当前位置:文档之家› 天然气管道密闭空间无线监测系统(V2.0)

天然气管道密闭空间无线监测系统(V2.0)

天然气管道密闭空间无线监测系统(V2.0)
天然气管道密闭空间无线监测系统(V2.0)

天然气管道密闭空间

线

四川恒芯科技有限公司

第1章系统概述

1.1前言

燃气阀门井内管道、阀门等设施经过长时间运行,在不通风、潮湿环境下,阀门阀体、法兰等部位因腐蚀、胀缩等原因可能会产生局部燃气泄漏,在通风不良条件下易造成燃气聚集,积累到一定体积分数,遇明火或工具之间摩擦以及静电感应等原因就有可能发生燃气爆炸,从而破坏燃气设施,造成供气中断,对作业人员产生伤害和影响周围环境安全。

目前,预防燃气管道泄漏普遍方式是以人工巡检方式进行,但这种方式需要耗费大量的人力、物力,并且由于人工巡查是沿线逐步巡查,不能连续进行检测,有案例表明,燃气公司人员刚进行完巡检,但由于后来工程施工等情况,对管道造成破环,而没有及时发现从而发生事故的情况。因此,四川恒芯科技有限公司在人工巡检的基础上,结合城市地下燃气管网无线网络监测系统,通过利用无线GPRS技术形成燃气泄漏监测方案。无线监测系统具有自动化程度高、维护保养简便、系统成本低等特点,把预防管道燃气泄漏的人工巡检方式实现为昼夜实时监测的现代化自动模式,实现全方位的监测,从而达到完善和提升了整个城市燃气管网泄漏的预、报警能力,杜绝燃气泄漏事故的发生。

1.2监测原理

燃气泄漏检测监控系统将在每个检查井安装一个可燃气体探测器,实时检测地下空间可燃气体浓度。通过地面安装的一个RTU,经无线网络将气体浓度情况传送至管理中心,随时应对可能发生的燃气泄漏事故。

采用区域集中管理网络,由以下三级构成:

1)现场可燃气体探测器

实时监控每个检查井空间内的可燃气体浓度。安装在地下密闭空间内,每个检查井安装1个,每个探测器由RTU供电并与RTU保持通信联系。

2)RTU

在密闭空间附近的地面上安装一台RTU。接收管辖范围内现场探测器的数据,通过GPRS无线通信方式与管理中心进行远程数据传输。RTU由市电供电、太阳能供电或者电池供电。

3)管理中心

管理中心,实现对密闭空间实时浓度状况显示及告警提示。

1.3系统特点

1、传感器采用本质安全、采集精度高、高灵敏度、不受时间和空间

限制。对探测点的浓度指标以及水位高度进行实时监测。

2、采用市电和电池供电两种方式,根据实际现场状况灵活选择。电

池供电方式安装简便,适于取电不方便的地方;市电方案实时性

更好,能实现24小时监测。

3、使用无线数字通讯技术传输报警和故障信号,无线传输稳定可靠,

燃气探测设备采用gprs通讯方式,实现覆盖范围较广、传输速度

较快、维护安全可靠。

4、设备采用防水、防爆外壳设计。

5、工作环境、温度范围宽,可安装于任何地点,无需布线。

6、实时上报监测点的燃气浓度数据,可在最短时间内提供给管理人

员实时分析泄漏点浓度趋势,供管理人员决策。

第2章系统结构

对于燃气管道阀门井、阀室及周边的污水井、电力电缆井或者分散的管井,采用在密闭空间安装工业级红外燃气探头来解决管线附近密闭空间的燃气泄漏的探测与报警问题:通过密闭空间内的可燃气体探测器和RTU,与管理中心的管网监控系统联动,进行相应的处理。

地下密闭空间(包括污水井、电缆井、电力沟、化粪池等)内安装可燃气体探测器,用于探测密闭空间内的可燃气体浓度值;每个探测器通过RTU供电并与RTU保持数据通讯。

RTU内置DTU模块,具有GPRS数据传输功能,它将可燃气体探测器回传的数据,通过GPRS上传到管理中心。

RTU即可以通过接入市电供电,也可以使用太阳能供电或者电池供电;RTU 并同时为可燃气体探测器供电。

在市电停止供电的情况下使用内置电池供电,可连续工作4天。如果使用锂电池单独供电,则至少可以续航半年以上时间。

管网监控中心接收各个RTU传来的数据,分析各个密闭空间是否有安全隐

患;对可燃气体达到爆炸下限以下的某个阀值时,进行报警,并与GPS抢险车调度监控系统进行联动处理。

第3章详细设计

3.1设备选择

3.1.1探测器选择

密闭空间内燃气泄漏检测实施的重点是安放在密闭空间内的气体探测器。它的稳定、可靠、有效是项目实现的关键。当前可燃气体探测方式主要有电化学式,催化燃烧式,红外式。由于地下环境特殊、气体成分复杂、氧气含量较少、维护困难,所以有效期为1~2年的电化学式和需要稳定氧气供给的催化燃烧式传感器被放弃。而红外式传感器由于工作寿命为5年以上,并且免维护时间长,对氧气无依靠等优点成为地下气体探测器的首选。此次地下气体探测器即选用红外式气体探测器。考虑到密闭空间有可能浸水,因此探测器增加了防水装置,防护等级能达到IP67。

