不适用或极少使用有毒化学原料(如Cod、Hg等)并要言之出切实可行的回收方法,以提高原材料的利用率,减少环境污染;

⑵二次电池:又称为可充电电池,作为电池在放电到一定电压时,又利用外部的直流电源将其作为电解池加以充电,如此可反复使用。常用的可充电电池是铅蓄电池、碱式Fe-Ni电池、Ag-Zn电池、锂离子电池等。铅酸蓄电池是人们长

期使用的传统二次电池,目前它虽然有比能低、充电速度慢、寿命不长的缺点,但它的成本低廉,人们正在对铅酸蓄电池的改进做深入研究。同时,新型蓄电池已得到快速发展,新型蓄电池向着比功率、比能大、寿命长、安全、成本低的方向发展;

⑶燃料电池:燃料电池将可燃物质的化学能通过电池的方式直接转化成电能,它不受热机效率的限制,能量转化效率可达80%以上。几乎不排放或很少排放氮和硫的氧化物,就是二氧化碳的排放量也远低于热电厂,而且几乎无噪声,多以被认为是21世纪首选的洁净、高效的绿色能源。可用于燃料电池的除氢气外,还有甲烷、甲醇、一氧化碳和石油重整气等可燃性气体或液体。航天事业中主要采用氢-氧燃料电池,其唯一的产物水还可以作为宇航员的生活用水。汽车工业中也开始使用燃料电池作为动力能源。若能大规模推广使用燃料电池作为能源,将会大大减低燃油汽车和飞机的尾气对人类和地球造成的污染。

2、有机合成

电化学过程对反应条件要求不高且具有高选择性,不仅减少了副反应产物,还使一些特殊的化学反应成为可能,它可以实现有用原料的循环使用,减少污染物的产生和排放。有机电合成法就是借助电极传递电子,使有机物氧化或还原, 而不采用化学品直接氧化或还原有机物。

有机电合成具有反应条件温和(可在常温常压下进行) 、工艺流程简单、易于实现自动控制、产物选择性高、副产物少、污染少甚至无污染等优点,是绿色合成的必要途径之一,被称为绿色工业。基于有机电合成的这些优点和传统化学合成的三废污染严重的现状,有机电合成取得了高速发展。有机电合成法生产重要化工原料己二腈早已被人们所熟知。有机电合成技术有广泛应用,有广阔的发展前景。

3、电化学水消毒

工业废水、生活污水、游泳池水、饮用水等水的处理与制备都涉及到消毒技术。常见的消毒技术主要有氯消毒、臭氧消毒以及紫外辐射消毒。氯是一种优质消毒剂, 有很强的杀菌灭藻作用,且价格低廉,应用比较广泛,但氯消毒技术有很大的不足之处,氯消毒过程不仅具有高危险性, 而且会产生很多毒性很大的副产物。用电化学方法在线制备消毒剂水消毒技术已经得到发展,它节能廉价、无

残留、安全。例如在一般的条件下,可以以电解方式在线制备H2O2,有很好的消毒效果。电化学水消毒可用石墨或石墨纤维电极、金属钛电极、多孔碳及SnO2 电极等。

还有许多电化学工艺,如膜辅助电化学工艺如电渗析、电去离子(离子交换辅助电渗析) 以及电浮选和电凝聚, 通过替代对环境危害严重的老工艺, 以其清洁的生产工艺,在环境污染防护、环境污染治理方面,都起着重要作用。

二、电化学技术在污水处理中的应用

电化学水处理工艺,其主要的原理是在水相中通入直流电。利用直流电产生的自由基作用对有机污染物的化学链进行攻击而产生有机污染物断链和氧化还原。对于重金属离子通过电化学还原而去除,对于其中的硫化物可以通过可溶解性电极产生的金属离子进行沉淀。其环境友好的特征主要表现在往往不需要投入含有阴离子的物质就可以实现絮凝过程。该方法适用于处理多种含无机污染物的废水,如有毒重金属离子、氰化物、硫氰酸盐、硫酸盐、硫化物、氨等。

1、电化学污水处理的方法

⑴电凝聚电气浮法:用铁片或铝片做阳极,石墨做阴极在电场作用下,利用产生的铁或铝离子絮凝水中胶体或悬浮物。它的原理和铁碳床内电解相似,不同的是内电解不需外加电场但需水是酸性的,而电絮凝需外加电场,但对酸碱度没特别要求。电絮凝处理污水如果设计得当,要比直接加聚合铁或铝混凝处理污水便宜多了。此方法在国内已开始火热起来,用于预处理负荷高的废水,但它对有机污染物分子降解氧化能力有限;

⑵电化学氧化:电化学氧化分为直接氧化和间接氧化两种,属于阳极过程。直接氧化是通过阳极氧化使污染物直接转化为无害物质;间接氧化则是通过阳极反应产生具有强氧化作用的中间物质或发生阳极反应之外的中间反应,使被处理污染物氧化,最终转化为无害物质。对于阳极直接氧化而言,如反应物浓度过低会导致电化学表面反应受传质步骤限制;对于间接氧化,则不存在这种限制。在直接或间接氧化过程中,一般都伴有析出H2 或O2 的副反应,但通过电极材料的选择和电势控制可使副反应得到抑制;

⑶电沉积法:利用电解液中不同金属组分的电势差,使自由态或结合态的溶解性金属在阴极析出。适宜的电势是电沉积发生的关键。无论金属处于何种状态,

均可根据溶液中离子活度的大小,由能斯特方程确定电势的高低,同时溶液组成、温度、超电势和电极材料等也会影响电沉积过程;

⑷光电化学氧化:通过半导体材料吸收可见光和紫外光的能量,产生“电子-空穴”对,并储存多余的能量,使得半导体粒子能够克服热动力学反应的屏障,作为催化剂使用,进行一些催化反应;

