当前位置:文档之家› 完全互溶双液系统气-液平衡相图的绘制(2)------误差分析

完全互溶双液系统气-液平衡相图的绘制(2)------误差分析

完全互溶双液系统气-液平衡相图的绘制(2)------误差分析
完全互溶双液系统气-液平衡相图的绘制(2)------误差分析

完全互溶双液系统气-液平衡相图的绘制(2)------误差分析

大学化学实验Ⅱ实验报告

(物理化学部分)

(贵州大学化学与化工学院——大学化学教学与示范中心)

班级专业:环境科学091

姓名:岳凡耀

学号:0908100121

指导教师:谭蕾

实验成绩:

实验编号:十四实验项目名称:完全互溶双液系统气-液平衡相图的绘制

报告人:岳凡耀同组人:赵安娜、赵芳、吴红、陈彦霖、孙腾实验时间:2011年4月 28日

一、实验目的:

1.掌握阿贝折射仪的使用方法通过测定混合物的折射率确定其组成。

2.学习常压下完全互溶双液系统气-液平衡相图的测绘方法,加深对相律、恒

沸点的理解。

二、实验原理:

相图是描述相平衡系统温度、压力、组成之

间关系的图形,可以通过实验测定相平衡系统的

组成来绘制。

两种液体物质混合而成的两组分体系称为

双液系。若两液体能以任意比例互溶,称其为完

全互溶双液系统;若两液体只能部分互溶,称其

为部分互溶双液系统。当纯液体或液态混合物的

蒸气压与外压相等时,液体就会沸腾,此时气-

液两相呈平衡,所对应的温度就是沸点。双液系

统的沸点不仅取决于压力,还与液体的组成有

关。表示定压下双液系统气-液两相平衡时温度

图或沸点-组成图。与组成关系的图称为T-X

B

恒定压力下,真实的完全互溶双液系的气-液

平衡相图(T-X),根据体系对乌拉尔定律的偏差情况,可分为三类:

(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(а)

所示。

(2)最大负偏差:混合物存在着最高沸点,如盐酸-水体系,如图1(b)所示。

(3)最大正偏差:混合物存在着最低沸点,如正丙醇-水体系,如图1(c)所示。

图1 完全互溶双液系统的气-液平衡相图

在最高沸点和最低沸点处,气相线与液相线相交,对应于此点组成的溶液,达到气-液两相平衡时,气相与液相组成相同,沸腾的结果只使气相量增加、液相量减少,沸腾过程中温度保持不变,这时的温度叫恒沸点,相应的组成叫恒沸组成。压力不同,同一双液系统的相图不同,恒沸点及恒沸组成也不同。

本实验采用回流冷凝的方法绘制乙醇-环己醇体系的T-X

图。该体系属于上述第三种类型,

B

在沸点仪中蒸馏不同组成的混合物,测定气沸点及相应的气、液二相的组成,即可作出T-X相图。

本实验中两相的成分分析均采用折光率法。

折光率是物质的一个特征数值,它与物质的浓度及温度有关,溶液的浓度、组成不同,折光率也不同。因此可先配制一系列已知组成的溶液,在恒定温度下测其折光率,作出折光率-组成工作曲线,便可通过测折光率的大小在工作曲线上找出未知溶液的组成。

三、实验仪器和试剂:

仪器:WAY型阿贝折射仪1台;超级循环恒温水浴1台;带有冷凝管的沸点仪1台;电加热套1个;数字式温度计1台;长、短胶头滴管若干;环己烷的体积分数为3%、15%、30%、50%、60%、80%、92%、97%、100%的1-9号乙醇-环己烷标准溶液。

试剂:乙醇(AR);环己醇(AR)

四、实验步骤与数据记录:

1.乙醇-环己烷溶液折光率与组成工作曲线的测定

将阿贝折射仪与超级恒温水浴相连,打开恒温水浴电源开关,调节水浴温度至28℃。测定乙醇-环己烷标准溶液的折光率与组成关系,绘制工作曲线。

2.测定乙醇-环己烷体系的沸点与组成的关系

(1)安装好沸点仪,打开冷却水,由进样口加入待测溶液,用电加热套供热,使沸点仪中溶液沸腾,并通过调整沸点仪与电加热套的距离控制适宜的回流高度。最初冷凝管下段袋状部的冷凝液不能代表平衡时的气相组成。将袋状部的最初冷凝液倾回蒸馏器,并反复2-3次,待溶液沸腾且回流正常,温度读数基本恒定后,记录溶液沸点。

(2)将沸点仪从电加热套上移开,用长吸管从气相冷凝管取样口吸取气相样品,把所取的样

品迅速滴入阿贝折射仪中,测其折射率n

g (3)将阿贝折射仪镜面用洗耳球吹干,用另一支短吸管从沸点仪进样口吸取一滴溶液,测其折射率n

l

按照上述方法依次测定1-9号溶液的沸点和气-液平衡时的气、液相折光率。

五、实验结果与数据处理:

表1乙醇-环己烷标准溶液的折光率

X

己烷

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

折光率1.3

590

1.3

669

1.3

747

1.3

827

1.3

906

1.3

970

1.4

030

1.4

084

1.4

139

0.9 1.0

1.4 200 1.4

250

表2乙醇-环己烷混

合液测定数据

序号加入

样品

T(沸

点)

/℃

液相气相

n

l

x

己烷

n

g

y

己烷

1 3% 75.2

6 1.3

655

0.

06

7

1.3

650

0.

04

9

2 15% 64.8

1 1.3

685

0.

09

9

1.3

795

0.

26

5

3 30% 61.9 1.30. 1.40.

2 781 25

7 017 60

4 50% 60.8

2 1.3

993

0.

56

2

1.3

977

0.

54

2

5 60% 62.0

3 1.4

071

0.

60

1.4

085

0.

70

2

6 80% 62.5

3 1.4

210

0.

90

1.4

056

0.

66

2

7 92% 75.8

0 1.4

237

0.