3.1.2地下管线安装

气体探测器安装在地下沟道中,既涉及供电及信号传输。

由于可燃气体探测器的功耗都在1.5W左右,所以决定了探测器必须尽量获得有线供电,在无法取电的情况下,采用电池供电,但监测最多每天一次,且半年左右必须更换电池。

而通信方式则可使用现有的多种通信方式,包括模拟分线式、数字总线式、无线通信和光纤通信等。

a)模拟分线式的优点是每个探测器独立可靠,并且符合进口探测器的4~20mA

接口,采用直流供电;缺点是探测器越多则布线越多, 增加电缆安装成本,占用电缆沟空间。

b)数字总线式的优点是用一组供电及通信电缆连接探测器,节约电缆安装空

间;缺点是需要为探测器定制数字转换盒。

c)无线通信方式优点是无通信线路铺设,安装位置灵活。但缺点是地下无线通

信困难,且无线通信成本较高,需要定制无线转换盒。

d)光纤通信方式的优点是光纤不会影响电缆沟内的电环境。但缺点是成本高,

依然需要布线和光纤转换盒。

根据实际情况,建议选用选择模拟分线式的通讯方式。

3.2项目具体实施方案

3.2.1地下空间探测器

密闭空间内的每个检查井安装1个红外可燃气体探测器。探测器采用防水密封处理,在进气口设置防水罩,体积约343×200×130mm。并做一定机械防护处理。安装在检查井的侧壁上层。进行外壳接大地处理。

每个探测器和通讯中继器之间都用一根3芯电缆联接,共6组电缆。3芯电缆包括2芯+24V电源线和1芯4~20mA信号线。电缆采用阻燃电缆并且穿挠性防爆软管。

密闭空间内可能出现积水,所以各电缆,探测器,以及接头等都需进行防水处理。

3.2.2RTU实施

RTU安放在附近的地面上(利于信息传输),露天安放。电缆通过现成的排管或者重新布线连到井内的探测器。

其供电由路灯电源或适合取市电的地方取得。如遇停电,系统内置的电池可以坚持工作4天(RTU将切换到间歇工作模式,如6小时监测一次)。

RTU采用防水密封箱体,需要为RTU砌水泥平台,RTU安装在水泥平台上。

3.2.3供电模式

3.2.4市电供电

其供电由路灯电源或适合取市电的地方取得。如遇停电,系统马上自动切换到备用电池供电模式,无损系统正常工作。

3.2.5电池供电

◆电池型号:美国电池A123

电池供电采用可充放锂电池,基本参数如下:

?标称电压: 22V

?标称容量: 11Ah

?标准放电持续电流:0.2C

?最大放电持续电流:0.8C

?工作温度:充电:0~45℃

放电:-20~60℃

?产品尺寸:MAX 38*70.5*150mm

成品内阻:≤120mΩ

◆供电时长计算:

?计算条件:

标定电池容量:可充电锂电池22V/11AH(实际按80%容量计算)

RTU运行参数:

采集平均电流:60mA;

通讯平均电流:60mA;

静态电流:100uA;

?工作模式:

RTU1天采集1次,采集持续时间15分钟,1天上传数据1次,传送平均持续时间2分钟。

?功耗计算:

每天采集功耗:(60mA/1000)* 15 / 60 = 0.015AH

每天传送数据功耗:(60mA/1000)* 2/ 60 = 0.002AH

每天静态功耗:(0.1mA/1000)*24 = 0.0024AH

每天总功耗:0.015+0.002+0.0024 = 0.0194AH

电池自放电:电池每月自放电5%,半年自放电 < 11*0.05*6=3.3AH

工作可持续时间:(11*0.8 – 3.3) / 0.0194 = 283(天)

综上所述:283天大于实际需要的半年。

3.2.6太阳能供电方案

太阳能板选型

太阳能板选型基本参数如下:75W-24V太阳能电池板

太阳能控制器LS1024:

备注:电池持续工作时间计算: 计算条件:

标定电池容量:24V/36AH(实际按70%容量计算)

RTU运行参数:

采集平均电流:100mA;

通讯平均电流:60mA;

静态电流:120mA;

?工作模式:

RTU1分钟采集1次,采集持续时间1秒,2分钟上传数据1次,传送持续时间1分钟。

?功耗计算:

每天采集功耗:(100mA/1000)*60*24/3600 = 0.04AH

每天传送数据功耗:(60mA/1000)*30*24/60 = 0.72AH

每天静态功耗:(120mA/1000)*24 = 2.88AH

每天总功耗:2.88+0.72+0.04 = 3.64AH

工作可持续时间:36*0.7/3.64 = 6.9(天)

综上所述:6.9天大于实际需要的5天,因此36AH容量的电池能满足系统在连续阴雨天、不少于5天的持续工作时间。

3.3业务流程及功能

3.3.1业务流程

管线泄漏报警系统主要是对管线附近的密闭空间进行监测,将实时监测到的数据上传到管理中心。管理中心根据当前密闭空间的可燃气体浓度,进行相应的

告警处理,或与GPS抢险车调度监控系统进行联动。

对各个密闭空间安装可燃气体检测器之前,需要对燃气公司的管线进行基础数据清理:各个管线相应的GPS数据、附近的密闭空间情况,在管理中心建立管线基础资料库;对各个密闭空间安装可燃气体检测器、通讯中继器时,充分考虑防爆、防水、防潮;通讯中继器通过市电取电,并给可燃气体检测器供电;可燃气体检测器实时将检测数据上传到管理中心;管理中心根据该点的历史信息,进行分析处理,产生声光告警或与其它系统联动。