⑸电渗析:依靠在电场作用下选择性透过膜的独特功能,使离子从一种溶液进入另一种溶液中,达到对离子化污染物的分离和浓缩。利用电渗析处理金属离子时并不能直接回收到固体金属,但能得到浓缩的盐溶液,并使出水水质得到明显改善。目前研究最多的是单阳膜电渗析法。

2、电化学污水处理技术的优点

(1) 过程中产生的·OH自由基可以直接与废水中的有机污染物反应,将其降解为二氧化碳、水和简单有机物,没有或很少产生二次污染,是一种环境友好技术;

(2) 能量效率高,电化学过程一般在常温常压下就可进行;

(3) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性;

(4) 电解设备及其操作一般比较简单,费用较低。

三、电化学技术在环境监测中的应用

以电化学分析方法为原理的电化学传感器,具有快速、灵敏、准确、结构简单、便于自动化等优点,被广泛应用于环境监测中。

⑴离子传感器:主要部分是离子选择性膜,因为膜电位随被测定离子浓度而变化,故通过对离子选择性膜电位的测定可以得到被测离子的浓度。液体膜离子传感器的电极是将敏感材料,有机液体离子交换剂充分渗透在惰性多孔电极膜中制成的。目前,常将液体膜制成类似固态的“固体”膜,如PVC 膜电极等其他有机材料膜电极已成为科研人员研究的热点;

⑵气体传感器:用电化学气体传感器可以检测许多气体,例如O2、CO、H2S、NH3、Cl2、HCN、偏二甲肼、汽车尾气等。测定气体分子的传感器材料很多,原理各异。例如基于电位测量原理的气敏电极、固体电解质气体传感器;基于电流测量原理的控制电位电解型传感器等。其中固体电解质气体传感器倍受人们关

注。固体电解质气体传感器无需水作为电解液,灵敏度高,稳定性与再现性好,耐高温、耐腐蚀,结构简单灵巧。

⑶电化学生物传感器:电化学生物传感器是利用生物体可以对特定物质进行选择性的识别、反应。生成电极活性物质,然后用电位测定或电流测定的化学传感器。它在环境监测领域有着广泛的应用和良好的开发前景。酶生物传感器已经用于检测多种物质。采用GOD膜/H2O2电极或GOD膜/O2电极酶传感器。四、电化学技术的在环境保护中的优越性

(1)环境兼容性高电化学技术中使用清洁、有效的电子作为强氧化还原试剂,是一种基本对环境无污染的“绿色”生产技术由于界面电场中存在着极高的电位梯度。电极相当于异相反应的催化剂,因而减少了有可能因加催化剂而带来的环境污染。同时电化学过程有较高的选择性,可防止副产物的生成,减少污染物。

(2)多功能性电化学过程具有直接或间接氧化与还原、相分离、浓缩与稀释、生物杀伤等功能,能处理微升到1 ×106L的气、液体和固体污染物。

(3)能量高利用率与其他一些过程相比,电化学过程可在较低温度下进行。它不受卡诺循环的限制,能量利用率高。通过控制电位、合理设计电极与电解池, 减小能量损失。

(4)经济实用设备、操作简单,费用低。

[总结]

综上所述,电化学技术是解决环境问题的有利工具,在环境保护领域中发挥着重要作用。新电极材料、膜、电解液、反应器结构的开发与应用是电化学环境工程技术的发展趋向。随着不断的研究与发展,电化学技术必将在环境保护领域中发挥更大的作用。

参考文献

[1] 郭鹤桐, 章奇贤. 电化学教程. 天津: 天津大学出版社,2000

[2] 顾登平,贾振斌. 有机电合成进展. 北京:中国石化出版社,2001

[3] 衣宝廉. 燃料电池. 北京:化学工业出版社,2000

[4] 侯峰岩,王为. 电化学技术与环境保护.化工进展.2003

[5] 陈武,李凡修,梅平.废水处理的电化学方法进展.湖北化工,2001

[6] 沈文霞. 物理化学核心教程. 北京:科学出版社,2009

污水处理电化学处理技术

污水处理电化学处理技术 高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、?HO、?H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。

电化学 循环水处理工艺介绍

项目概述 ***********厂内现有部分循环水排污水。 为了节约用水,减少排放,实现水资源再利用,公司拟对厂内的上述各系统循环水排污水进行处理后回用于厂内循环水系统作为补水,代替新鲜水的使用。设计处理水量为200m3/h。 一.设计基础 1.水质情况 1.1水质指标 注:混合污水水质即为经计算后原水水质指标。 1.2水质分析 由以上数据表可以看出,将几股循环水排污水及浓水混合后,其水质的主要问题是电导率、总硬度、总碱度较高,需要进行降低去除处理。

而对于水中含盐量的降低去除则必然涉及到膜法除盐技术,而膜脱盐设备对于进水水质有一定的要求标准,从上述水质表分析,其水质总硬度、总碱度等指标较高,均超过膜脱盐设备的进水要求,原水的结垢性较强,易在膜过滤过程中形成垢类物质沉积在膜表面,影响膜的正常运行。所以必需对原水进行预处理,降低水质的总硬度、总碱度等指标,使处理出水达到膜脱盐设备的进水要求,才能进入脱盐设备进行脱盐处理。 本方案设计工艺分为两部分,一部分是预处理,一部分是脱盐处理。预处理主要用于降低水中的总硬度、总碱度等,脱盐处理主要用于降低水中的含盐量。2.设计水量 设计处理水量为:200m3/h。 二.技术工艺说明 1.技术工艺确定 1.1 技术工艺确定 根据污水水质分析,处理工艺确定为“预处理+脱盐”。其中预处理工艺需要降低水中总硬度、总碱度等,使出水水质满足膜脱盐设备的进水要求。对于水中的上述指标,均可通过“三法净水”处理技术进行有效降低去除,同时还可以进一步去除污水中的浊度、悬浮物等颗粒杂质。 由于处理出水作为循环水系统的补水,对于水质的含盐量要求并不高(新鲜水补水电导450-500uS/cm),而且随着回用设备的投运,循环水系统的含盐量逐渐降低,水质将逐渐改善,所以选择适度脱盐设备进行脱盐处理,即JR-EDR 电渗析脱盐设备。同时,JR-EDR电渗析脱盐设备具有运行成本低、膜抗污染性较强的特点,更适宜应用于污水回用处理。 设计技术工艺为:“三法净水”一体化设备+JR-EDR电渗析脱盐设备。1.2工艺流程框图 加酸、杀菌剂

