当前位置:文档之家› 磁盘阵列故障分析处理报告

磁盘阵列故障分析处理报告

磁盘阵列故障分析处理报告
磁盘阵列故障分析处理报告

@@@@@@磁盘阵列

故障分析处理报告

报告提交人:@@@

现场工程师:@@@@@@

提交日期:2009年03月31日——————————————————————————一、故障描述

2009年3月22日@@@@平安城市项目使用的两台NAS存储服务器,其中有一台设备出现物理磁盘丢失现象,我方与海康威视技术人员及相关人员到现场进行调试了解,具体情况如下:

@@@@平安城市项目所使用的存储服务器的型号是:

DS-A1016R;采用RAID 5 冗余磁盘阵列;磁盘存储阵列和存储管理服务器通过ISCSI 协议做IP SAN网络数据存储;其中有一台NAS存储服务器设备出现磁盘丢失阵列报错现象。

二、处理过程

3月22日晚上10点,出现磁盘阵列无法读写数据的情况。现场通过查找NAS 存储服务器事件日志记录发现第二块阵列控制卡的第3块和第8块物理磁盘有扇区坏道报错记录,导致NAS存储服务器出现磁盘丢失阵列报错现象;出现两块物理磁盘有坏道扇区情况下必须将有坏道的磁盘扇区

克隆到无坏道的磁盘扇区下,才能重新重构阵列恢复丢失的数据;

第 1 页共 5 页

3月23日将第3块硬盘克隆到新硬盘,整个克隆过程大概需要6个小时。克隆完毕后,将克隆好的新硬盘装回磁盘阵列柜,重启磁盘阵列柜,磁盘阵列自动启动阵列重构。阵列重构是根据RAID5的冗余校验信息,自动修正磁盘的错误数据。因为磁盘阵列空间比较大,重构需要大概2天半时间。但3月24日凌晨1点半,重构进度达9%的时候,访问第2张控制卡的第7块硬盘报错,重构中止。查看硬盘状态,并没有显示第7快硬盘有坏道。但查看日志时,发现访问第7块硬盘时,多次出错。因此初步判定第7块硬盘校验数据出错,硬盘有损坏的征兆,但不明显。

3月24日将第7块硬盘克隆到新硬盘。克隆完毕后,将克隆好的新硬盘装回磁盘阵列柜,重启磁盘阵列,磁盘阵列自动启动重构。但3月25日凌晨2点半,重构进度达17%

的时候,访问第2张控制卡的第8块硬盘报错,重构中止。第8块硬盘有多个坏扇区,需对第8块硬盘进行克隆。

3月25日将第8块硬盘克隆到新硬盘。克隆完毕后,将克隆好的新硬盘装回磁盘阵列柜,重启磁盘阵列,磁盘阵列自动启动重构。此次重构比较顺利,到3月27日中午重构完毕。

因3月26日系统终验,而磁盘阵列在重构的过程中,能同时读写数据,因此,3月26日凌晨0点开始把数据备份到另一台磁盘阵列。

3月27日中午重构完成时,虽然阵列状态显示正常,数据能正常读写,系统依然报“盘位丢失”错误。海康威视技术人员通过阵列系统命令行界面,修复了系统错误。NAS存储服务器数据文件已得到恢复,并显示系统正常。考虑到数据的重要性,我们把数据全部备份到另一台磁盘阵列,并在刚修复的磁盘阵列柜上重建阵列。

三、故障情况分析

RAID5多用于OLTP(联机事务处理系统),其基本特征是支持大量并发用户添加和修改数据。但存取数据一般是数十条记录,其工作单位是简单的事务。因此

RAID5适合大文件的存储。但在此次系统应用中,将磁盘阵列用于卡口的图片存

储。图片小文件读写非常频繁,而且是逐张读写,非批量读写,因此,容易引起硬盘损坏。

在系统维护过程中,偶尔出现手动强制关机情况。硬盘在高速运作的过程中,

突然停电,可能会引发磁盘坏扇区。

通常磁盘在读写时发生坏扇区的情况即表示此磁盘故障,不能再作读写,甚至

有很多系统会因为不能完成读写的动作而死机,但若因为某一扇区的损坏而使工作不能完成或要更换磁盘,则使得系统性能大打折扣,而系统的维护成本也未免过高。坏扇区转移是当磁盘阵列系统发现磁盘有坏扇区时,以另一空白且无故障的扇区取代该扇区,以延长磁盘的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所

以坏扇区转移功能使磁盘阵列具有更好的容错性,同时使整个系统有最好的成本效益比。该磁盘阵列柜出现磁盘坏扇区时,会出现系统错误,而无法读写数据。因此,该磁盘阵列柜的坏扇区修复功能不强。