3.3.2系统功能

密闭空间的监控实现功能如下:

1)对密闭空间的燃气泄漏实时监测报警。

2)系统能在中心通过图形化界面观测到管网安全状况(是否出现异常施工

状况),出现异常时能进行声光告警。

3)和燃气公司现有的GIS系统无缝低耦合、快速集成。

第4章主要设备性能指标

4.1.1RTU (Remote Terminal Units)

基本参数如下:

4.1.2燃气探头AEC2232b

无线远程监控系统

无线远程监控系统 无线远程监控系统概念 无线远程监控系统是在传统监测监控系统的基础上,结合当前无线通信技术和信息处理技术而发展起来的新型测控系统。 系统简介 一般而言,现有的无线远程监控系统,大都符合“控制中心—监测站”的构建模式。控制中心是整个系统运作的核心,负责收集各监测站上传的监测信息,发送各种操作命令以控制监测站的行业。监测站被布放于远离控制中心的各监测点处,负责完成信息的采集和响应控制中心发出的控制命令。控制中心可用普通微机、工作站或工控机实现,软件开发可靠基于现有的Windows或Unix操作系统。监测站的设计实现可根据不同的应用目的和应用环境,采用特定的技术形式,比如单片机、DSP或者Intel X86系列的微处理器等。无线远程监控系统的组网方式也很灵活,可利用现有的无线通信网,如GSM/GPRS网络,CDMA移动网络等,也可单独搭建专门的无线局域网。下面系统地讨论无线远程监控系统设计开发时涉及到的一些核心技术,主要包括三个方面:监测站的设计开发、无线网络的组建和控制中心的软件设计。 系统构造 1、监测站的设计实现

监测站的设计与实现是整个无线远程监控系统研制开发的重点,监测站对信息数据处理的能力和精度将影响整个系统的最终性能。在整个开发过程中,监测站的设计是工作量最大、所需时间最长的一部分。监测站处于工作现场,只完成数据的采集、处理和控制,任务相对单一、固定,无须用詙大的台式机来完成;考虑到节能和布放方便,监测站多为嵌入式系统。根据整个无线远程监控系统所要实现的功能,和对数据处理与对传感器控制能力的要求,监测站设计的复杂程度和采用的具体技术是不一样的。 2、无线通信的设计实现 无线通信的设计相对于监测站而言较简单,有许多现有的产品和通信系统可以利用,重点只是在于从多种实现方式中作出最优的选择。 常用的实现方式有:利用现有的通信网络(GSM/GPRS、CDMA移动网等)和相应的无线通信产品;通过无线收发设备,如无线Modem,无线网桥等专门的无线局域网;利用收发集成芯片在监测站端实现电路板级与监控中心的无线通信。 3、控制中心的设计实现 控制中心的设计相对于监测站的设计开发来讲较为简单,硬件设计少,除了普通微机(或工作站、工控机)外,还需要网络接入设备(若无线通信采用自行设计的模块实现,则须开发专用的无线网卡插入微机主板的预留总线插槽中)。控制中心的设计开发主要集中在应用软件的设计开发上,一般是基于Windows 和Unix等常用操作系统的。当前用于此类软件开始、调试的工具较多,且功能强大,给控制中心软件的设计带来便利。 无线远程监控系统优势 1、综合成本低,只需一次性投资,无须挖沟埋管,特别适合室外距离较远及已装修好的场合;在许多情况下,用户往往由于受到地理环境和工作内容的限制,例如山地、港口和开阔地等特殊地理环境,对有线网络、有线传输的布线工程带来极大的不便,采用有线的施工周期将很长,甚至根本无法实现。这时,采用无线监控可以摆脱线缆的束缚,有安装周期短、维护方便、扩容能力强,迅速收回成本的优点。 2、组网灵活,可扩展性好,即插即用,管理人员可以迅速将新的无线监控点加入到现有网络中,不需要为新建传输铺设网络、增加设备,轻而易举地实现远程无线监控。 3、维护费用低,无线监控维护由网络提供商维护,前端设备是即插即用、免维护系统。 无线远程监控系统意义 随着无线技术的日益发展,无线传输技术应用越来越被各行各业所接受。无线监控作为一个特殊使用方式也逐渐被广大用户看好。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线监控方式,建立被监控点和监控中心之间的连接。无线监控技术已经在现代化小区、交通、运输、水利、航运、治安、消防等领域得到了广泛的应用。

智能无线电监测网系统解决方案

一、智能无线电监测网系统解决方案 目前,各省市无线电监测网建设所面临的异构系统难以整合、监测手段被动低效、业务决策缺乏依据、指挥调度流程不畅等难题依然存在。华日公司的智能监测网系统,通过整合各类已建的固定监测站(含小型站)、移动监测站及网格化监测系统资源,并增补适当的智能化监测设备,对现有监测软件进行升级改造,形成全时全域频谱监测能力,同时结合云计算和大数据技术,大大提升了整个监测网的管理运行自动化水平,为无线电管理工作模式带来了巨大变化。 大数据时代的智能监测网系统,可为智慧无线电管理提供诸多有力的支撑: ●监测网运行模式从临时被动任务执行转向长时主动数据收集; ●数据采集从手工碎片化转向自动连续化; ●提高设备使用效率,降低设备闲置率; ●增强监测网管理能力,减轻运维人员工作压力; ●从单维监测数据分析转向多维频谱管理决策; ●干扰处置、考试保障、重大活动保障等的异常预警和全程支持; ●可根据工作需要,通过软件动态改变系统工作模式和工作内容。 系统能力 1)全域监测设施联合作业能力 智能监测网的核心运行基础是通过面向服务中间件和标准的接口规范实现对来自于不同厂商的监测系统的整合,并提供统一的设备控制、数据管理和分析界面,形成监测一体化平台,从而盘活全网资源,提升异构系统联合作业的能力。当重大活动或突发事件发生时,这种能力将大为突破现有监测系统在监测资源调度上的瓶颈。