电化学发展史

电化学发展史 电化学是物理化学的一个重要组成部分,它不仅与无机 化学、有机化学、分析化学和化学工程等学科相关,还渗透 到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导 体,如金属或半导体,以及离子导体,如电解质溶液)形成 的接界面上所发生的带电及电子转移变化的科学。

传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯 (gilbert)就是以他的名字命名,以纪 念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686) 发明了第一台静电起电机。这台机器由 球形玻璃罩中的巨大硫磺球和转动硫 磺球用的曲轴组成的。当摇动曲轴来转 动球体的时候,衬垫与硫磺球发生摩擦 产生静电。这个球体可以拆卸并可以用 作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿肌肉接触金属刀片时候会发生痉挛。他于1791年发表了题为“电流在肌肉运动中所起的作用”的论文,提出在生物形态下存在的“神经电流物质”,在化学反应与电流之间架起了一座桥梁。这篇论文的发表标志着电化学和电生理学的诞生。在论文中,伽伐尼认为动物体内中存在着一种与“自然”形式(如闪电)或“人工”形式(如摩擦起电)都不同的“动物电”,

8种电化学水处理方法

8种电化学水处理方法 电化学水处理- 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用电’ 来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。 电化学水处理的发展历程 1799 年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源 1833 年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887 年 Arrhenius提出电离学说。 1889 年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903 年 Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年

埃马克高精密电解加工(PECM)技术2_图文

页码 1 — 6 埃马克高精密电解加工(PECM 技术——应对难加工材料的解决方案 汽车生产行业发展飞速,其趋势之一就是,建设新的生产基地,迎接新的挑战。特别是南美和中国,正在建设大量的生产基地,这些基地的规划会受到多种需求的影响。不仅需要建设具备创新技术和高度灵活的生产线来确保产量的提高(例如,每天出厂的乘用车数量,还要必须保障产品质量的不断提高。因此,在研发更有效的新工艺方面,对机械工程设计行业的创新者们提出了更高的要求,而埃马克(EMAG 的PECM 技术在对难加工材料制成的复杂零部件进行加工时拥有巨大的优势。 汽车工业、航空工业以及其他工业部门的发展为加工行业带来了巨大挑战,因为随着这些行业的发展和技术的进步,他们需要越来越多的难加工材料,以及制造更多具有特别复杂几何形状的新零部件。制造这些零部件所需的新工艺必须能够保证高效的生产工艺,和保证绝对的工艺完整性。 关注高难度的加工要求 在这种背景下,显而易见,生产计划人员必须要努力寻找新的创新性加工工艺。同时人们经常会问:那些机械工程设计领域中的新技术能否应对不断增长的生产需求?对于这一问题,埃马克集团旗下的一家电解加工(ECM 技术公司 EMAG ECM GmbH 给出了一个特殊的答案。埃马克的专家们利用他们称之为 PECM 的技术(“ P ”代表“精密”,进一步改进了该工艺。他们从一开始就特别关注加工复杂零部件

过程中所需的高难度任务。正如 EMAG ECM 技术销售主管理查德 ·凯勒所说:“在加工高强度合金时,许多用户至今仍依赖高速铣削和电火花放电加工。但是这项技术有自己的劣势,比如,工具磨损非常大,而且产生高温对材料造成不良影响。在PECM 中,则不会存在这些问 页码 2 — 6 题,即使出现这些现象,所造成的影响也是微不足道的。事实上,这正是该项工艺的特殊优势所在。” 高质量的工艺 该项工艺具有出众的优势:加工高强度合金(又被称为“超级合金”以及其它难加工材料时,工具基本上没有明显的磨损。产品表面光洁度非常高:没有毛刺,也没有材料结构损害。这是如何实现的呢?首先, EMC 工艺在清除材料的过程中,动作非常柔和。工件作为阳极,工具作为阴极,在这两极之间有电解液,电解液可以将金属离子从工件上剥离。由于工具的阴极形状代表了所期望的工件形状,因此仅在需要清除的地方清除材料即可。通过这种技术, 可以在非接触式、不受热效应影响的情况下加工出曲面、环形通道、凹槽或腔室等形状,并且能够确保最高的精确度。 更高的效率 凯勒先生说:“这项工艺使我们能够生产最为精致和复杂的零部件。我们已经有意识地将 ECM 发展为 PECM ,以确保我们能够在越来越小的部件上实现更高精度

污水处理电化学处理技术

污水处理电化学处理技术Last revision on 21 December 2020

污水处理电化学处理技术高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电

化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和 O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、HO、 H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。 常见电化学反应器的电极类型 三、电化学处理技术在废水处理中的应用 (一)微电解 1. 原理 微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法,它是在不通电的情况下,利用填充在废水中的微电解材料自身产生的电位差对废水进行电解处