为了加强容错的功能以及使系统在磁盘故障的情况下能迅速的重构数据,以维持系统的性能,一般的磁盘阵列系统都可使用热备份的功能,所谓热备份是在建立磁盘阵列系统的时候,将其中一块磁盘指定为后备磁盘,此一块磁盘在平常并不操作,但若阵列中某一块磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的数据重构在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,所以数据重构很快即可完成,对系统的性能影响不大。在此次系统应用中,没意识到热备盘的重要性,没使用热备盘。因此系统出现错误的时候,手动添加热备盘,并进行重构。在故障处理过程中,发现重构过程缓慢。尽管在重构时,仍能读写数据,但不能大量的读写数据,影响了系统的正常使用。因此,该磁盘阵列柜的重构功能需进一步优化。

3月27日中午重构完成时,虽然阵列状态显示正常,数据能正常读写,系统依然报“盘位丢失”错误。海康威视技术人员通过阵列系统命令行界面,修复了系统错误。因此,

此次故障,可能由硬盘损坏以及磁盘阵列柜控制系统故障共同引起。

由于磁盘阵列目前使用的是希捷SV35.3系列硬盘非存储专业级硬盘,在阳江平安项目中要求是24×7小时不停地保存读写数据,对硬盘的性能、质量要求都非常高,从硬盘的长时间工作可靠性、抗震性能(因为磁盘阵列的盘工作在狭小的空间里,特别是抗共振能力尤为重要)、磁盘阵列多硬盘并发读写一起工作的固有技术设计角度考虑,应采用专业存储级硬盘。

四、经验总结

1、RAID5不太适合小文件的频繁读写。因此可在应用系统使用缓存机制,进行文件批量读写。

2、在日常维护过程中,尽量避免强制关机。

3、添加热备盘,当阵列出现其中一块磁盘有物理坏道后NAS存储服务器能够自行的重构阵列恢复数据。可避免晚间或无人守护时发生磁盘故障所引起的种种不便。

4、建议采用希捷专业级存储硬盘Barracuda ES系列。

信号设备故障分析与处理

信号设备故障分析与处理 一、任务在安全的基础上提高运输效率。安全是铁路运输的生命线,是铁路管理水平、人员素质、设备质量、技术装备等的综合反映。作为铁路主要技术装备的铁路信号设备,在保证行车安全、提高运输效率、传递行车信息等方面起到了不可替代的作用。改革开放以来尤其是近几年,铁路部门在积极引进国外先进技术的同时,也自主研发了一大批新技术、新设备,铁路信号设备正在向数字化、网络化、综合化、智能化发展,促进了铁路的提速和扩能,推进了铁路的跨越式发展。 二、素质要求信号工作的好坏直接关系到人民生命财产的安全。信号设备一旦发生故障,将对铁路运输带来直接影响。因此,要处理好信号设备故障,必须要有高度的事业心、强烈的责任感和熟练的业务技能。当信号设备发生故障时,能应急处理,较快地判断出故障的大致范围,查找方法正确,处理方法得当,做到机智、沉着、果断、迅速、准确。要达到这些要求,必须刻苦钻研技术,熟悉设备性能、位置,熟悉电路,熟悉处理方法;必须有实事求是的科学态度。在处理信号设备故障时,既会有成功的经验,也会有失败的教训,

要学会及时总结正反两个方面的经验教训,逐步摸索和积累经验,找出规律,防止信号设备故障的重复发生。1.要熟悉管内设备的分布情况以及电源的配置,电缆走向、端子的使用规律等。2.要熟悉管内设备的原理、性能、规格及技术标准.3.要熟悉管内设备的电路图,跑通电路图、看懂配线图.4.要会正确使用各类工具仪表。5.要遵守处理故障时的有关规定,并按程序进行。6.要能熟练地运用各种查找故障的方法。 三、故障处理方法(一)信号设备故障的分类1、按故障的稳定性分(1)稳定型设备故障。设备故障发生后,设备故障状态下的电气特性保持稳定(电流、电压)。如轨道电路、道岔表示、信号机红灯点灯等。

发动机常见故障分析与处理

发动机常见故障分析与处理 一、故障分类:发动机控制电路故障,发动机自身故障,其它外部故障。排除故障思路:原则上先排除控制电路故障——再排除发动机自身故障——后排除其它外部故障。 二、常见故障现象及分析处理(以下疏理的是针对不同故障现象可能的原因,编者尽量按照排查故障的思路流程按照顺序罗列,考虑到不同检修人员的技术能力和对不同大机的熟悉程度等因素,仅为检修人员提供参考的流程): 1、启动困难或不能启动。(电气控制的原因见电气故障,这里不再叙述) 原因分析及处理:(前五项为操作人员自己可查,后面的需要经过发动机专业培训的人员进行检查) A、环境温度过低。处理:对燃油箱安装预热装置;更换燃油;检查预热火花塞状况。 B、电瓶无电或电瓶损坏。处理:给电瓶充电或更换新电瓶。 C、启动电机故障。原因:启动电机无动作,检查启动电机是否得电,如不得电,则检查或检查外部控制电路是否有电压进入,如得电,检查启动电机连线是否松动或锈蚀(电压标准:24V的电压测量应不低于22.18v)。启动电机仍然无动作,判断启动电机损坏。处理:启动电机一般损坏的原因可能是电磁阀损坏或电机碳刷磨损,修理或更换启动电机。现场临时应急处理启动电机损坏故障方法:手动拉起停机电磁阀开启;采用连接线或长螺丝刀连接启动电机的电磁离合器控制线桩头和电源线桩头2~3秒,带动发动机启动后立即断开(此方法操作不当对发动机有一定的伤害,为应急情况下使用)。 C、燃油不足导致无法吸上燃油或燃油质量及燃油供油管路问题。处理:⑴、检查油位并检查油箱排气孔是否堵塞造成吸油不到位。⑵、检查管路有否漏气情况。 ⑶、检查管路有无脏污。⑷、燃油滤芯的密封圈是否损伤,配合是否正确。⑸、燃油软管是否有损伤、老化和折叠现象。⑹、柴油管中空心螺丝的铜垫是否变形。 ⑺、柴油滤芯是否脏污。