2)保障系统可靠运行的智能网络管理能力 伴随精细化管理的需要,大量新型监测设备接入系统,使监测网的规模和运维难度日益增大。华日智能网络管理系统可以以网络拓扑和地理分布为视点,对站点环境、站点设备、网络流量、设备资源消耗等进行监控,能对在网站点进行统一的监测任务调度、遥控开关机、设备自检,并提供基于设备自检和网络检测的故障告警和基于7X24小时电磁环境数据采集分析的设备数据异常预警,从而系统运维带来极大便利。 3)监测网自动运行能力 除支持常规监测功能外,智能监测网全网均在系统后台服务器的调度下,根据频谱监测数据自动化分析的需要,7X24小时不间断执行各类电磁环境数据、信号特征数据、多模式组合定位数据等的采集任务,并将所获取的数据自动分类压缩汇入各类专题数据库中。移动监测站、可搬移设备、无人升空监测平台等设备的数据也可在线或离线汇入系统。这种“大小结合,移动补盲”的联合作业模式,在大幅降低监测站人员工作量的同时极大提高了监测设备的利用率,使无线电管理机构更实时严密地掌握所辖区域的完整电磁态势。 4)海量监测数据存储能力 随着监测站的增多与全时全域电磁环境数据采集模式的建立,全网积累的数据量将会有爆发式增长,对数据存储和处理模式都提出了巨大的挑战。华日智能监测网依托成熟、安全、可靠的云存储与云计算服务,采用虚拟化存储等技术,可适应海量电磁环境数据大规模存储的需求,减轻用户在数据存储设备运维方面的压力,并在对应用层屏蔽了数据物理存储位置信息的同时为各类业务系统提供统一的数据服务,形成无线电管理云数据库,使数据应用具有更好的弹性,能满

移动通信各阶段的特点及电力无线专网(LTE230)分析

一、有线通信与无线通信 有线通信即利用金属导线、光纤等有形媒质传送信息的方式。无线通信是指仅利用电磁波而不通过线缆进行的通信方式。 在网络通信效果、网络安全性等方面,有线通信优于无线通信方式。在施工难度方面,有线通信除需要安装、调试设备外,还需要沿路敷设线缆,施工难度相比无线通信方式较高。在国家政策影响方面,有线通信方式较少涉及国家政策问题,而无线网络建设需要向国家或地方无线电管理委员会申请专用的频率,同时在技术体制选择上需要符合相关频率的使用规定。随着无线应用的迅速发展,频谱资源的供需矛盾进一步扩大。 二、1G-5G发展史 4G、5G等数字背后的G代表的是英文单词“Generation”,也就是“代”,5G就是第五代通信技术。从第一代到第五代,是人为划分的代别。它的定义主要取决于在速率、业务类型、传输时延以及各种切换成功率等方面具体实现的不同技术。 1.沟通的起源:1G(盛行年代:1980年后) 1986年,第一代移动通信系统(1G)在美国芝加哥诞生,采用模拟信号传输。即将电磁波进行频率调制后,将语音信号转换到载波电磁波上,载有信息的电磁波发布到空间后,由接收设备接收,并从载波电磁波上还原语音信息,完成一次通话。但各个国家的1G通信标准并不一致,使得第一代移动通信并不能“全球漫游”,这大大阻碍了1G的发

展。同时,由于1G采用模拟讯号传输,所以其容量非常有限,一般只能传输语音信号,且存在语音品质低、讯号不稳定、涵盖范围不够全面,安全性差和易受干扰等问题。 最能代表1G时代特征的,是美国摩托罗拉公司在上世纪90年代推出并风靡全球的大哥大,即移动手提式电话。大哥大的推出,依赖于第一代移动通信系统(1G)技术的成熟和应用。在中国80年代初期,移动通信产业还只是一片空白,直到1987年,为了迎接全运会的到来,在广东省建立了中国首个移动通信网络,这也标志着1G在中国的正式开始。 2.网络的开始:2G(盛行年代:1995年后) 由于1G有很多缺陷,在1999年1G网络被正式关闭,2G也随之而来。1G到2G就是模拟调制到数字调制的过程。和1G不同的是,2G采用的是数字调制技术。因此,第二代移动通信系统的容量也在增加,随着系统容量的增加,2G网络下除了打电话语音沟通之外,还可以发短信以及上网。虽然数据传输的速度很慢(每秒9.6~14.4kbit),但文字信息的传输由此开始了,这成为当今移动互联网发展的基础。 在2G时代也是移动通信标准争夺的开始,主要通信标准有以摩托罗拉为代表的CDMA美国标准和以诺基亚为代表的GSM欧洲标准。最终随着GSM标准在全球范围更加广泛的使用,诺基亚击败摩托罗拉成为了全球移动手机行业的霸主。第二代移动通信为3G和4G奠定了基础,是通信行业坚实的一步。