电化学与生活

电化学与生活 (哈尔滨工业大学能源学院) 摘要:电化学作为化学学科中对社会影响极为广泛的一部分是一个极为重要的学科。本文主要简单介绍了电化学对人们日常生产生活方面的影响和电化学的相关原理,并对原电池和电解池等电化学典型案例进行结构分析和原理介绍。同时将电化学在生活中的具体问题进行了分析,并找出了电化学与人类社会发展之间密不可分的联系。 关键词:电化学,电解池,原电池,氧化还原反应,金属腐蚀,电子转移 一、引言 化学是一门以实验为主的学科,但同时也是用途十分广泛的一门学科,它说涵盖的内容涉及到了人类发展的各个方面,从社会到生活,从学习到工作,从学校到工厂,化学的影子无处不在。化学学科的具体分类分为无机化学,有机化学,物理化学,分析化学,高分子化学,核化学和生物化学等。而本文将要讨论的电化学就是隶属于物理化学科目下的具体学科。 电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现(如氧通过无声放电管转变为臭氧),二者统称电化学,后者为电化学的一个分支,称放电化学。电化学是研究两类导体形成的带电界面现象及其上所发生的变化的科学。如今已形成了合成电化学、量子电化学、半导体电化学、有机导体电化学、光谱电化学、生物电化学等多个分支。电化学在化工、冶金、机械、电子、航空、航天、轻工、仪表、医学、材料、能源、金属腐蚀与防护、环境科学等科技领域获得了广泛的应用。当前世界上十分关注的研究课题, 如能源、材料、环境保护、生命科学等等都与电化学以各种各样的方式关联在一起。 二、电化学的相关原理 电化学基本原理就是我们在高中时再熟悉不过的氧化还原反应,通过两种物质或在经过中间物质的电子转移来实现电解或发电等相应的化学反应。电化学反应主要包括电解池反应和原电池反应。 1.原电池反应 原电池是主要是利用两个电极之间金属活动性的不同,产生电势差,从而使电子的流动,产生电流。多数原电池的反应是不可逆的,即是只能将化学能转换为电能,而不能像蓄电池那样将电能与化学能相互转化。其中在负极发生氧化反应,即失去电子的反应;正极发生还原反应,即得到相应电子的反应。 原电池的发明历史可追溯到18世纪末期,当时意大利生物学家伽伐尼正在进行著名的青蛙实验,当用金属手术刀接触蛙腿时,发现蛙腿会抽搐。大名鼎鼎的伏打认为这是金属与蛙腿组织液(电解质溶液)之间产生的电流刺激造成的。1800年,伏打据此设计出了现在 被称为伏打电堆的装置,锌为负极,银为正极,用盐水作电解质溶液。1836年,丹尼尔发 明了世界上第一个实用电池,并用于早期铁路信号灯。 原电池主要由三部分组成,分别是两个半电池,盐桥和导线。其中两个半电池上的一般是两种金属活动性相差较大的金属,而铅蓄电池和燃料电池等原电池的两极则是由化合物或燃料气体组成的,它们也是通过相应的化学反应来确保电子的定向转移的。构成原电池时,将这两种金属极板浸泡在相应的电解质溶液中,在电解质外两种金属极板通过导线相连接,以此来保证电子在原电池中的通常运行。 以我们在学校中最常见到的铜锌原电池为例,它就是以锌电极作为负极,铜电极作为阳极。将两块电极分别放在装有硫酸锌溶液和硫酸铜溶液两个烧杯中,由于锌的活动性远强于铜,所以锌极就是该原电池的负极,铜极就是原电池的正极,在在两个烧杯之间用装有氯化钾的盐桥来进行电子转移时的平衡。

电化学水处理考察

电化学水处理考察报告 针对我公司设备冷却循环水质不达标情况,由能源部、机动部联合组织相关人员分别对上海东方维尔和山西和风佳会两家公司在工业领域的应用进行了实地考察,两家公司处理原理基本相同,只是处理设备的形式上有所区别。 两家公司电化学水处理技术的主要工作原理是利用电化学的氧化还原反应,将水中的Ca2+、Mg2+以固体形式排除,降低水体的硬度,同时产生氧化性物质,抑制循环水系统中菌藻的滋生,达到杀菌灭藻功能。目前,对于电化学循环水处理技术的机理研究主要集中在以下几个方面: 1.电化学除垢原理 在直流电场的作用下水在阴极发生电解反应生成OH-,由阴极反应产生的OH-离子,打破阴极附近溶液中碱度与硬度的平衡,溶液中的HCO3-离子转化为CO32-离子,同时水中的Ca2+、Mg2+等成垢离子在静电引力的作用下向阴极区迁移,分别生成CaCO3、Mg(OH)2沉淀析出,同时在电场的作用下,CaCO3在阴极板表面的结晶形式由坚硬的方解石结构转变为较为疏松的文石型结构,更易于剥离去除 2.电化学杀菌原理 在电场的作用下,水中的氯离子会被氧化成氯气、次氯酸、次氯酸根等自由氯组分,电解氯化作用,主要通过次氯酸起作用。次氯酸为很小的中性分子,它扩散到带负电的细菌表面,并通过细菌的细胞