信号分析与处理习题

2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32621=< =Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652=>=Ωh ,所以y 2(t )失真。 3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω )表示下列序列的傅里叶变换: (1) )1()1()(1n x n x n x --+-= (2) )]()([2 1 )(2n x n x n x -+= * 分析:利用序列翻褶后的时移性质和线性性质来求解,即 )()(ωj e X n x ?,)()(ωj e X n x -?- )()(ωωj m j e X e n m x --?- 解:(1)由于)()]([ω j e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则 )()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=-- 故ωωωωω cos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ω j e X n x DTFT * * =- 故)](Re[2 ) ()()]([2ωωωj j j e X e X e X n x DTFT =+= * 3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):

信号分析与处理答案第二版完整版

信号分析与处理答案第 二版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第二章习题参考解答 求下列系统的阶跃响应和冲激响应。 (1) 解当激励为时,响应为,即: 由于方程简单,可利用迭代法求解: ,, …, 由此可归纳出的表达式: 利用阶跃响应和冲激响应的关系,可以求得阶跃响应: (2) 解 (a)求冲激响应 ,当时,。 特征方程,解得特征根为。所以: …(2.1.2.1) 通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1): …(2.1.2.2) 可验证满足式(2.1.2.2),所以: (b)求阶跃响应 通解为 特解形式为,,代入原方程有,即 完全解为 通过原方程迭代之,,由此可得 解得,。所以阶跃响应为: (3)

解 (4) 解 当t>0时,原方程变为:。 …(2.1.3.1) …(2.1.3.2) 将(2.1.3.1)、式代入原方程,比较两边的系数得: 阶跃响应: 求下列离散序列的卷积和。 (1) 解用表 格法求 解 (2) 解用表 格法求 解 (3) 和 如题图2.2.3所示 解用表 格法求 解

(4) 解 (5) 解 (6) 解参见右图。 当时: 当时: 当时: 当时: 当时: (7) , 解参见右图: 当时: 当时: 当时: 当时: 当时: (8) ,解参见右图

当时: 当时: 当时: 当时: (9) , 解 (10) , 解 或写作:

求下列连续信号的卷积。 (1) , 解参见右图: 当时: 当时: 当时: 当时: 当时: 当时: (2) 和如图2.3.2所示 解当时: 当时: 当时: 当时: 当时: (3) , 解 (4) , 解 (5) , 解参见右图。当时:当时: 当时:

信号分析与处理课后习题答案

信号分析与处理课后习题答案 第五章快速傅里叶变换 1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问: (1)直接计算需要多少时间?用FFT 计算呢? (2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解: 分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1); 利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ; (1) 直接DFT 计算: 复乘所需时间2215010245052.4288T N us us s =?=?= 复加所需时间2(1)101024(10241)1010.47552T N N us us s =-?=-?= 所以总时间1262.90432DFT T T T s =+= FFT 计算: 复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =?=???= 复加所需时间422log 101024log 1024100.1024T N N us us s =?=??= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积 计算过程为如下: 第一步:求1()X k ,2()X k ;所需时间为2FFT T ? 第二步:计算12()()()X k X k X k =?,共需要N 次复乘运算 所需时间为501024500.0512To N us us s =?=?= 第三步:计算(())IFFT X k ,所需时间为FFT T 所以总时间为230.35840.0512 1.1264FFT T T To s s s =?+=?+= 容许计算信号频率为N/T=911.3Hz 2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。

常见仪表常见故障及处理办法

仪表常见故障检查及分析处理 一、磁翻板液位计: 1、故障现象:a、中控远传液位和现场液位对不上或者进液排液时液位无变化;b、现场液位计和中控远传均没有问题的情况下,中控和现场液位对不上; 2、故障分析:a、在确定远传液位准确的情况下,一般怀疑为液位计液相堵塞造成磁浮子卡住,b、现场液位变送器不是线性; 3、处理办法:a、关闭气相和液相一次阀,打开排液阀把内部液体和气体全部排干净,然后再慢慢打开液相一次阀和气相一次阀,如果液位还是对不上,就进行多次重复的冲洗,直到液位恢复正常为止;b、对液位计变送器进行线性校验。 二、3051压力变送器:压力变送器的常见故障及排除 1)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 2)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原