无线电频谱监测系统

无线电频谱监测系统 Morrow Technologies公司的无线电频谱监测系统能够监测无线电信号的频谱、电平、带宽、C/No等技术参数,并在各个技术参数超出规定的范围时发出报警,使得操作人员能够快速地采取必要的措施。该频谱监测系统能够自动地观测载波参数,显示出现的干扰信号,并在出现问题时发出声音报警或网络报警。对于瞬时出现的信号问题,本系统提供数据存储功能,您可以通过回放纪录的信号参数和频谱来分析出现的异常现象,是一个非常方便的分析工具。 VigilCom系列产品可以完成远程频谱监测,一个RU的设备机箱中包括一个频谱分析仪、一个分析载波参数的I/Q信号处理器、一个通信处理器(网络控制、监测、频谱和参数存储、和SNMP告警),可达8个输入接口的同轴开关单元,和软件。 本系统支持实时远程监测分布多个地点的多个信号频谱,多个用户能够同时监测,方便各地的技术人员共同参与问题的分析和解决。本系统具有灵活的外部通讯接口,包括以太网口、调制解调器接口、RS232串行接口、USB接口等可供选择。 1 of 6

美国Morrow Technologies公司简介 Morrow Technologies公司是由多位具有电子、软件、系统开发背景的工程师于1984年创立的,在过去的二十多年中,公司从面向客户的工程技术公司成长为一个包含设计、研制开发、和生产制造的科技企业实体。作为电子测量领域中公认的高质量、高性能射频微波频谱分析仪的制造商,Morrow Technologies公司针对各种应用开发了多个产品系列,包括能够连续远程监测射频频谱的L频段频谱分析仪(配合相应的下变频器,可用于监测卫星通信的S频段、C频段、X频段、Ku频段、和Ka频段的上下行信号频谱)、适用于广播电子新闻采集系统的频谱分析仪、以及电子侦察使用的高性能频谱分析仪。 Morrow Technologies公司是一个由公司员工持股的私营公司,公司的全部运营位于美国佛罗里达州圣彼斯伯格市一个38,000平方英尺的现代化建筑中进行,百分之二十的公司员工是工程师。 Morrow Technologies公司的产品包括: 远程频谱监测系统 产品型号频率范围 VC35009 KHz - 3.5 GHz VC1800100 KHz - 1.8 GHz VC-7052 MHz to 88 MHz VC70/800B 52 MHz to 88 MHz 790 MHz to 840 MHz 频谱分析仪配套设备 产品型号 描述 CS4/8射频同轴开关单元LOG频谱数据存储单元S&L多用户使用许可 无线电侦查系统 产品型号频率 RAVEN*100 KHz - 3.5 GHz * RAVEN系列产品在美国以外的销售需要美国出口管理局的出口许可。 2 of 6

无线环境监测系统设计

唐山师范学院本科毕业论文 题目无线环境监测系统的设计 学生 22222 指导教师姜丽飞讲师 年级 2008级 专业电子信息科学与技术 系别物理系 唐山师范学院物理系 2012年5月

郑重声明 本人的毕业论文(设计)是在指导教师姜丽飞的指导下独立撰写完成的。如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。特此郑重声明。 毕业论文(设计)作者(签名): 年月日

目录 标题 (1) 中文摘要 (1) 1 引言 (1) 2 系统硬件设计 (1) 2.1 设计目标 (1) 2.2 方案选择 (1) 2.3 系统结构 (2) 2.4 电路设计 (3) 3 系统软件设计 (6) 3.1 通信协议 (6) 3.2 系统软件 (7) 4 系统性能测试方法及测试结果 (7) 4.1 温度测量 (7) 4.2 光照测试...................................... (7) 4.3 主机与各从机通信距离及响应时间测试 (8) 5 结束语........................................... . (8) 参考文献................................. . (9) 致谢....................................... ...... .. (10) 附录.................................................................................................... (11) 外文页........................................... .. (12)