壁穿透到细菌内部。当次氯酸到达细菌内部时,能起氧化作用破坏细菌的酶系统而使细菌死亡。在电催化反应中,通过电解水以及溶解在水中的氧气在电极表面生成一些短寿命的中间产物,即臭氧、羟基自由基、过氧化氢和氧自由基等,这些强氧化性的物质能使微生物细胞中的多种成分发生氧化,从而使微生物产生不可逆的变化而死亡。 3.电化学处理设备的工作流程 冷却水在反应室内,经过电化学作用发生下列反应:(1)在阴极(反应室内壁)附近形成一个强碱性环境,使CaCO3从水中析出,与沉积的重金属离子一起附着在内壁上。(2)电流导致悬浮颗粒失稳,形成较大絮体沉淀下来。(3)在阳极附近,氯离子被电解氧化生成游离氯或者次氯酸。(4)在阳极附近同时生成氢氧根自由基、氧自由基、臭氧和双氧水,这些物质进一步强化在反应室内和整个水系统的杀菌灭藻效果。(5)当设备工作时间达到设定值或者水中电导率过高时,控制系统就启动自动刮垢、排污和清洗程序。进水阀门自动关闭,同时排污阀门开启,电机启动刮刀刮掉反应室内壁的软质水垢,与沉淀物一起排出反应室。然后进水阀门开启,刮刀停止运动,将水垢和沉淀物彻底清洗干净。达到设定时间后,排污阀门自动关闭,设备恢复正常工作。 通过对两家公司电化学水处理设备在焦化行业循环水池的应用我们进行比较,东方维尔的设备安装在曹妃甸首钢京唐公司的焦化循环水池,该设备为矩形反应室,阳极和阴极都是板式结构,需要手动清理污垢,并且需要把反应设备停车进行处理。山西和风佳会的处理

电化学历史简介

电化学历史简介 电化学(Electrochemistry)是研究载流子(电子,空穴,离子)在电化学体系(特别是离子导体和电子导体的相界面及其邻近区域)中的输运和反应规律的科学。从1839年,格罗夫(W. R. Grove)发表了全世界第一篇有关燃料电池研究的报告以来,燃料电池的研究也是电化学领域十分有前途的研究方向。 电化学的主要应用领域为:电解、电镀和电池。 电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现,二者统称电化学,后者为电化学的一个分支,称放电化学。因而电化学往往专指“电池的科学”。 电池由两个电极和电极之间的电解质构成,因而电化学的研究内容应包括两个方面:一是电解质的研究,即电解质学,其中包括电解质的导电性质、离子的传输性质、参与反应离子的平衡性质等,其中电解质溶液的物理化学研究常称作电解质溶液理论;另一方面是电极的研究,即电极学,其中包括电极的平衡性质和通电后的极化性质,也就是电极和电解质界面上的电化学行为。电解质学和电极学的研究都会涉及到化学热力学、化学动力学和物质结构。 1791年伽伐尼发表了金属能使蛙腿肌肉抽缩的“动物电”现象,一般认为这是电化学的起源。1799年伏打在伽伐尼工作的基础上发明了用不同的金属片夹湿纸组成的“电堆”,即现今所谓“伏打堆”。这是化学电源的雏型。在直流电机发明以前,各种化学电源是唯一能提供恒稳电流的电源。1834 年法拉第电解定律的发现为电化学奠定了定量基础。 19世纪下半叶,经过赫尔姆霍兹和吉布斯的工作,赋于电池的“起电力”(今称“电动势”)以明确的热力学含义;1889年能斯脱用热力学导出了参与电极反应的物质浓度与电极电势的关系,即著名的能斯脱公式;1923年德拜和休克尔提出了人们普遍接受的强电解质稀溶液静电理论,大大促进了电化学在理论探讨和实验方法方面的发展。 20世纪40年代以后,电化学暂态技术的应用和发展、电化学方法与光学和表面技术的联用,使人们可以研究快速和复杂的电极反应,可提供电极界面上分子的信息。电化学一直是物理化学中比较活跃的分支学科,它的发展与固体物理、催化、生命科学等学科的发展相互促进、相互渗透。 在物理化学的众多分支中,电化学是唯一以大工业为基础的学科。它的应用主要有:电解工业,其中的氯碱工业是仅次于合成氨和硫酸的无机物基础工业;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;机械工业使用电镀、电抛光、电泳涂漆等来完成部件的表面精整; 环境保护可用电渗析的方法除去氰离子、铬离子等污染物;化学电源;金 属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题;许多生命现象如肌 肉运动、神经的信息传递都涉及到电化学机理。应用电化学原理发展起来 的各种电化学分析法已成为实验室和工业监控的不可缺少的手段。 迈克尔·法拉第(Michael Faraday,1791-1867) 19世纪最伟大的实验科学家 【简介】 英国物理学家、化学家,也是著名的自学成才的科学家。

电化学法在水处理中的应用现状

电化学法在水处理中的应用现状 摘要随着城市规模的不断扩大和人口的增加,水资源污染也日益严重,水污染治理也成为了关注的焦点。为此,电化学水处理技术也被研究应用到实际的污水处理中。对电化学法在重金属离子的回收和去除、难生物降解有机废水的处理、含染料废水的处理、含油废水的处理、垃圾渗滤液的处理、含氮废水的处理中的应用及处理效果做论述,得到很好的效果。 关键词电化学;水处理技术;应用 1概述 现代社会,废水处理是一个热门话题。目前,由于电化学方法具有处理装置紧凑、设备小、占地面积少、不产生二次污染,又能起到消毒作用等优点已得到人们的重视,用在造纸废水、印染废水、制药废水、医院废水、含油废水等的研究中。 目前,国内电催化法水处理的研究应用已有一定的基础,然而和国外相比还不是很系统。随着水处理领域的热点转移到有机废水的处理,电化学法降解有机废水受到国内外的关注。 电解法处理废水主要有电化学氧化法、电化学还原法、内电解法、电凝聚法、电气浮法、电沉积法、电渗析法、电吸附法。 2电化学在水处理中的应用 随着全球环境状况的日益严峻,环境保护及污染物处理问题引起了各国政府的高度重视。目前,在美、日等发达国家已经广泛的应用电化学方法进行催化氧化处理有机废水。国内在电化学处理废水方面也有很快的发展。由于电化学处理废水的种种优势与功能,近年来国内外的研究较多,现已广泛应用于处理电镀废水、化工废水、印染废水等的研究,并取得了一定的成效。 2.1难生物降解有机废水的处理 对工业部门外排的一些有机废水,由于有机物含量高、污水流量波动相对较大常规生物处理的效率是很低的,甚至是无效的。采用电解氧化过程处理这类废水,如果选用涂层电极作为阳极材料,就可通过阳极反应直接氧化分解有机污染物,或者通过阳极反应产生的氧化性物质间接分解有机污染物;如果选用可溶性铁或铝作阳极,就可在同一电解反应器中通过电氧化、电凝聚、电气浮协同作用去除有机污染物。从而达到很好的处理效果,COD的去处效率甚至可以达到98%以上。 2.2重金属离子的回收和去除