因方法是将传感器卸下看零位是否正常,如果正常更换密封圈再试。 3)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性 三、雷达液位计:

《信号分析与处理》(第二版)-徐科军、黄云志-课后标准答案

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案

————————————————————————————————作者:————————————————————————————————日期:

Chap1. 1.4 ()()()()()()()()()()()() ()()()()()()()121 2 122 12112 2 121 2 2 2y 11102 y 0.5111 y 0.5 1.513y 0 13 013 y 0.5111 0.5 1.513t t t t t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t τττ ττττ τττττττττττ+∞ -∞ ----=*=-=-≤≤???=≤≤??=-= -=+-<≤=-= -=-++<<=≤-≥≤-≥??=+-<≤??-++<

()()[] ()()()[]()()()∑∞ =? ? ? ???Ω-Ω-+=- =-= =??? ??<≤<≤-=1002212 2 01cos cos cos 1cos 141cos 1cos 1 5 .0202 20 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x πππππ πππ 代入公式得: ()() ()()() ()[] ()()[]()()∑∞ =Ω-? ? ? ???Ω-Ω-+=- =-= ==Ω=Ω-=1002222 2 012 212cos 1cos cos 11411cos 11 5.0cos 2 (b)n n n T jn t n n t n n n t x n b n n a a n n X e n X T t x t x πππππππ得到:根据时移性质: ()() ()()()[]()()[]() ∑?∑∞ =-∞ =Ω-+=-=Ω==Ω+=102232 20 2 0201 00 3cos cos 12 21cos 12cos 41 cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππ ππ偶对称, 1.12 ()()dt e t x j X t j ?+∞ ∞ -Ω-=Ω频谱密度函数:

变电站常见故障分析及处理方法

变电站常见故障分析及处理方法 变电所常见故障的分析及处理方法一、仪用互感器的故障处理当互感器及其二次回路存在故障时,表针指示将不准确,值班员容易发生误判断甚至误操作,因而要及时处理。 1、电压互感器的故障处理。电压互感器常见的故障现象如下:(1)一次侧或二次侧的保险连续熔断两次。(2)冒烟、发出焦臭味。(3)内部有放电声,引线与外壳之间有火花放电。(4)外壳严重漏油。发现以上现象时,应立即停用,并进行检查处理。 1、电压互感器一次侧或二次侧保险熔断的现象与处理。(1)当一次侧或二次侧保险熔断一相时,熔断相的接地指示灯熄灭,其他两相的指示灯略暗。此时,熔断相的接地电压为零,其他两相正常略低;电压回路断线信号动作;功率表、电度表读数不准确;用电压切换开关切换时,三相电压不平衡;拉地信号动作(电压互感器的开口三角形线圈有电压33v)。当电压互感器一交侧保险熔断时,一般作如下处理:拉开电压互感器的隔离开关,详细检查其外部有元故障现象,同时检查二次保险。若无故障征象,则换好保险后再投入。如合上隔离开关后保险又熔断,则应拉开隔离开关进行详细检查,并报告上级机关。若切除故障的电压互感器后,影响电压速断电流闭锁及过流,方向低电压等保护装置的运行时,应汇报高度,并根据继电保护运行规程的要求,将该保护装置退出运行,待电压互感器检修好后再投入运行。当电压互感器一次侧保险熔断两相时,需经过内部测量检查,确定设备正常后,方可换好保险将其投入。(2)当二次保险熔断一相时,熔断相的接地电压表指示为零,接地指示灯熄灭;其他两相电压表的数值不变,灯泡亮度不变,电压断线信号回路动作;功率表,电度表读数不准确电压切换开关切换时,三相电压不平衡。当发现二次保险熔断时,必须经检查处理好后才可投入。如有击穿保险装置,而B相保险恢复不上,则说明击穿保险已击穿,应进行处理。 2、电流互感器的故障处理。电流互感器常见的故障现象有:(1)有过热现象(2)内部发出臭味或冒烟(3)内部有放电现象,声音异常或引线与外壳间有火花放电现象(4)主绝缘发生击穿,并造成单相接地故障(5)一次或二次线圈的匝间或层间发生短路(6)充油式电流互感器漏油(7)二次回路发生断线故障当发现上述故障时,应汇报上级,并切断电源进行处理。当发现电流互感器的二次回路接头发热或断开,应设法拧紧或用安全工具在电流互感器附近的端子上将其短路;如不能处理,则应汇报上级将电流互感器停用后进行处理。二、直流系统接地故障处理直流回路发生接地时,首先要检查是哪一极接地,并分析接地的性质,判断其发生原因,一般可按下列步骤进行处理:首先停止直流回路上的工作,并对其进行检查,检查时,应避开用电高峰时间,并根据气候、现场工作的实际情况进行回路的分、合试验,一般分、合顺如下:事故照明、信号回路、充电回路、户外合闸回路、户内合闸回路、载波备用电源6-10KV的控制回路,35KV以上的主要控制回路、直流母线、蓄电池以上顺应根据具体情况灵活掌握,凡分、合时涉及到调度管辖范围内的设备时,应先取得调度的同意。确定了接地回路应在这一路再分别分、合保险或拆线,逐步缩小范围。有条件时,凡能将直流系统分割成两部分运行的应尽量分开。在寻找直流接地时,应尽量不要使设备脱离保护。为保证个人身和设备的安全,在寻找直流接地时,必须由两人进行,一人寻找,另一人监护和看信号。如果是220V直流电源,则用试电笔最易判断接地是否消除。否认是哪极接地,在拔下运行设备的直流保险时,应先正极、后负极,恢复时应相反,以免由于寄生回路的影响而造成误动作。三、避雷器的故障处理发现避雷器有下列征象时,