湿地公园无线监控系统方案

湿地公园无线监控系统方案 需求分析 湿地公园的建设是推动区域社会经济可持续发展的"催化剂",也是湿地保护和保育理论的实践成果目前在国内外,尚未有人给湿地国际公园确切的定义按照一般文献资料上的理解,湿地国际公园应该保持该区域的独特的自然生态系统并趋近于自然景观状态,维持系统内部不同动植物种的生态平衡和种群协调发展,并在尽量不破坏湿地自然栖息地的基础上建设不同类型的辅助设施,将生态保护、生态旅游和生态环境教育的功能有机结合起来,实现自然资源的合理开发和生态环境的改善,最终体现人与自然和谐共处的境界。 现在的湿地公园加强了人文景观和与之相匹配的旅游设施,各地尽力开发本地资源。现在的湿地公园已经成了人们旅游,休闲的好去处。 湿地公园划分为保护重点区、保护控制区和保护缓冲区,公园周边重要地段划定为保护缓冲区。? 保护重点区内不得建设任何生产经营性设施。? 保护控制区内不得建设污染环境、破坏资源和景观的生产经营性设施。规划允许建设的项目,其污染物排放不得超过国家和地方规定的污染物排放标准;已经建成的项目,其污染物排放超过国家和地方规定的污染物排放标准的,应当限期治理;造成损害的,必须采取补救措施。? 保护缓冲区内建设的项目不得损害湿地公园的环境质量;已建成并造成损害的,应当限期治理。湿地公园内不得设立开发区、度假区,不得出让土地,严禁出租转让湿地资源;严禁举办与湿地公园保护方向不一致的各种活动。湿地公园缓冲区内禁止改变地貌和破坏环境、景观的活动。禁止新建居民点或者其他永久性建筑物、构筑物。? 湿地公园内及周边区域严格实行污染物排放总量控制制度和排污许可证制度。禁止任意存储固体废弃物,对农用薄膜和渔网等不可降解的废弃物,使用者应当采取回收利用等措施。湖湿地内航行的船舶,应当配置符合国家规定的防污设备,不得排放含油污水、生活污水及固体垃圾;驶经湿地公园外围区域的,排放污水应当符合船舶污染物排放标准。游览性船舶以电瓶船、手划船为主,并在规定的线路行驶,制定合理的环境容量,控制船舶承载力和船舶数量。 为了更好的保护国家湿地公园里面的生态平衡和不杯破坏,我们用无线视频监控来实现对湿地公园的保护,发现有及时阻止。 运营方案 无线监控设备安装 湿地公园包含了多样湿地的环境,自然聚集了种类繁多的动植物资源,野生和人工栽培 的植物、野生鸟类、鱼类等。保护频繁灭绝的植物、鸟类。 无线监控系统安装 为了保护盖湿地公园的自然环境以及游客的人生及财产安全,该湿地公园管理者决定要 安装一套安防监控系统。根据当地的实际环境,由于监控范围较广、传输距离较远,采用传 统的有线视频监控系统并不是实际,因此决定采用无线视频监控系统。 无线监控系统基础结构图 无线视频监控拓扑图 1系统组成 湿地公园视频监控系统由硬件系统和软件系统组成。 硬件系统主要由前端无线视频监控系统和监控中心建设组成。 软件系统由视频监控平台软件系统 2前端视频监控系统 前端视频监控系统由视频图像采集设备、无线局域网传输设备、防雷和接地基础建设等 组成。

电力无线专网在配用电自动化中的应用

电力无线专网在配用电自动化中的应用 发表时间:2018-10-01T09:59:19.923Z 来源:《电力设备》2018年第16期作者:卢先礼 [导读] 摘要:近年来,智能电网建设速度明显加快,使得无线通信技术在电力系统自动化中的重要作用逐渐突显出来。 (广东盛邦机电工程有限公司) 摘要:近年来,智能电网建设速度明显加快,使得无线通信技术在电力系统自动化中的重要作用逐渐突显出来。无线通信系统在实践应用中,成本不高且部署方便,然而在阴影区域尚未存在有效的应对方法。无线专网作用的发挥需要有效融合电力有线网络和无线网络。基于此,文章将电力无线专网作为主要研究对象,重点阐述其在配用电自动化中的应用,希望有所帮助。 关键词:电力无线专网;配用电自动化;应用 一、电力无线专网发展阐释 当前,智能电网建设取得了理想的成绩,而建设重点也逐渐放在配用电智能化方面。正是因为配用电网络的分布相对广泛,且拓扑相对复杂,所以通信方式也逐渐实现了面状分布发展态势。要想对面状分布终端问题加以解决,无线通信方式的作用不容小觑[1]。 目前阶段,国内电网选用的无线通信方式,集中包括了无线公网方式与无线专网方式两部分。其中,无线公网能够有效地补充覆盖配用电节点业务,但却难以完全覆盖电力行业,特别是很容易受到无线公网时延大的影响。而无线专网能够有效地提高通信质量,且可以保证网络的安全性,能够对电力配电通信网络当中的光纤通信加以补充,并实时监控业务[2]。但仍需注意的是,虽然无线方式在智能电网建设方面产生了积极的影响,但在地下室与密集城区阴影区域覆盖方面却并未取得理想的效果,所以必须要采取必要的改进策略。只有这样,才能够充分发挥电力无线专网的优势与功能,进一步推广其应用的范围。 二、依托系统构建电力无线通信专网路径 (一)系统组成 以系统为核心的电力无线通信专网,其主要的组成部分包括了核心网EPC、无线终端、网管与无线基站,如图一所示: 图一系统架构 (一)系统基本特点 第一,覆盖范围广泛且信号具有较强的绕射能力; 第二,具有较高的安全性; 第三,传输数据信息更稳定; 第四,设备具备较强可靠性[3]; 第五,可维护效果理想; 第六,支持可拓展功能。 三、电力无线专网在配用电自动化中的应用 (一)地下室方面 在地下室中选择使用了普天无线自中继系统,其核心技术就是无线技术,借助自组网技术优势,可以实现多跳传输的目标。此外,组网灵活性较强,系统实际功耗也不多。 此系统在实际应用方面,最基本的功能就是有效融合,对电力无线专网处于大面积覆盖状态下的地下室阴影问题进行有效地解决。 系统本身组成包括三方面,即接入点、终端节点与路由终端。其中,接入点能够有效地实现远距离信号和近距离信号转换,而路由终端所负责的任务就是完成信号路由转换[4]。对于终端节点而言,则需要和电力终端完成有效地对接。需要注意的是,在实践运行中,路由节点能够综合考虑网络实际的复杂性适当地增加,而终端节点也能够结合电力终端数量采取必要的增加措施,如图二所示: 图二地下室电力无线专网 (一)密集城区方面 将应用于城市部署过程中,由于存在诸多阴影区域,所以终端接入的难度较大。若仅选择方式,就必须在终端安装的过程中,对安装方式进行合理地判断,所以也直接提高了终端安装复杂性。若选择使用终端,即可结合终端信号的具体情况采取补盲措施,一定程度上优化网络部署的可行性[5]。 但需要注意的是,在补盲的时候,补盲设备供电相对简单,但资源的传输却十分紧张。若可以达到无线回传的目标,就能够对这一问