93

9

1.4

213

0.

90

9

8 97% 76.9

2 1.4

255

0.

97

1

1.4

242

0.

94

7

9 100% 75.9

6 1.4

247

0.

95

5

1.4

247

0.

95

5

六、实验讨论及误差分析:

1,测定折光率,动作应迅速,以避免样品中易挥发成分损失

2,一定要先加溶液在加热,应注意切断加热丝电源

3实验中可通过调节电加热套的温度,或调整沸点仪的高程,回流速度的快慢

4使用阿贝折射仪时,不能触及硬物,用完用洗耳球吹干

七、实验思考题:

1、作出工作曲线的目的是什么?

答:可以更清楚明了地知道液相、气相的折射率与组成直接的关系,两种的温度需要保持一致,否则对折射率会有较大影响。

2、在连续测定法实验中,样品的加入量必须十分精确吗?为什么?

答:因为实验的目的就是测定其折射率和组分的关系,只有样品足够纯,不一定使加入量必须十分精确,其结果不受影响。

3、为何测定纯物质沸点时要求蒸馏瓶必须是干的,而测混合液沸点和组成时则

可不必要求蒸馏瓶是干的?

答:测定纯样时,如沸点仪不干净,所测沸点就不是纯样的沸点。测定混合样时,其沸点和气、液组成都是实验直接测定的,绘制图像时只需要这几个数据,并不需要测试样的准确组成,也跟试样的量无关。

八、指导教师评语及意见:

教师签名:谭蕾年月日

气液平衡的计算Word版

《化工热力学》过程论文 题目:气液平衡的计算方法系别:化学材料与工程系班级:13级化工卓越班 姓名: 学号:1303022014 教师: 日期:2016-1-12

气液平衡的计算方法 摘要本文综合分析了多组分相平衡理论特点,主要介绍了利用Peng Robinson ( PR) 立方型状态方程进行氧、氮、氩系统气液平衡计算的方法(泡点、露点和闪蒸计算),对该计算方法的准确性进行分析和验证。 关键词立方型状态方程;气液平衡计算;泡点;露点;闪蒸

目录 1 前言 .................................................................................................................... - 3 - 2 状态方程的选择 ................................................................................................ - 4 - 3 混合规则 ............................................................................................................ - 5 - 4 气液平衡的计算 ................................................................................................ - 6 - 4.1 泡点计算[3] ............................................................................................. - 6 - 4.2 露点计算[3] ............................................................................................. - 7 - 4.3 等温闪蒸的计算 ..................................................................................... - 8 - 5 结论 .................................................................................................................... - 8 - 6 参考文献 ............................................................................................................ - 9 -

金属相图

实验 金属相图 [实验目的] 1.学会用热分析法测绘Pb - Sn 二组分金属相图。 2.掌握热分析法的测量技术与有关测量温度的方法。 [基本原理] 热分析法是先将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,将所得温度值对时间作图,所得曲线即为步冷曲线(如下图1)。每一种组成的Pb - Sn 体系均可根据其步冷曲线找出相应的转折点和水平台温度,然后在温度-成分坐标上确定相应成分的转折温度和水平台的温度,最后将转折点和恒温点分别连接起来,即为相图(如下图2)。 图1 步冷曲线 图2 步冷曲线与相图 [仪器结构] 图1 加热装置 图2 测量装置 仪器参数设置法: 最高温度:C 350℃ 加热功率:P1 400W 保温功率:P2 40W 报警时间:E1 30s 报警声音:n 0 按设置键:显示温度时就是退出了设置状态,可以进行实验。

[实验步骤] 1.配制样品。配制含锡量分别为20%,40%,61.9%,80%的铅-锡混合物各100g,装入4个样品管中,然后在样品管内插入玻璃套管(管中应有硅油,增加热传导系数),并在样品上方盖一层石墨粉; 2.将需加热的样品管放入一炉子中,将加热选择旋钮指向该加热炉(加热炉和选择旋钮上均有数字标号),并将测温传感器置于需加热的样品管中; 3.设定具体需加热的温度,加热功率和保温功率,本实验中这些参数依次设定为350o C,400W, 40W,参数设定完成后, 按下“加热”键,即进入加热状态; 4.当测量装置上的温度示值接近于330 O C时,可停止加热。待样品熔化后,用玻璃套管小心搅拌样品; 5.待温度降到需要记录的温度值时(比如305 C),可点击测量软件中的“开始实验”按钮,降温过程中,若降温速度太慢,可打开风扇;若降温速度太快,则可按“保温”键,适当增加加热量。当温度降到平台以下,停止记录。 按照上述步骤,测定不同组成金属混合物的温度—时间曲线。 [数据处理] 1.依实验数据绘制T-t步冷曲线,6根曲线绘制在同一张图上; 2.依样品的组成和步冷曲线中转折点和平台的温度绘制出Pb-Sn的T-w金属相图; 3.你所测得的Pb, Sn的熔点与教材(东北师大第90面)上的值的相对误差分别为: %, %. [问答题] 金属相图的用途有哪些? ---------------------------------------------------------------------------------------------------------------- 班级: 姓名: 学号: 实验日期: 分数: 教师:

离心式压缩机干气密封系统浅析

离心式压缩机干气密封系统浅析 1 干气密封简介 目前国内外石油化工行业普遍使用离心式压缩机来输送各种气体,主要是因为运转周期长、性能稳定。实际生产要求离心式压缩机在高转速、大气量、大压力,尤其是在压缩易燃、有害、有毒气体的条件下工作,为了防止这些气体沿压缩机轴端泄漏至大气中,就必须采用各种密封方式,保证压缩机的正常工作,保证人身和设备的安全,防止造成环境污染,同时也决定了密封装置向高密封效率、低能耗的方向发展。 在压缩机领域,轴端干气密封正逐步替代迷宫密封、浮环密封和油润滑机械密封[1]。对密封的基本要求是要保证结合部分的密闭性、工作可靠性、使用寿命长,密封装置的系统简单、结构紧凑、制造维修方便。衡量密封好坏的主要技术指标是泄漏量、寿命和使用条件[2]。 干气密封是一种新型的非接触轴向密封,由它来密封旋转机器中的气体或液体介质。与其它密封方式相比,干气密封具有泄漏量少,寿命长,能耗低,磨损小,维修量低,操作简单可靠,被密封的流体不受油污染等特点。 目前,干气密封主要应用在离心式压缩机上和轴流压缩机、透平膨胀机上。干气密封已经成为离心式压缩机正常运转和操作可靠的重要元件。 2 干气密封工作原理