信号设备故障处理

信号设备故障处理 一、故障分类 1、按故障数量分类:单一故障和叠加故障。 ①、单一故障:同一性质的电路中只存在一个故障,此类故障现象较为明显,在日常工作中经常发生,故障现象比较容易分析。 ②、叠加故障:同一性质的电路中存在一个以上的故障,此类故障在设备使用中较为少见,在施工及新开通的设备中较为多见。此类故障较复杂,体现出的现象也各不相同,分析起来较复杂。 2、按故障现象分类:非潜伏性故障和潜伏性故障 ①、非潜伏性故障:通过信号设备的自检能力,在发生故障之后能以一定的形式表现出来,比如道岔不动、无表示、轨道电路红灯等。 ②、潜伏性故障:只有在使用该部分电路或器材时,才能发现的故障,不能直接通过自检体现出来,比如方向电路的辅助办理、反向发车表示器断丝,此类故障危害较大。 二、故障处理原则 1、信号设备发生故障时应积极组织修复,有以下三种情况: ①、遇一般故障尚未影响设备使用时,信号维修人员应

在联系登记后会同车站值班员进行试验,判明情况,查找修复。调度集中区段要转为非常站控。 ②、如在试验中发现严重缺陷,危及行车安全一时无法排除,应通知车站值班员(应急值守员),并登记停用。 ③、遇已影响设备使用的故障,信号维修人员应首先登记停用设备,然后积极查找原因、排除故障、尽快回复使用。如不能判明原因。应立即上报,听从上级指示处理(上报现象、处理情况)。 2、当发生与信号设备有关联的机车车辆脱轨、冲突、颠覆等重大事故时,信号维修人员应会同值班站长记录设备状态,派人监视保护事故现场,但不得擅自触动设备,并立即报告电务段,以免影响事故的调查和分析。 3.、发生影响行车的设备故障时,信号维修人员应将接发列车进路的排列情况、调车作业情况、控制台显示情况、列车运行时分、设备位臵状态及故障处理情况作详细记录作为原始记录备查。 三、故障处理程序 信号故障处理程序具体分七个步骤。 1、准备工具仪表,了解情况。当故障发生后,首先要了解故障发生的大概情况,问明是否影响行车,当已影响行车时,通知车务人员采取应急措施如改变进路、引导接车等,并及时向分公司值班室汇报简要情况。准备好必要的工具、

信号分析与处理课后习题答案

信号分析与处理课后习题答案 第五章 快速傅里叶变换 1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问: (1)直接计算需要多少时间?用FFT 计算呢? (2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解: 分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1); 利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ; (1) 直接DFT 计算: 复乘所需时间2215010245052.4288T N us us s =?=?= 复加所需时间2(1)101024(10241)1010.47552T N N us us s =-?=-?= 所以总时间1262.90432DFT T T T s =+= FFT 计算: 复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =?=???= 复加所需时间422log 101024log 1024100.1024T N N us us s =?=??= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积 计算过程为如下: 第一步:求1()X k ,2()X k ;所需时间为2FFT T ? 第二步:计算12()()()X k X k X k =?,共需要N 次复乘运算 所需时间为501024500.0512To N us us s =?=?= 第三步:计算(())IFFT X k ,所需时间为FFT T 所以总时间为230.35840.0512 1.1264FFT T T To s s s =?+=?+= 容许计算信号频率为N/T=911.3Hz 2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。

(设备管理)信号设备故障分析与处理教案

信号设备故障分析与处理教案 安全是铁路运输的生命线是铁路管理水平人员素质、设备质量、技术装备的综合反映。随着我国铁路现代化的发展、列车运行速度、行车密度、行车牵引重量等都在不断提高,行车安全的重要性也就更加突出。所以认真贯彻安全笫一、预防为主的方针,提高从业人员的素质、保证运输生产的安全显的尤其重要。 笫一章:故障分类 一、按故障性质分类:信号事故和信号障碍 信号事故:凡因亏违反规章制度、劳动纪律、技术设备不良及其他原因在行车中造成人员伤亡、设备损坏、经济损失、影响正常行车或危及行车安全的均构成信号事故。 信号障碍:信号设备发生故障但未构成行车事故的称为信号障碍。信号障碍又分为信号责任障碍和信号非责任障碍。 信号责任障碍:信号设备谁修不良造成设备故障,影响正常使用时,构成信号责任障碍。信号非责任障碍:指无法防止的雷害及自然灾害,及无法检查发发现的电务器才材质不良造成设备故障,影响使用时构成信号非责任障碍, 二、按故障原因分类:材质、维修、其它。 1、材质不良,包括元器件变质和制造工艺缺陷 元器件变质:信号电气元件使用一段时间后,可能发