无线电信号捕获、侦听、监测、分析系统

无线电信号捕获、侦听、监测、分析系统 系统主流分析功能: 一、本地操作: 自动、智能地 捕获可疑信号、 识别条件信号、 侦听可疑信号、 记录信号内容、 分析信号属性 1).信号识别: 新老信号识别 远近场信号识别 合法信号识别 非法信号识别 长发信号识别 猝发信号识别 信号方位识别 信号归属识别 信号划分业务识别 识别信号表的生成、导出及发布: 2).信号捕获: 新出现信号捕获(以一段时间信号统计作为参考) 近场信号捕获 小信号捕获

非法信号捕获 猝发信号捕获 条件信号捕获 捕获信号表的生成、导出及发布:3).信号侦听: 频段扫描侦听 信号表扫描侦听 条件信号侦听 4).信号统计: 大信号统计 小信号统计 新信号统计 老信号统计 远场信号统计 近场信号统计 合法信号统计 非法信号统计 长发信号统计 猝发信号统计 概率统计 信号出现概率统计 偶发滤除 归整处理 综合统计 5).信号排序与筛选: 按频率排序(正反向排序) 按强度排序(正反向排序) 按时间排序(正反向排序)

按测量次数排序(正反向排序) 按出现次数排序(正反向排序) 按频段筛选 按强度筛选 按时间筛选 6).信号排查 综合条件排查 例如:北京3号地区130-170MHz频段大于-90dBm的非法载波长发射信号列表例如:广州1号地区220-230MHz频段小于-98dBm的新出现非法小信号列表 二、远端遥控操作: 远端捕获可疑信号、 远端识别条件信号、 远端侦听可疑信号、 远端记录信号内容、 远端分析信号属性 电磁信息自动记录: 自动记录频谱 自动记录信号 自动记录时段频谱 自动记录条件信号 自动记录音频 自动捕获记录新出现的信号 自动捕获记录非法信号

无线环境保护自动监测系统(精)

应急指挥子系统应急指挥子系统信息库 信息库:包含应急资源、专家库、危险品、隐患单位信息,实现对以上信息数据的录入、编辑、查询、报表生成、打印等功能应急预案:预案管理—预案生成启动—处置方案—现场处置—跟踪监测—应急终止—恢复评估—总结报告—预案推演指挥决策:主要有联动指挥和辅助决策的功能,通过预案生成系统专家意见、查询危险品信息向政府部门提交污染情况报告和提交处置方案,通过图像、语音、EMAIL、短信等方式实现信息的发布和管理车辆管理:实现对执法车辆的使用、维护、人员出车情况的跟踪管理定位跟踪:通过GPS定位信息对车辆的具体位置进行定位,将投诉举报信息和应急信息在第一时间通知执法车。指挥调度:指挥车辆在最短时间赶到事故现场进行执法处理 应急指挥预案应急预案应急指挥系统执法车辆指挥调度 指挥决策车辆管理 定位跟踪指挥调度 10 应急指挥子系统应急指挥子系统—应急指挥预案隐患单位信息管理预案生成收录危险品的基本信息和应急处理办法 11 应急指挥子系统应急指挥子系统—执法车辆指挥调度定位跟踪:通过无线传输,将车机计算出的定位信息传送至平台,配合电子地图实现车辆定位。环保执法车 PDA APN接入无线基站 wcdma/gprs 中心管理平台手机笔记本轨迹回放:工作人员调出任意一辆车在某段时间内的运行轨迹,并且将轨迹结合GIS地图动画表现出来,方便管理人员对监察车辆的监督和管理实时调度:随时保持与车辆的沟通,及时下发事故应急调度信息,调派车辆前往事发地点进行执法。视频监控:通过3G网络实现对车辆的远程图像监控,可完成对执法现场进行拍摄取证。监控大屏 GIS地理地图车辆信息管理车辆所处位置(经度、维度、方向等) PC机PC机 PC机监控中心 12 环境保护自动监测系统管理功能 用户管理:可建立不同级别用户,如系统管理员、系统操作员、企业管理员、企业操作员。 设备管理:对视频服务器、硬盘录像机、电视墙、数采仪、报警设备等集中管理。 机构(区域)管理:建立各级机构。 权限认证管理:对不同用户及设备授权。 日志管理:记录各种