图1 动环端面结构示意图 干气密封是由动环、静环、弹簧、密封圈、弹簧圈和轴套组成。动环和静环配合表面的平面度和光洁度很高,动环面上加工有一系列的螺旋形流体动压槽,槽深仅有几微米,外深内浅,如图1所示。干气密封在非运转状态时,动环与静环的密封面靠弹簧力贴合在一起。运转时,气体随着动环的旋转,被吸入动压槽内,被送到螺旋槽的根部,根部以外的一段无槽区称为密封坝,即动压槽末端没有通道。螺旋槽间为密封堰。密封坝和密封堰起到节流和密封的作用。

气液相平衡分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 气液相平衡分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6622-58 气液相平衡分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 在吸收操作中,气体总量和溶液总量都随吸收的进行而改变,但惰性气体和吸收剂的量则始终保持不变,因此,常采用物质的量比表示相的组成,以简化吸收过程的计算。 物质的量比是指混合物中一组分物质的量与另一组分物质的量的比值,用X或y表示。 吸收液中吸收质A对吸收剂S的物质的量比(摩尔比)可以表示为 XA=nA/ns (11—1) 物质的量比与摩尔分数的换算关系为 XA=工A/(1一XA) (11—2) 式中XA——吸收液中组分A对组分S的物质的量比; nA,ns——组分A与S的物质的量,kmol;

XA——吸收液中组分A的摩尔分数。 混合气体中吸收质A对惰性组分月的物质的量比可以表示为 式中YA——混合气中组分A对组分B的物质的量比; nA,nR——组分A与B的物质的量,kmol yA——混合气中组分A的摩尔分数。 在一定温度和压力下,混合气体与液相接触时,溶质便从气相向液相转移,而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶质在液相中的浓度逐渐增加,溶质返回气相的量也逐渐增大,当单位时间内溶于液相中的溶质量与从液相返回气相的溶质量相等时,气相和液相的量及组成均不再改变,达到动态平衡。它是吸收过程的极限,它们之间的关系称为相平衡关系。 在一定温度下,当气相总压力不高时,稀溶液中溶质的平衡浓度和该气体的平衡分压的平衡关系可用

实验3 金属相图实验报告dyl

物理化学实验备课材料 实验3 热电偶温度计的校正及金属相图 一、基本介绍 一个多相体系的状态可用热力学函数来表达,也可用几何图形来描述。表示相平衡体系状态与影响相平衡强度因素关系的几何图形叫平衡状态图,简称相固,也叫状态图。由于常见的影响相平衡的强度因素是温度、压力和浓度,所以也可以说,相图是描述多相体系的状态与温度、压力和组成关系的几何图形。 相平衡的研究对生产和科学研究具有重大意义。钢铁和合金冶炼生产条件的控制、硅酸盐(水泥、耐火材料等)生产的配料比、盐湖中无机盐的提取等,都需要相干衡的知识。又如对物质进行提纯(如制备半导体材料)、配制各种不同低熔点的金屑台金等,都要考虑到有关相干衡问题。化工生产中产品的分离和提纯是非常重要的,其中溶解和结晶、冷凝和熔融、气化和升华等都属相交过程。 总之.由于相变过程和相干衡问题到处存在,研究和革捏相变过程的规体,用以解释有关的自然现象和指导生产甚为重要。 二、实验目的 1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图; 2、掌握热电势法测定金属相图的方法; 3、掌握热电偶温度计的使用,学习双元相图的绘制。。 三、实验原理 绘制固液二相平衡曲线的方法,常用的有溶解度法和热分析法。溶解度法是指在确定的温度下,直接测定固液二相平衡时溶液的浓度,然后依据澜得的温度和相应的溶解度数据绘制成相固。此法适用于常温下易澜定组成的体系,如水盐体系等。热分析法是指在常温下不便直接澜定固液乎衡时溶液组成的体系(如合金和有机化合物的体系).通常利用相变时的热效应来测定组成已确定之体系的温度,然后依据选定的一系列不同组成的二组分体系所测定的温度,绘制相图。此法简单易行,应用顾广。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态。因此.体系的冷却速度必须足够慢.才能得到较好的结果。体系温度的测量,可用水银温度计,也可选用合适的热电偶。由于水银温度计的测量范围有限,而且其易破损,所以目前大都采用热电偶来进行测温。用热电偶测温其优点是灵敏度高、重现性好、量度宽。而且由于它是将非电信号转换为电信号,故将它与电子电热差计配合使用,可自动记录温度—时间曲线。原则上也可用升温过程中的实验数据作温度-时间关系曲线,但由于升温过程中温度很难控制,不易做到均匀加热,由此产生的误差大于冷却过程,所以通常都绘制冷却曲线。 本实验用热电偶作为感温元件,自动平衡电位差计测量各样晶冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图.