生质变、特性变化,包括电机拉力下降、二极管击穿、表示杆断裂等。 工艺缺陷:制造工艺落后、材料不当、出厂把关不严造成故障,包括点灯单元不良、灯泡断丝、付丝不通、接收器不良。 2、维修不良:包括技术业务差和责任心不强 技术业务差:缺乏专业技能,对设备状态性能的检修标准不清楚,测试方法不正确,道岔标调不会,轨道电压调整不会,相位调整不会等等。 责任心不强:巡检走过场,值表漏项,简化作业程序,本身懂业务但就是不按标准执行,造成信号故障。 3、其他:自然灾害、外部门 自然灾害:雷害、雨雪、等阻线被盗 外部门:断轨、工务螺丝断,但需要注意工电结合部故障不属于其他,而是列入维修不良。 三、按故障特征分类:机械故障和电气故障 机械故障:机械设备的材质发生变化、固定螺丝松动,如道岔机械卡阻、道岔不解锁、不落锁、表示杆缺口变化、工电结合部捣固不良、杆件不方等引发的故障。 电气故障:各种配线不良及电子器材性能不良引发故障。 四、按故障数量分类:单一故障和叠加故障

常见故障分析与处理汇总

柴油机常见故障分析与处理 1.预防故障的发生和防止事故的进一步扩大。 2.进行正确的应急故障处理,减少机破和临修事故。 一、甩车的有关问题 (一)甩车目的 (1)检查柴油机是否有异音; (2)检查各缸燃烧室内是否有积存的油和水。 (二)甩车步骤 (三)甩车时,有水从示功阀排出 1.故障后果: (1)造成机油乳化。 (2)水量达到一定程度时,造成“水锤”,导致有关部件破损。 2.原因分析与判断处理: (1)甩车时多个气缸存在该现象。 ①机车停放在露天,遇大雨,雨水从排气系统进入燃烧室;此种情况甩完车后可正常起机投入运用。 ②甩车后起机,如水箱水位有下降趋势且排烟为白色,可能是中冷器水管裂漏,此时应打开机体进气稳压箱排污阀进一步确认(有水流出)。如要暂时运用,必须开着该阀。(2)甩车时个别气缸存在该现象,且起机后水箱水位出现不正常的升高,(称虚水位),一般为气缸盖火力面裂漏或气缸套穴蚀穿透。采用逐缸停缸法进一步确认。如要暂时运用,应使该缸喷油泵供油齿条维持在停油位。 (四)甩车时,机油从示功阀排出 1.故障后果: (1)机油消耗量增大。 (2)机油参与燃烧,造成有关零部件气门、喷油器等表面积碳、磨损增大等,引起柴油机排温高,排气总管发红,增压器喘振,柴油机经济性能下降。 (3)机油量达到一定程度时,造成“油锤”。 2.原因分析与判断处理: (1)甩车时多个气缸存在该现象。 ①增压器油腔内机油漏入压气机腔,随进气系统到燃烧室内。 a.进入增压器油腔的机油压力超高; b.增压器转子轴损坏油封; c.增压器回油道不通畅。 进一步确认:增压器压气机出口法兰面有漏油现象或打开增压器蜗壳下面的螺堵有淌机油现象。 ②机体主油道与进气稳压箱之间隔板漏焊、开焊。 上述①②情况时,如需暂时运用,必须开着进气稳压箱排污阀。 ③活塞刮油环装反。 (2)甩车时个别气缸存在该现象。 ①气缸盖顶部机油漏入燃烧室。 a.喷油器体与气缸盖座孔间密封不良,机油经相应座孔间漏入,橡胶密封圈和紫铜密封垫

语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

LKJ常见故障分析及处理论文

L K J2000型监控装置(硬件) 简单故障判断及处理方法 L K J2000型监控装置(硬件)简单故障判断及处理方法 系统简介

1.防止列车线路超速。 2.防止列车冒进关闭的进站信号机。 3.防止列车冒进关闭的出站信号机。 4.防止列车溜逸。 5.防止列车以高于规定的限制速度调车作业。 6.按列车运行揭示要求控制列车不超过临时限速。车载部分系统构成 主机箱之插件 主机箱之插件 主机箱之插件 数字量输入/出插件 显示器 速度传感器 速度传感器 系统构成(地面部分)

2000型测试台 2000型转储器 地面开发系统 地面处理系统 微机网络 打印机 地面处理系统结构框图 1.采用32位微处理器技术 主处理器采用M C68332芯片32位数据处理能力 16M寻址范围 高处理速度 高速输入/出接口 故障检测功能 双套插件