电化学加工

电化学加工 摘要:电化学进行加工的各种方法的研究。电化学加工是通过化学反应去除工件材料或在其上镀覆金属材料等的特种加工。近几十年来,借助高新科学技术,在精密电铸、复合电解加工、电化学微细加工等发展较快。目前电化学加工已成为一种不可缺少的微细加工方法,并在国民经济中发挥着重要作用。 关键词:电化学加工、微细加工、 一、电化学加工的发展历程 早在1834年法拉利发现了电化学作用原理,后又开发出如:电镀,电铸,点解加工等化学方法,并在工业上得到广泛的应用。中国在20世纪50年代就开始应用电解加工方法对炮膛进行加工,现已广泛应用于航空发动机的叶片,筒形零件、花键孔、内齿轮、模具、阀片等异形零件的加工。近年来出现的重复加工精度较高的一些电解液以及混气电解加工工艺,大大提高了电解加工的成型精度,简化了工具阴极的设计,促进了电解加工工艺的进一步发展。利用电化学反应对金属材料进行加工的方法。与机械加工相比,电化学加工不受材料硬度、韧性的限制,已广泛用于工业生产中。常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。电化学加工的基本原理是用两片金属作为电电极,通电并浸入电解溶液中,形成通路。导线和溶液中均有电流通过。但是金属导线和电解溶液是两类性质不同的导体,前者是靠自由电子在外电场大的作用下沿一定方向移动导电的:后者是靠溶液中正、负离子移动而导电的,是离子导体。当上述两类导体形成通路时,在金属片和溶液的界面上产生交换电子的反应,机电化学反应。 二、电化学加工的基本原理和特点 基本原理:电化学加工的基本原理是用两片金属作为电极,通电并浸入电解溶液中,形成通路。导线和溶液中均有电流通过。但是金属导线和电解溶液是两类性质不同的导体,前者是靠自由电子在外电场大的作用下沿一定方向移动导电的:后者是靠溶液中正、负离子移动而导电的,是离子导体。当上述两类导体形成通路时,在金属片和溶液的界面上产生交换电子的反应,机电化学反应。 特点:电化学加工的最大优点是可以用来加工复杂的三维曲面,而且不会留下来条纹痕迹。采用不锈钢制造的阴极工具,可以把很多初步形成的零件加工到具有极高的外形尺寸要求。电化学加工的特点是: 1、可对任何金属材料进行形状,尺寸和表面的加工。加工高温合金,钛合金,淬硬钢,硬质合金等难加工金属材料时,有点更加突出。 2、加工无机械切削力和切削热的作用,因此加工后表面无冷硬层,残余应力。 3、无毛刺加工。 4、工具和工件不接触,工具无磨损。 5、加工可以在大面积上同时进行,也无需划分粗,精加工,具有较高的生产率。 6、电化学作用的产物(气体和废液)对环境有污染,对设备也有腐蚀。 三、电化学加工的工艺类型 电化学加工按其作用原理课分为三大类。 第一类是利用电化学阳极溶解来进行加工,主要有点解加工,电镀抛光等; 第二类是利用电化学阴极沉积,涂覆进行加工,主要有电镀,涂镀,电铸等; 第三类是利用电化学加工与其他加工方法复合加工工艺,目前主要有电化学加工与机械加工相结合,如电解磨削,电化学阳极机械加工。 四、电化学加工设备

电化学

电极/离子液体界面电容 赵 娣1 黄 青1 金先波1,* 魏献军1陈政1,2,* (1武汉大学化学与分子科学学院,武汉430072; 2 DepartmentofChemicalandEnvironmentalEngineering, FacultyofEngineering,TheUniversityofNottingham,NottinghamNG72RD,UK) 摘要:用电化学阻抗方法研究了铂片电极在 BMIMPF6,BMIMBF4,BMIMClO4,BMIMTf2N,BMIMCl,BMIMBr,C3OHMIMBF4,C3O 和BMMIMPF6(BMIM:1-butyl-3-methylimidazolium;C3OHMIM:1-(3-hydroxypropyl)-3-methylimidazolium;BMMIM:1-butyl-2-methyl-3-methylimidazolium;Tf2N:bis(trifluoromethylsulfonyl)amide)等离子液体中 的界面电容及结构.结果表明:当阴、 阳离子半径相差不大且不存在特性吸附时,在零电荷电势附近,电极/离子 液体界面的电容-电势曲线将出现电容单峰或者双峰.电极的零电荷电势 对应于单峰的峰电势或者双峰之间的谷电势.当电极电势远离零电荷电 势时,电极/离子液体界面成紧密层结构,可由紧密层理论来描述.如果存在 离子的特性吸附,相应的电容峰可能不再出现,而表现为双层电容随电极 电势对零电荷电势的偏离而单调增加.还研究了添加小的Li+离子对电极/ 离子液体界面电容的影响.通过向BMIMTf2N中加入LiTf2N,发现Li+离子 可以改变电极/离子液体界面的双层结构,但无助于界面电容的提高,甚至 可能引起电容的降低.最后探讨了不同条件下,尤其考虑阴阳离子特性吸 附时,电极/离子液体的界面结构.关键词:电化学电容;离子液体; 电极/电解液界面; 界面离子排列; 电化学阻抗谱 中图分类号:O646 CapacitanceattheElectrode/IonicLiquidInterface ZHAODi1 HUANGQing1 JINXian-Bo1,* WEIXian-Jun1