干气密封系统介绍

干气密封系统: (1)简介 干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封,主要应用于天然气管线、炼油、石油化工、化工等行业的透平压缩机、透平膨胀机等旋转机械。干气密封最早是由螺旋槽气体轴承转化而来的,和其他机械密封相比,其主要区别是在旋转环或静止环端面上(或者同时在这两个端面上)刻有浅槽,当密封运转时,在密封端面形成气膜,使之脱离接触,因而端面几乎无磨损。其可靠性高,使用寿命长,密封气泄漏量小,功耗极低,工艺回路无油污染,工艺气也不污染润滑油系统。 (2)工艺流程及说明 (a)氮气流程 氮气从氮气罐引出经粗滤器与精滤器,过滤精度达到1u后分为四路。 两路前置密封气(缓冲气):一路经孔板进入高压端密封腔,另一路经孔板进入低压端密封腔。进入前置密封腔体内氮气主要是防止机体内介质气污染密封端面,用孔板控制氮气消耗量。两路主密封气:一路经流量计进入高压端主密封腔,另一路经流量计进入低压端主密封腔。压缩机运转时,依靠刻在动环上螺旋槽的泵送作用,打开密封端面并起润滑、冷却作用。一套主密封氮气正常消耗量≤1NM3/h。 (b)仪表风流程 仪表风从装置仪表风管网引出经过滤器,过滤到3u精度后,至干气密封柜,作为隔离气。两路后置密封气(隔离气):一路经孔板进入低压端后置密封腔,另一路经孔板进入高压端后置密封腔。进入后置密封腔体内仪表风主要是防止润滑油污染密封端面,用孔板控制仪表风消耗量。 (3)报警联锁说明 主密封气与前置缓冲气压差正常值:≥0.3Mpa;低报:0.1Mpa;低低报:0.05Mpa。 (4)操作规程 干气密封投用: (a)运行前要对管路进行彻底吹扫,防止管内焊渣等杂质进入、密封腔,清洁度lu,并将所有阀门关闭,处于待命状态。 (b)在机组油运前至少十分钟,必须先通后置隔离气,且在机组运行中不可中断,在机组进气前,投用缓冲气,当机组进气后,前置密封气压力应比平衡管处压力高0.05 Mpa。 (c)开机前必须投用主密封气。 干气密封停用: (a)压缩机停车后需降低润滑油总管压力防止润滑油进入密封腔,造成密封损坏。 (b)压缩机正常停车后,缓冲气及主密封气不能立即停用,须等机体内无压力后,且介质气置换完全后,才可停用。 (c)压缩机正常停车后,后置密封隔离气必须在润滑油循环停止十分钟后,才可关闭。 精密流量计投用: 投用顺序:流量计副线阀开—流量计下游阀开一流量计上游阀开一流量计副线阀关(5)日常操作要求 过滤器差压是测量粗过滤器与精过滤器是否堵塞,差压为60Kpa报警,此时需更换过滤器芯;更换前应先打开另一路过滤器前后的阀门,再关闭己堵过滤器前后的阀门,放空后既可更换。 (6)干气密封事故处理 停氮气:则干气密封停机联锁动作,按紧急停气压机组处理。

气液两相流 整理

第一章概论 相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开 两相流动的处理方法:双流体瞬态模拟方法和精确描述物理现象的稳态机理模型是多相管流研究的主要方法 目前研究存在的问题:1、多相流问题未得到解析解;2、油气水三相流的研究不够深入;3、水平井段变质量流动研究较少;4、缺乏向下流动的综合机理模型;5、缺乏专用研究仪器 气液两相流的分类:1、细分散体系:细小的液滴或气泡均匀分散在连续相中 2、粗分散体系:较大的气泡或液滴分散在连续相中 3、混合流动型:两相均非连续相 4、分层流动:两相均为连续相 气液两相流的基本特征: 1、体系中存在相界面:两相之间也存在力的作用,出现质量和能量的交换时伴随着机械能的损失 2、两相的分布情况多种多样:两相流动中两相介质的分布称为流型 3、两相流动中存在滑脱现象:相间速度的差异称为滑脱,滑脱将产生附加的能量损失 4、沿程流体体积流量有很大变化,质量流量不变 气液两相流研究方法: 1、经验方法:从气液两相流动的物理概念出发,或者使用因次分析法,或者根据流动的基本微分方程式,得到反映某一特定的两相流动过程的一些无因次参数,然后依据实验数据整理出描述这一流动过程的经验关系式。 优点:使用方便,在一定条件下能取得好的结果 缺点:使用有局限性,且很难从其中得出更深层次的关系 2、半经验方法:根据所研究的气液两相流动过程的特点,采用适当的假设和简化,再从两相流动的基本方程式出发,求得描述这一流动过程的函数关系式,最后用实验方法确定出函数关系式中的经验系数。 优点:有一定的理论基础,应用广泛 缺点:存在简化和假设,具有不准确性 3、理论分析方法:针对各种流动过程的特点,应用流体力学方法对其流动特性进行分析,进而建立起描述这一流动过程的解析关系式。 优点:以理论分析为基础,可以得到解析关系式 缺点:建立关系式困难,求解复杂 研究气液两相流应考虑的几个问题: 1、不能简单地用层流或紊流来描述气液两相流 2、水平或倾斜流动是轴不对称的 3、由于相界面的存在增加了研究的复杂性 4、总能量方程中应考虑与表面形成的能量问题 5、多相流动中各相的温度、组分的浓度都不是均匀的,相之间有传热和传质 6、各相流速不同,出现滑脱问题,是多相流研究的核心与重点 流动型态:相流动中两相介质的分布状况称为流型或两相流动结构 流型图:描述流型变化及其界限的图。把流型变换的实验数据加以总结归纳后,按照两个或多个主要的流动参数绘成曲线,便可以得到流型图。 影响流型的因素:1、各相介质的体积比例2、介质的流速3、各相的物理及化学性质(密度、粘度界面张力等)4、流道的几何形状5、壁面特性6、管道的安装方式 流型分类:1、根据两相介质分布的外形划分;垂直气液两相流:泡状流、弹状流、段塞流、环状流、雾状流。水平气液两相流:泡状流、团状流、层状流、波状流、冲击流、环状流、雾状流。 2、按流动的数学模型或流体的分散程度划分为:分散流、间歇流、分离流。 两种分类方法的比较:第一类划分方法较为直观;第二类划分方法便于进行数学处理 气液两相流的特性参数: 质量流量:单位时间内流过过流断面的流体质量,kg/s, 气相质量流量:单位时间内流过过流断面的气体质量,kg/s, l g G G G+ =