双套C A N总线 双套V M E总线 模块级冗余 主备机故障自动切换 数据记录的同步性 车载数据与地面信息结合 LKJ2000型监控装置主机对核心部件都有自检功能,其上电自检后,对每个插件的核心部件都会自检。通过观察面板指示灯的查询屏幕显示器设备状态的方法,可以很好的判断部分故障部位。利用这一功能,对简单判断、查找故障源头十分有用。但是判断的前提条件是必须确保监控主机程序正常运行。另外,装置部分插件采用表面贴技术,人工焊接需要技术娴熟的专业人员方可进行。 一、监控记录插件

部分故障现象及处理方法:

二、地面信息处理插件 地面信息处理插件面板指示灯的含义1A、1B、2A、2B、8B是通用的,其含义不随信号制式变化。其他几个灯随信号制式的不同,运行程序的变化而表示不同的含义。 三、通信插件 自检完毕以后,面板指示灯含义如下表所示:

信号分析与处理 杨西侠 第2章习题答案

2-1 画出下列各时间函数的波形图,注意它们的区别 1)x 1(t) = sin Ω t ·u(t ) 2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t ) 3)x 3(t) = sin Ω t ·u ( t – t 0 ) -1

4)x2(t) = sin[ ( t – t0) ]·u( t – t0) 2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图 (1)x ( t-2 ) (2)x ( t+2 )

(3)x (2t) (4)x ( t/2 ) (5)x (-t) (6)x (-t-2)

(7)x ( -t/2-2 ) (8)dx/dt 2-3 应用脉冲函数的抽样特性,求下列表达式的函数值 (1)?+∞ ∞--)(0t t x δ(t) dt = x(-t 0) (2)?+∞ ∞--)(0t t x δ(t) dt = x(t 0) (3)?+∞∞ --)(0t t δ u(t - 20t ) dt = u(2 t ) (4)?+∞ ∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)() ?+∞∞ --+t e t δ(t+2) dt = e 2-2 (6)()?+∞ ∞-+t t sin δ(t-6π ) dt = 6 π + 2 1

(7) ()()[]?+∞ ∞-Ω---dt t t t e t j 0δδ =()?+∞ ∞ -Ω-dt t e t j δ–?+∞∞ -Ω--dt t t e t j )(0δ = 1-0 t j e Ω- = 1 – cos Ωt 0 + jsin Ωt 0 2-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =?+∞ ∞---ττττ d t u e u a )()( = ?-t a d e 0 ττ = )1(1at e a -- x 1(t)* x 2(t) =ττδτδτπ d t t u t )]1()1([)]()4 [cos(---+-+Ω?+∞ ∞- = cos[Ω(t+1)+ 4 π ]u(t+1) – cos[Ω(t-1)+ 4 π ]u(t-1) (3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) = ? +∞ ∞ -+-----τττττd t u t u u u )]1()()][2()([ 当 t <0时,x 1(t)* x 2(t) = 0 当 0

常见简单信号故障处理

常见简单信号故障处理 一、信号故障处理程序 信号故障处理程序具体分七个步骤。 1、准备工具仪表,了解情况。当故障发生后,首先要了解故障发生的大概情况,问明是否影响行车,当已影响行车时,通知车务人员采取应急措施如改变进路、引导接车等,并及时向分公司值班室汇报简要情况。准备好必要的工具、仪表、图纸、材料。 2、登记、询问。到达行车室后,要采用口问、耳听、眼看的方法详细了解故障发生时的状态,控制台的现象,进路排列和开通状况,调车和列车的运行情况以及时分等。并在行车设备检查登记簿内签到,必要时停用该项设备,按非正常行车办理。 在询问时不要随意去动设备,要针对关键问题提出疑问,掌握好故障时的原始资料。 发生与信号设备有关的重大、大事故时,切不可擅自开机械室门,或开箱盒动设备,要保护好现场,并迅速报告分公司值班室听从指挥处理。 3、试验检查。根据已了解到的情况,在征得车站值班员的同意下动手试验,试验时要注意观察控制台上的表示灯、电流表、报警设备等。核对故障现象与值班员反映的是否一致,如果试验正常,应在登记簿内登记实验结果,经车务确认,交付使用,并注意观察,不要急于离去。

4、分析判断。经试验确属故障,要进行综合分析,正确判断出是自身设备故障还是其他部门影响的故障,是室内故障还是室外故障,是电气故障还是机械故障。分析判断要力求准确,在没有判断清楚前,不能盲目乱动设备或者是室内、室外乱跑,延误故障处理时间。 5、查找处理。根据判断出的故障大致范围,运用各种方法迅速查找故障点。 一是动作要快,抓住现象准确测试,尽量不要使故障自动恢复。 二是对较复杂的故障采用多种方法,思路要开阔,不要钻牛角尖。 三是对原因不明自动恢复的故障,要尽可能的把有可能导致故障的各个部位彻底检查一遍。对一时无法修复的故障或一时查不清的故障及时汇报,听从指挥进行处理。 在排除故障时严禁用不正当的手段办理闭塞、转换道岔、开放信号。严禁采用封连接点、借用电源等严重违章的办法恢复设备的使用。对其他部门或外界原因造成的故障不要急于修复,要会同有关单位共同确认后处理,如果在有关单位不能及时到场的情况下,要听从分公司值班室的指挥。对有关情况要在行车检查登记簿上表述清楚。 6、复查试验,及时消记。 对修复的设备要进行有关部分的联锁试验,尤其是动过线的