电化学水处理系统原理和市场分析

电化学水处理系统 Electrolytic Descaling System 工业冷却循环水除垢技术 电化学水处理系统原理简介 一、电解; 1、原理概述:高频、变频电解反应将水分子打散,变成中性的小分子还原水(小分子还原水国际公认具有强渗透力与溶解能力),细化的水具有强的 溶解性和渗透性,可以渗透进管道的水垢及铁锈层,逐步将其溶解。 2、系统中带正电的离子(Ca2+、Mg2+、Fe3+)随着系统的循环水流出,并被水力清的电极外网(负极)吸附并在上面形成钙、镁的化合物结晶,降 低水体的硬度,且吸附网的吸附能力远远大于水垢在换热器铜管内生成的 能力,使水垢能集中在吸附网上生成,从根本上解决换热器管道内水垢的 产生。 3、 原理示意图;①还原水溶垢、锈示意图(H· 代表小分子还原水):

循环水除垢机的先进性、突破性与高效益 ②还原水流动溶垢、锈示意图 ③电极吸附收集水垢示意图

电化学水处理系统工作特征 ◎ 超环保 首创高频变频电解纯物理方式吸垢除锈,不需化学药剂,避免管道及换热设备腐蚀。 ◎ 超节能 自身功率为 0.3-4.5KW,却可以提升系统 5-25%综合效果,节约能耗 5-20%。!

◎ 超节水 基本不需要排污,同比目前行业水处理法节水量超过 90%及以上。 ◎ 超智能 全天候无需人员值守,管理方便,简单,不需专人管理。 冷却水系统除垢除锈的必要性: ◎ 长时间不对冷却水进行处理,会造成管道以及换热设备内壁生成水 垢,影响冷却水流量及换热效率,降低冷却效果,影响生产。 ◎ 严重时甚至堵塞换热设备,停机清洗,影响生产效率。 ◎ 常年累积的水垢与铁锈导致换热设备冷却效果不理想,成型周期变 得越来越长。甚至会出现垢腐蚀管路、设备现象。 电化学水处理系统带来的好处: ◎ 时刻吸垢,让冷却水系统处于无垢状态。稳定冷却水流量,提高冷 却效果及换热效率。保障正常生产。 ◎ 不需投放化学药剂,避免管道、换热设备腐蚀,增加设备的使用寿 命。同时减少人工及时间去清理水塔、水池,减少排水 量,节能环 保。

循环冷却水之电化学水处理器简介

一、什么是循环冷却水 循环冷却水是冷却水换热水并经降温,再循环使用的给水系统,包括敞开式和密闭式两种类型,由冷却设备、水泵和管道组成。 在许多工业部门的生产过程中,产生大量废热,需及时用传热介质将其转移到自然环境中,以保证生产过程正常运行。由于天然水具有优良的热传递性能且费用低廉,资源丰富而被用作工业废热的传热介质,在工业生产中称为冷却水,工业冷却水在各国都是工业水最大用户,除升高温度外冷却水的理化性质无甚显著变化,若采取适当降温措施,使之形成循环回用系统,是节约工业用水的重要途径。 循环冷却水由于受浓缩倍数的制约,在运行中必须要排出一定量的浓水和补充一定量的新水。使冷却水中的含盐量、PH值、有机物浓度、悬浮物含量控制在一个合理的允许范围。如何安全的提高浓缩倍数减少水资源的消耗和运行成本,在水资源税开征和排污收费的大趋势下将极大的节约企业的生产成本。 如何在保证不结垢、不腐蚀的条件下提高循环水的浓缩倍数已成为行业研究的课题。传统的通过加药剂阻垢、缓蚀在浓缩倍数达到一定程度的时候,必须对循环水进行置换,以保证系统的稳定运行。排出系统的废水含盐量高、因为添加药剂的原因,污水的成分比较复杂又难以处理,对后续的污水处理实现达标排放带来了诸多挑战。 二、循环水浓缩倍率与节水的关系 提高循环水的浓缩倍数(目前我国的循环冷却水浓缩倍数一般为1.5—3.0),可降低补充水的用量,节约水资源,同时可降低排污水量,从而减少其对环境的污染,降低生产成本。 设某企业循环冷却水系统,循环水量为10000m3/h,冷却塔进出口水温分别为42℃和32℃,风吹损失占循环水量的0.1%,在不同浓缩倍数下该系统的运行参数计算值见下表。 三、电化学除垢器概述 电化学除垢器又称为电化学除垢设备也称之为循环水电化除垢设备,在循环水处理中采用电化学除垢技术,是环保节能的高新技术。电化学除垢设备循环系统全部采用新型材料,设备使用期长达15年,系统无易损件,不侵蚀,不用维修。从病根上解决了出锈水的问题,和每年都要定期维修的问题。 四、电化学水处理系统介绍 原理和技术优势简介: 电化学水处理系统是以电化学的电解原理和极性水分子理论为基础发展起来的环保新技术,它具有除垢、防垢、杀菌、灭藻、缓蚀等功能,还可以溶解水循环管路已成固体的垢、降低盐类离子浓度、降解有机物质、节水、节能无污染等新的技术性能,是循环水处理未来的主流处理方式。