金属相图实验步骤(学生)

实验八金属相图 一、实验目的 1、学会用热分析法测绘铅-锡二组分金属相图; 2、掌握热分析法的测量技术; 3、熟悉ZR-HX金属相图控温仪、ZR-08金属相图升温电炉等仪器。 二、基本原理 相图是用以研究体系的状态随浓度、温度、压力等变量的改变而发生变化的图形,它可以表示在指定条件下存在的相数和各相的组成,对蒸汽压较小的二组分凝聚体系,常以温度-组成图来描述。 热分析法是绘制相图常用的基本方法之一。这种方法是通过观察体系在冷却时温度随时间的变化关系,来判断有无相变的发生。通常的做法是先将体系全部融化,然后让其在一定环境中自行冷却,并每隔一定时间记录一次温度,以温度(T)为纵坐标,时间(t)为横坐标,画出步冷曲线。当体系均匀冷却时,如果体系不发生相变,则体系的温度随时间的变化将是均匀的,冷却也较快(如图8-1中ab线段)。若在冷却过程中发生了相变,由于在相变过程中伴随着热效应,所以体系温度的降温速度随时间的变化将发生改变,体系的冷却速度减慢,步冷曲线就出现转折(如图8-1中bc 线段)。当熔液继续冷却到某一点时,由于此时熔液的组成已达到最低共熔混合物的组成,故有最低共熔混合物析出,在最低共熔混合物完全凝固以前,体系温度保持不变,因此步冷曲线出现平台(如图中cd线段)。当熔液完全凝固后,温度才迅速下降(见图中de线段)。 由此可知,对组成一定的二组分低共熔混合物体系来说,可以根据它的步冷曲线,判断有固体析出时的温度和最低共熔点的温度。如果作出一系列组成不同的体系的步冷曲线,从中找出各转折点,即能画出二组分体系最简单的相图(温度-组成图)。不同组成熔液的步冷曲线与对应相图的关系可以从8-2中看出。 图8-2 图8-1 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态。因此,体系的冷却速度必须足够慢,才能得到较好的结果。

气液相平衡分析详细版

文件编号:GD/FS-2042 (解决方案范本系列) 气液相平衡分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

气液相平衡分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在吸收操作中,气体总量和溶液总量都随吸收的进行而改变,但惰性气体和吸收剂的量则始终保持不变,因此,常采用物质的量比表示相的组成,以简化吸收过程的计算。 物质的量比是指混合物中一组分物质的量与另一组分物质的量的比值,用X或y表示。 吸收液中吸收质A对吸收剂S的物质的量比(摩尔比)可以表示为 XA=nA/ns (11—1) 物质的量比与摩尔分数的换算关系为 XA=工A/(1一XA) (11—2) 式中XA——吸收液中组分A对组分S的物质

的量比; nA,ns——组分A与S的物质的量,kmol; XA——吸收液中组分A的摩尔分数。 混合气体中吸收质A对惰性组分月的物质的量比可以表示为 式中YA——混合气中组分A对组分B的物质的量比; nA,nR——组分A与B的物质的量,kmol yA——混合气中组分A的摩尔分数。 在一定温度和压力下,混合气体与液相接触时,溶质便从气相向液相转移,而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶质在液相中的浓度逐渐增加,溶质返回气相的量也逐渐增大,当单位时间内溶于液相中的溶质量与从液相返回气相的溶质量相

简单二元系统相图的绘制

实验一 简单二元系统相图的绘制 一、目的与要求: 1.用热分析法测绘P b -S n 二元金属相图。 2.了解热分析法的测量技术与热电偶测量温度的方法。 二、原理: 相图是多相体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡的情况(相对数目及性质等),故称为相图。二元或多元体系的相图常以组成为自变量其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系的性质以及多相体系相平衡情况的变化,都要用到相图。 图1-1是一种类型的二元简单低共熔物相图,图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B%,在acb 线的上方,体系只有一个相(液相)存在,在ecf 以下,体系有二个相(晶体A 和B )存在,在ace 包围的面积中,一个固相(A )和一个液相(A 在B 中的饱和熔化物)共存,在bef 所包围的面积中,也是一个固相(B )和一个液相(B 和A 中的饱和熔化物)共存。图中C 是ace 与bef 两个相区的交点,有三相(晶相A 、晶相B 、饱和熔化物)共存。所以测绘相图就是要将相图中这些分隔相区的线画出来。常用的方法就是热分析实验法。 热分析法所观察的物理性质是被研究体系的温度,将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,所以得历次温度值对时间作图,得一曲线,一般称为步冷曲线或冷却曲线。 在冷却过程中,若体系发生相变,就伴随着一定热效应,因此步冷曲线的斜率发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点子,若图1-2是图1-1中组成为P 的体系步冷曲线,则点2、3就分别相当于相图中的点G 、H 。因此,取一系列组成不同的体系,作出它们的步冷曲线,求出各转折点,即能画出二元体系的最简单相图(对复杂的相图,还必须配合其它方法,方能画出)。 从相图定义可知,用热分析法测绘相图的要点有: 1.被测体系必须时时处于或非常接近于相平衡状态。因此,体系冷却时,冷却速度必须足够慢,以保证上述条件近于实现。 2.测定时被测体系的组成必须与原来配制样品时的组成值一致,如果测定过程中样品处于不均匀或样品发生氧化变质。这一要求就不能实现。 3.测得的温度值必须能真正反映体系所测时间的温度值,因此,测温仪器的热容必须H P 5 G a b 冷却曲线 Bi(s L+Bi(s) L A B t T T B% a b c e f 1 2 3 4 图1-2 图1-1