计算机常见故障及处理方法

计算机常见故障及处理方法 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

计算机在使用了一段时间后,或多或少都会出现一些故障。总结出计算机使用和维护中常遇到的故障及简单的排除方法介绍给大家。也许有人会认为:“既然不是搞计算机专业维修的,当然不可能维修计算机!”这倒不一定。况且如果只是遇到一点小小的故障,就要请专业的维修人员来维修,不免有些“劳民伤财”。只要根据这里的计算机故障处理方法,就可以对简单的故障进行维修处理。 一、电源故障 电源供应器担负着提供计算机电力的重任,只要计算机一开机,电源供应器就不停地工作,因此,电源供应器也是“计算机诊所”中常见的“病号”。据估计,由电源造成的故障约占整机各类部件总故障数的20%~30%。所以,对主机各个部分的故障检测和处理,也必须建立在电源供应正常的基础上。下面将对电源的常见故障做一些讨论。 故障1:主机无电源反应,电源指示灯未亮。而通常,打开计算机电源后,电源供应器开始工作,可听到散热风扇转动的声音,并看到计算机机箱上的电源指示灯亮起。 故障分析:可能是如下原因: 1.主机电源线掉了或没插好; 2.计算机专用分插座开关未切换到ON; 3.接入了太多的磁盘驱动器; 4.主机的电源(Power Supply)烧坏了; 5.计算机遭雷击了。 故障处理步骤: 1.重新插好主机电源线。 2.检查计算机专用分插座开关,并确认已切到ON。 3.关掉计算机电源,打开计算机机箱。 4.将主机板上的所有接口卡和排线全部拔出,只留下P8、P9连接主板,然后打开计算机电源,看看电源供应器是否还能正常工作,或用万用表来测试电源输出的电压是否正常。 5.如果电源供应器工作正常,表明接入了太多台的磁盘驱动器了,电源供应器负荷不了,请考虑换一个更高功率的电源供应器。 6.如果电源供应器不能正常工作或输出正常的电压,表明电源坏了,请考虑更换。 故障2:电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变白而不能正常工作。 故障分析:可能是因为电源负载能力差,电源中的高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二极管已经损坏等。

信号处理 习题与解答

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32621=< =Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652=>=Ωh ,所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ?? ? ????? ??+???? ????? ??+???? ????? ??=??? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ

电机常见故障分析及其处理

电机常见故障分析及其处理 摘要:发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障。与之相似的是电动机的故障也主要有机械故障和电气故障两方面。 关键词:定子线圈,激磁电流,短路故障,接地故障。 电机可分为电动机和发电机两类,电动机又可分为同步电动机和异步电动机,发电机也可分为同步发电机和异步发电机,本文将主要围绕异步电动机和同步发电机为例,简要分析电机常见的故障及其处理方法。 一、三相交流异步电动机常见故障分析及其处理 1.机械方面有扫膛、振动、轴承过热、损坏等故障。 ⑴异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于轴承严重超差及端盖内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴心引起扫膛。如发现对轴承应及时更换,对端盖进行更换或刷镀处理。 ⑵振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴心,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。 ⑶如果轴承工作不正常,可凭经验用听觉及温度来判断。用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠扎碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,因为电动机要每运行3000-5000小时左右需换一次润滑脂。电机超过规定运转时间后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有微小“哒哒”的冲击声,原因是轴承盒内缺油,同时轴承滚柱有的以有细微的麻痕。通过对轴承进行了更换,添加润滑油脂。在添润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的磨擦而发热,一般轴承盒内所放润滑脂约为全溶积二分之一到三分之二即可。在轴承安装时如果不正确,配合公差太紧或太松,也都会引起轴承发热。在卧式电动机中装配良好的轴承只受径向应力,如果配合过盈过大,装配后会使轴承间隙过小,有时接近于零,用手转动不灵活,这样运行中就会发热。 2. 电气方面有电压不正常绕组接地绕组短路绕组断路缺相运行等。 ⑴电源电压偏高,激磁电流增大,电动机会过分发热,过分的高电压会危机电动机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大造成电动机过载而发热,长时间会影响电动机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电动机发热,同时转距减小会发出“翁嗡”声,时间长会损坏绕组。总之无论电压过高过低或三相电压不对称都会使电流增加,电动机发热而损坏电动机。所以按照国家标准电动机电源电压在额定值±5%内变化,电动机输出功率保持额定值。电动机电源电压不允许超过额定值的±10%,;三相电源电压之间的差值不应大于额定值的±5%。

相关主题
文本预览
相关文档 最新文档