电化学加工技术的现状及发展趋势_特种加工

电化学加工技术研究现状及趋势 郭旭东 (大连科技大学机械自动化学院, 大连,大连) (15级机械工程专业,2015023234321) 摘要:与机械加工相比,电化学加工能加工出复杂的型面、腔孔,加工高硬度、高韧性、高强度材料,生产率高。电化学加工包含抛光、电镀、电刻蚀和电解磨削。与传统的加工方法相比,有很大的优势。而且未来电化学加工的更是朝着微系统、纳米材料合成方面发展,具有很高的应用前景。 关键词:生产率;抛光;电镀;电刻蚀;电解磨削 Current status and trend of electrochemical machining technology LIU Dong (College of Machinery and Automation, WuHan University of Science and Technology, HuBeiWuHan 430074) Abstract:Compared with machining, electrochemical machining can produce complex surface and cavity, which can be processed with high hardness, high toughness, high strength materials and high productivity. Electrochemical machining includes polishing, electroplating, electro etching and electrochemical grinding. Compared with the traditional processing methods, there is a great advantage. And the future electrochemical processing is toward the development of micro system, nano materials synthesis, has a very high application prospects. Keywords: efficiency;polishing;electroplating;electroetching;electrochemical grinding 1、前言 电化学加工的基本理论建立与19世纪末,但在工业上的大规模应用,还应该是在20世纪30~50年代。目前,电化学加工已经成为我国民用、国防工业中的一个不可或缺的加工手段。电化学加工是一种重要的特种加工方法, 已被广泛应用于难加工金属材料、复杂形状零件的批量加工中。它利用金属的电解现象[1],在通电的电解液[2-5]中,使离子从一个电极移向另一个电极,从而实现对工件材料的双向加工[6],即阳极溶解去除(如电解、电化学抛光)和阴极沉积生长(如电镀、电铸)。无论材料的减少或增加,加工过程都是以离子的形式进行的,而金属离子的尺寸非常微小,因此,从原理上讲,电化学加工可以实现加工精度和微细程度在微米级甚至更小尺度的微加工。只要采取措施精确地控制电流密度和电化学反应发生的区域,就能实现电化学微加工[7-11],达到对金属表面进行微量“去除”或“生长”加工的目的。 电化学是一门古老而又年轻的学科,一般公认电化学起源于1791年意大利解剖学家伽伐尼发现解剖刀或金属能使蛙腿肌肉抽缩的“动物电”现象。1800年伏特制成了第一个实用电池,开始了电化学研究的新时代。在经历了一个多世纪以后,电化学科学的发展和成就举世瞩目,无论是基础研究还是技术应用,从理论到方法,都有许多重大突破。电化学科学的发展,推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等问题,已经作出并正在作出巨大的贡献。[12]

电化学发展展望

电化学发展现状及展望 姓名:陈博洋专业:材料物理学号:2015302662 摘要:电化学是研究电与化学反应相互关系的科学,其在诸多科学领域都得到了 广泛的应用,本文由此介绍了当今电化学的发展现状及其在我们日常生活的应用,总结其发展特点并对其未来的发展提出了展望。 关键词:电化学工业;电解;金属腐蚀防护;生物电化学;燃料电池 引言 伴随当今科技的发展,不仅电化学理论和电化学方法不断创新,而且在应用领域,如化学工业能源材料科学和环境保护等方面同样也占有越来越重要的地位,燃料电池在发电及汽车工业的应用以及生物电化学这一新领域所取得的突出成绩都是比较典型的例子,因此应强调重视电化学新体系的研究,以面对未来能源、材料、生命、信息和环境对电化学技术的挑战. 一、现代发展回顾 20世纪后五十年,在电化学的发展史上出现了两个里程碑:Heyrovsky因创立极谱技术而获得1959年的诺贝尔化学奖,Marcus因电子传递理论而获得1992年的诺贝尔化学奖。20世纪后五十年,继20年代极谱技术创立之后,电化学系统地发展了现在称之为传统电化学研究方法的稳态和暂态技术,尤其是后者,为研究电界面结构和快速的界面传荷反应打下基础。但是,因为缺乏分子水平和原子水平的微观实验事实,电化学理论仍旧停留在宏观、唯象和经典统计处理的水平上。70年代,物理学理论的不断发展为观测微观水平提供了有力的技术手段,例如电化学现场表面光谱技术、使界面电化学的分子水平研究成为可能。80年代出现的以扫描隧道显微镜(STM)为代表的扫描微探针技术,迅速被发展为电化学现场和非现场显微技术,尤其是电化学现场STM和AFM(原子力显微镜),为界面电化学的研究提供了原子水平实验基础。总之,20世纪后五十年,由于上述各种实验技术的发展,促进了电化学由宏观研究逐渐转移到分子和原子微观水平的研究,为这一时期电化学理论和应用一些突破性进展奠定了基础。 二、应用概述 1)电化学工业 电化学在工业上起着相当重要作用,包括电解金属加工与处理电池和燃料电池水和废水处理等方面的应用。 氯碱工业――这是世界上最大的电化学工业,它是通过电解食盐水,从而获得氯气和苛性钠的过程氯气用于制备氯乙烯,进而合成得到PVC,还可用作纸浆及纸的漂白剂和杀菌剂。工业中常用的有三种电解池:汞电解池隔板电解池离子选择性电解池。由于氯的腐蚀力和电极本身的氧化,传统碳棒或石墨阳极已经远远不能满足现代工业生产的需求,而由此也催生出了一批新兴的电极材料,例如RuO2涂层的钛电极,RuO2涂层中含有一定量的过渡金属氧化物,如Co3O4等这类阳极几乎不被腐蚀,它的超电势在4~5mV之间,还有一个优点是:不希望出现的析氧副反应已被降到非常低的程度(1%~3%)。 该法不需要很多化学药品,后处理简单,占地面积小,管理方便。常见的方法有以下几种:电解回收——电化学方法可将溶液中的金属离子逐步除去,因此常常可以使一些可以重新利用的金属再生出来。电化学氧化,这是一种较成熟的水处理技术,并日益成为水处理的热点,研究范围涉及处理印染水制药废水制革废水和造纸黑液等。当然除此之外还有微电解法、电解气浮法和电渗析法等新兴方法。

相关主题
文本预览
相关文档 最新文档