干气密封的工作原理和特点

干气密封的工作原理和特点 干气密封是一种新型的非接触式轴封。干气密封在结构上与普通的机械密封基本相同,重要的区别在于干气密封其中的一个密封环上面加工有均匀分布的流体动压槽。运转时进入槽中的气体受到压缩,在密封环之间形成局部的高压区,使密封面开启,从而能在非接触状态下实现密封。 干气密封与普通的机械密封相比主要有以下的优点: (1)省去了普通密封油系统以及用于驱动密封油系统运转的附加功率负荷。 (2)大大减小了计划外维修费用和生产停车。 (3)避免了工艺气体被油污染的可能性。 (4)密封气体泄漏量小。 (5)维护费用低,经济实用性好。 (6)密封驱动功率消耗小。 (7)密封寿命长,运行可靠。 该压缩机采用的是GCTL01/L99型带中间迷宫的串联式干气密封,是干气密封中安全性、可靠性最高的一种结构。这种结构可保证工艺介质不会泄漏至大气环境中,同时可以保证干气密封引入的外部气源氮气不会漏入工艺介质中。 串联式干气密封相当于前后串联布置的两组单端面干气密封。第一级干气密封为主密封,基本上承受全部压差;第二级干气密封为辅助安全密封,正常运行时在很低的压力下工作,当第一级密封失效时,第二级密封可以迅速承受较大的压差,起到密封作用,同时可防止一级密封失效时工艺气体大量向大气环境中泄漏,保证机组安全停车。大气端的隔离密封可避免轴承箱中的润滑油汽进入干气密封区域,保证干气密封在洁净、干燥的环境中运行。 为了保证干气密封运行的可靠性,每套密封系统都配有与之相匹配的监测、控制系统,其作用是一方面为干气密封提供干净、干燥的气源。另一方面对干气密封的运行状况进行实时监测,使密封工作在最佳状态,当密封失效时系统能及时报警。监控系统对密封是否正常运行的监测主要是通过对泄漏气体的流量及相关压力的监测来进行的。

二元合金相图的测定实验

实验报告 实验名称:金属的塑性变形 组别第6组 学号、姓名:2012034036 谈鑫学号、姓名:2012034035 何韦唯学号、姓名:2012034034 周卫东学号、姓名:2012034037 安望学号、姓名:2012034038 罗伟学号、姓名:2012034039 陈科宇 2014年 5月 28日

一、实验目的 1.用热分析法测熔融体步冷曲线,再绘制Pb-Sn二元金属相图。 2.了解热分析法的实验技术热电偶测量温度的方法。 二、实验仪器 SWKY型数字控温仪一台;KWL-08型可控升降温电炉一台; 三、实验原理 相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。 图4.1是一种类型的二元简单低共熔物相图。图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在; 在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存; 在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。测绘相图就是要将相图中这些分隔相区的线画出来。常用的实验方法是热分析法。 热分析法所观察的物理性质是被研究体系的温度。将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。冷却过程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。若图4.2是图4.1中组成为P的体系的步冷曲线,则点2、3就分别相当于相图中的点G、H。因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,

相平衡计算

2 相平衡计算 迄今已有很多专著介绍相平衡的计算方法,见文献[2-1~2~5] 。一些大型过程模拟软件,如Pro II 和Aspen 等,可以提供很完善的计算方法。本章简单介绍相平衡计算的基本原理, 至于具体的编程技巧等方面的细节可以参看上述专著。本章花比较多的篇幅介绍相平衡计算的无模型法及其在气液平衡数据测定中的应用,以及气液平衡实验数据的热力学一致性检验[2-6,7],这部分内容在其他专著中介绍得相对较少。 2.1 相平衡计算——有模型法为解决一个具体的相平衡问题,在有了切题的普遍热力学关系式,并确定了独立变量后,还应输入那些为表征系统所必需的性质。本节讨论的相平衡计算,主要采用模型来输入那些性质。 相平衡问题往往表现为:已知一个相的组成x( ),求另一相的组成x( );或已经总组成z,求分相后各相组成x( )和x( )。定义组分k 在和相中分配的相平衡常数K k(αβ)为: K k(αβ)x k(α)/ x k(β)(2-1.1) 相平衡问题的中心,就是要计算每一组分的相平衡常数。 对于计算相平衡的问题,最切题的普遍热力学关系式即相平衡判据。按式(1-5.15)和(1-6.13), k ( ) k ( ),f k( )f k( ),k 1,2, ,K (2-1.2) 在第一章中,已介绍了两种计算逸度的方法,即状态方程法和活 度因子法,具体应用于式(2-1.2) 时有三种选择: (1) 和相采用统一的状态方程。以式(1-6.21)代入式(2-1.2), px k( ) k( )px k( ) k( )(2-1.3) 这种选择可用于气液和液液平衡的计算,特别是高压气液平衡的计算 (2) 相(例如气相) 采用状态方程,相(例如液、固相)采用活度因子关联式。以式(1-6.21)和(1-7.18)代入式(2-1.2),对于不同类型的活度或活度因子,可分别写出: (2-1.5) K H( k)x(k ) k(,II) (2-1.6) K H(k)(m)(m k( )/m o) k(,III)(2-1.7) (αβ) k (β)/( α) kk (2-1.4)

气液相平衡关系

4.2气液相平衡关系 本节教学要求 1、重点掌握的内容:相平衡的影响因素及相平衡关系在吸收过程中的应用; 2、熟悉的内容:溶解度、平衡状态、平衡分压、亨利定律。 4.2.1 相组成表示方法 1.质量分率与摩尔分率 质量分率:质量分率是指在混合物中某组分的质量占混合物总质量的分率。对于混合物中的A 组分有 m m w A A = (4-1) 式中 A w ——组分A 的质量分率; A m ——混合物中组分A 的质量,kg ; m ——混合物总质量,kg 。 1N B A =???++w w w (4-2) 摩尔分率:摩尔分率是指在混合物中某组分的摩尔数n A 占混合物总摩尔数n 的分率。对于混合物中的A 组分有 气相:n n y A A = (4-3) 液相:n n x A A = (4-4) 式中 A y 、A x ——分别为组分A 在气相和液相中的摩尔分率; A n ——液相或气相中组分A 的摩尔数, n ——液相或气相的总摩尔数。 1N B A =???++y y y (4-5) 1N B A =???++x x x (4-6) 质量分率与摩尔分率的关系为:

N N B B A A A A x /M w /M w /M w /M w A ???++= (4-7) 式中 B A M M 、——分别为组分A 、B 的分子量。 2.摩尔比 摩尔比是指混合物中某组分A 的摩尔数与惰性组分B (不参加传质的组分)的摩尔数之比,其定义式为 B A A n n Y = (4-8) B A A n n X = (4-9) 式中 A Y 、A X ——分别为组分A 在气相和液相中的摩尔比; 摩尔分率与摩尔比的关系为 X X x += 1 (4-10) Y Y y +=1 (4-11) -x x X 1= (4-12) -y y Y 1= (4-13) 【例5-1】 在一常压、298K 的吸收塔内,用水吸收混合气中的SO 2。已知混合气体中含SO 2的体积百分比为20%,其余组分可看作惰性气体,出塔气体中含SO 2体积百分比为2%,试分别用摩尔分率、摩尔比和摩尔浓度表示出塔气体中SO 2的组成。 解: 混合气可视为理想气体,以下标2表示出塔气体的状态。 02.02=y 02.002 .0102.01222≈-==-y y Y kPa 026.202.03.10122A =?==py p 34A2A2A2kmol/m 10018.8298 314.8026.2?=?=== RT p V n c

试验五金属相图

实验五 金属相图 一 实验目的 1. 了解热分析的测量技术 2. 掌握热分析法绘制Pb - Sn 合金相图的方法 二 实验原理 物质在不同的温度、压力和组成下,可以处于不同的状态。研究多相平衡体系的状态如何随温度、压力、浓度而变化,并用几何图形表示出来,这种图形称为相图。二组分体系的相图分为气-液体系和固-液体系两大类。本实验为后者也称凝聚体系,它受压力影响很小,其相图常用温度-组成的平面图表示。 热分析法(步冷曲线法)是绘制相图的常用方法之一。这种方法是通过观察体系在冷却(或加热)时温度随时间的变化关系,来判断有无相变的发生。通常的做法是先将体系全部熔化,然后让其在一定环境中自行冷却;并每隔一定的时间(例如半分钟或一分钟)记录一次温度。以温度(T )为纵坐标,时间(t )为横坐标,画出步冷曲线T -t 图。图5-1是二组分金属体系的一种常见类型的步冷曲线。 当体系均匀冷却时,如果体系不发生相变, 则体系的温度随时间的变化将是均匀的, 冷却也较快(如图中ab 线段)。若在冷却 过程中发生了相变,由于在相变过程中伴 随着热效应,所以体系温度随时间的变化 速度将发生改变,体系的冷却速度减慢, 步冷曲线就出现转折即拐点(如图中b 点 所示)。当熔液继续冷却到某一点时(例如 图中c 点),由于此时熔液的组成已达到最 低共熔混合物的组成,故有最低共熔混合物 析出,在最低共熔混合物完全凝固以前,体 系温度保持不变,因此步冷曲线出现水平线 段即平台(如图中cd 段)。当熔液完全凝固 后,温度才迅速下降(见图中de 线段)。 (a) 步冷曲线 图 5-1 步冷曲线 (b) A -B 体系相图 图 5-2 步冷曲线与相图

干气密封基本原理及投用步骤

1、干气密封基本原理 干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。当由气体压力和弹 簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。 2、干气密封投用步骤 注意事项:a、严禁在不投用干气密封的情况下,打开压缩机的出入口阀。 b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。 c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。 d、必须确保排放火炬和放空的背压小于进入干气密封的密封气压力。 e、在开机后应尽量避免在干气密封在低于3000转以下长时间 运行。 f、严禁在增压泵活塞杆漏气大于50KPa的情况下启动增压泵。 步骤:干气密封系统安装后,在一级,二级,后置隔离气入口法兰端口处接上洁净的仪表风或低压氮气连续吹扫4~6小时以上,直到用细纱漂白布贴近六个出口吹扫5分钟以上,用眼仔细观察确无灰尘、油污、水分等杂质为合格。吹扫干净后关闭所有阀门,处于待命状态。 打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。 打开低压N气去干气密封系统阀门,充分脱液后进行氮气置换,时间为四小时,并通过一级密封气和平衡管差压控制阀 调节一级密封高低压端流量不低于117Nm3/h(柴油不低于250Nm3/h) 二级密封高低压端流量不低于2.9Nm3/h(柴油不低于6.5Nm3/h)排放火炬流量7-11Nm3/h,(柴油5-8Nm3/h),并通过自力调节阀使阀后压力不低于0.185MPa(柴油0.1 MPa) 后置隔离气高低压端,流量不低于42.81 Nm3/h,(柴油15 Nm3/h),并通过自力调节阀使阀后压力不低于0.068MPa(柴油不低于0.01 MPa)。待

Bi-Sn 二元金属相图的绘制(热电势法)实验报告

Sn—Bi二元金属相图的绘制(热电势法) 一、实验目的 1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图; 2、掌握热电势法测定金属相图的方法; 3、掌握热电偶温度计的使用,学习双元相图的绘制; 二、实验原理 研究多相体系的状态随浓度、温度、压力等变量的改变而发生变化的规律,并用图形来表示体系状态的变化,这种图形就称为相图或称为状态图。用热分析法可绘制相图,测绘一系列不同组成的金属混合物的步冷线,然后把各步冷曲线上物态变化的温度绘在温度--组成图上,即把图中各步冷曲线的转折点和水平段所对应的温度用。表示在温度--组成图中,即得到该体系的相图。液相完全互溶的二组分体系,在凝固时有的能完全互溶成为固溶体,有的仅部分互溶,如本实验的Bi--Sn体系。 本实验用热电偶作为感温元件,自动平衡电位差计测量各样品冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图。 三、实验仪器和试剂 坩埚电炉(含控温仪);自动平衡电位差计;冷却保温装置;样品管;杜瓦瓶;镍铬---镍铝(或含其他材料);热电偶. 锡(AR)232;铋(AR)271 四、实验步骤 1、准备工作 在杜瓦瓶中装入室温水,按图连接路线并检查线路。热电偶调零:在测温热电偶为室温温度时开启记录仪开关,调量程为10mV,走纸温度为0,调节零旋纽使记录笔位于记录纸左边零线处。这时位置所指温度热电势为0,代表温度为室温。 2、测量 (1)加热试样: 置纯Sn样品坩埚于管式电炉中,置电热偶温度计于坩埚中细玻璃管内,并插入底部.调调压器使加热电压为150mV,加热至坩埚中细玻璃管能动则说明试样已 熔化,停止加热。 (2)测量步冷曲线 当发现记录笔开始向左移动(降温)时,放下记录笔,调走纸速度为4mm/min,开始测量。当平台出现后一会抬起记录笔并调节走纸速度为0。 同上步骤,依次测量含Bi 30%,58% 的混合物。 五、实验数据记录及处理 1.测纯Sn的各样品电势变化

气液相平衡方面的基础知识汇总

气 液 相 平 衡 相是指系统的某一部分具有相的物理和化学性质,具有相同的组成,并且与 另外的相以一定的边界隔开。出现在世有产品里的大多数的相相是液态烃和气相。水也是普遍存在的另一个液态相。在给定的系统里,当描述变化的变量随着时间和位置的改变而保持恒定时,液态烃、气相和水这些相将会平衡共存。而决定平衡状态的主要变量是系统的温度,压力和组分。 对于设计表面分离装置和改进组分模型,不同相能够共存的条件是非常值得考虑并且具有实践价值的重要问题。这些计算的类型是以平衡常数的原理为基础的。 一、 平衡常数 一给定组分的平衡常数i K 是指组分的气相的摩尔分数yi 与液相摩尔分数xi 之比。在数学上,它们的关系是i i i x y K /= (5----1) 在41003.7?2/m kg (100磅/2英寸)的压力下,Raoult 和Dalton 的定律为对于理想溶液方法提供了一个预测平衡常数的简化的方法。Raoult 定律是指多组分系统中单一组分所产生的局部压力i P 等于它的液相摩尔分数i x 与该祖父的气相压力Pvi 的乘积即i P =i x Pvi (5----2) i P ------组分i 的局部压力,磅/2英寸) P v i ------组分i 的气相压力,磅/2英寸) i x ------组分i 的液相摩尔分数 Dalton 定律是指某一组分的局部压力等于它的气相摩尔分数与系统的

总压力的乘积,即i P =i y P (5----3) P------系统总压力,磅/2英寸 在平衡状态下,根据上面的定律可知,被某一组分气相作用产生的局部压力必须与该液相作用产生的局部压力平衡。因此,将描述两大定律的方程结合得 i x Pvi =i y P ,整理以上关系式并代入平衡常数定义式得 i y /i x =Pvi /P=i K (5----4) 这个方程表明对理想溶液,不管烃类混合物的组分如何,平衡常数仅仅有体现系统压力和温度的作用。(第一章表明,组分的气相压力有体现温度的作用。) 现阶段,介绍并给以下的术语下定义是很有必要的。 i Z ------给定的烃类混合物中组分i 的摩尔分数, n ------烃类混合物的总摩尔数, l n ------液相的摩尔总数, v n ------气相的摩尔总数。 由定义可知, v l n n n += (5----5) 这个方程表明系统总的摩尔数与气相的摩尔数和液相的摩尔数之和是相等的。 已知组分的物质平衡的结果: i Z n =i x l n + i y v n (5----6) 在这里 i Z n ------组分i 在系统里的总摩尔数, i x l n ------组分i 在液相里的总摩尔数, i y v n ------组分i 在气相里的总摩尔数。

合金相图实验报告

一.实验目的 1.用热分析法测绘Sn-Bi二元低共熔体系的相图 2.学习步冷曲线绘制相图的方法 二.实验原理 相图是多相体(二相或二相以上)处于相平衡状态时体系的某种物理性质对体系的某一自变量作图所得的图形(体系的其它自变量维持不变),二元和多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同条件下的相平衡情况,因此研究相体系的性质,以及多相平衡情况的变化要用相图的知识。 AB表示两个组分的名称,纵坐标是温度T,横坐标 是B的百分含量abc线上,体系只有液相存在,ace 所围的面积中有固相A及液相存在,bcf所围的中 有B晶体和个液相共存,c点有三相(AB晶体和饱 和熔化物)。 测绘相图就是要将图中这些分离相区的线画出来, 常用的实验方法是热分析法。所观察的物理性质是 被研究体系的温度。将体系加热熔融成均匀液体,然后冷却,每隔一定时间记录温度一次,一温度对时间作图,得到步冷曲线。 当一定组成的熔化物冷却时,最初温度随时间逐渐下降达到相变温度时,一种组分开始析出,随着固体的析出而放出凝固潜热,使体系冷却速度变慢,步冷曲线的斜率发生变化而出现转折点,转折点的温度即是相变温度。继续冷却的过程中,某组分析出的量逐渐增多而残留溶液中的量则逐渐减少,直到低共熔温度时,液相达到低共熔组成,两种组分同时互相饱和,两种组分的晶体同时析出,这时继续冷却温度将保持不变,步冷曲线出现一水平部分,直到全部溶液变为固体后温度才开始降低,水平停顿温度为最低共熔点温度。 如果体系是纯组分,冷却过程中仅在其熔点出现温度停顿,步冷曲线的水平部分是纯物质的熔点,图中b是图1中组成为P体系的步冷曲线,点2,3分别相当于图1中的G,H。因此取一系列不同组成的体系,做出它们的步冷曲线求出其转折点,就能画出相图。但是在实验过程中有时会出现过冷现象,这时必须外推求得真正的转折点。

相关主题
文本预览
相关文档 最新文档