水质无线监测系统方案

水质无线监测系统方案 上海正伟数字技术有限公司授权网络免费发布 https://www.doczj.com/doc/5410337565.html, 一、概述 环境监测是环境保护工作的重要组成部分,是环境管理的基础和技术支持。随着我国工业化和城市化的迅速发展,环境保护也相应大力发展起来。这样就迫切需要加快全国环境管理基础能力的建设,提高环境监测能力和环境监督执法管理水平。 排污口水环境实时自动监测系统的研制在我国刚刚起步,欧美一些发达国家在这方面已趋向成熟,例如美国等一些工业发达国家,几乎在每个排污口都安装了有关监测仪器,对污水处理设施的运行情况以及排污流量、PH值、DO、电导、烛度、温度等值进行自动监控,在监控中心可以随时知道排污口染物的排放情况。在韩国已有50%的企业做到了对以下四项指标的实时自动监控:污水处理设备运行情况、流量、PH值和溶氧。 我国目前大部分地区的水环境监测主要是以化学化为主。即人工定期(或不定期)的现场采样、化验、水质分析。这样工作量大且具有随机性,不能准确反映整个水量水质的变化过程,因而不能做到为水环境评价和环境治理的可靠依据。 由于我国经济发展过程中出现越来越多的水环境污染问题,近年来国家已充分重视和加强对环境污染的治理。为了配合这项工作,改进水环境监测手段和方法已显得尤为重要。上海正伟数字技术有限公司在充分调研、考察、征询客户意见等基础上,研制开发了集自动化、即时化、智能化于一体的经济实用的水质量无线监测系统。该系统可以对排污口污水的PH值、DO、温度、电导和排污流量进行实时监控,通过GPRS/CDMA无线终端将数据传送到监控中心和环境管理部门,工作人员可以在监控中心或办公室进行远程监测,随时得到即时数据报告,实现远端无人值守。 二、系统组成、工作原理 系统主要是由一个监测中心,若干个固定监测站和专用GPRS/CDMA无线终端组成。监测中心对各个监测站进行控制指挥,各监测站收集各种污染参数,两者间的控制信号和监

无线远程抄表监测系统方案

无线远程抄表监测系统方案 (利用中国移动GPRS/SMS无线上网方式) 适用于各类计量点(台区变、关口表、大用户等) 一、开发背景 随着无线通信数字网络的发展,无线远程自动抄表已成为发展的必然趋势,其应用领域极为广阔,尤其是在油田各计量点,其优势更为突出。 目前,油田各变电站分布点多面广,其远程抄表大多仍沿用有线传输方式,线路维护量很大。为保证传输质量,若采用专线方式,投资成本太高;若与变电所的电力调度电话线公用,通讯时经常发生冲突,既影响了数据的传输也对电调部门的正常工作造成了干扰,并且此种方式对通讯部门程控交换机正常、稳定的运行也有一定的影响。采用中国移动GPRS/SMS无线数字网的通讯方式,很好地解决了远程抄表数传路由的瓶颈问题。 二、系统简介 北京旭航电子新技术有限公司利用中国移动GSM无线公网提供的GPRS/SMS无线上网数传服务业务,自主开发了无线远程抄表监测系统,该系统是由计量点(变电站、台区变、关口表等)端的GPRS无线集中抄表终端(ESL-8030E)和配套的数据处理中心组成,数据处理中心包括数据采集服务器、数据处理服务器、宽带网接入设备和管理软件。系统的中心管理软件为网络版,它把采集的抄表监测数据和报警信息经处理后,存

放在大型的数据库服务器中,计算机工作终端可以通过多种网络通道(局域网、internet网、GPRS网等)对其进行查询浏览。另外,系统中心还为用户提供直接用手机上网方式进行查询浏览。 在自动抄表系统中,ESL-8030E抄表终端自动进行定时抄表,铁电存储,定时上报,小时上报等一系列抄表上报工作;同时也能及时响应来自中心的即时抄表命令;抄表终端自动完成对变电站端电能表数据的高精度采集。抄表终端所采集变电站端数据主要包括电能量信息:如表底的峰、谷、平、尖峰电量、最大需量、ABC三相的累计失压时间等;抄表终端所采集变电站端的非电能量数据包括失电、失压、失流等事件信息。 系统所抄录的电能表表底数据和电量,能够作为电费结算依据,直接用于核算电费、计算母线电量平衡和线损分析的管理,并可用于用电市场的负荷预测。系统根据所抄录的事件信息,能够提供供电可靠性统计(掉电记录)和电压合格率监测功能。在供电局自动化系统满足要求的情况下,抄表终端还能够能接收自动化系统的开关刀闸信号,进行旁路的自动替代。营销管理信息系统、MIS和负荷控制系统联网,进一步提高供电营销和运行的整体管理水平。 三、典型用户 该系统是由本公司自主开发,并由大港油田集团公司供水供电公司提供试验环境下完成的。大港油田所属的变电站在天津和河北两地分布很广,由于中国移动提供的GPRS无线数据通讯业务,在国内跨省市不加收漫游费,所以该方式完成自动抄表监测,其运营费用最低。目前该系统已投入使用两年,系统运行稳定可靠,并取得可观的经济效益。

电力无线专网一体化混合组网及综合管理技术研究

Smart Grid 智能电网, 2018, 8(5), 465-471 Published Online October 2018 in Hans. https://www.doczj.com/doc/5410337565.html,/journal/sg https://https://www.doczj.com/doc/5410337565.html,/10.12677/sg.2018.85051 The Research of Data Collection for Communication Equipment Based on Device Direct Connection and Northbound Interface Xingnan Li1, Zhan Shi1, Ying Wang1, Yong Ding2 1Guangdong Power Grid Company, Guangzhou Guangdong 2NARI Group Corporation, Nanjing Jiangsu Received: Sep. 29th, 2018; accepted: Oct. 16th, 2018; published: Oct. 23rd, 2018 Abstract In this paper, the integrated hybrid networking and integrated management technology of electric power wireless private network is studied. Firstly, the unified modeling of the core network, wire-less network (including base stations, wireless terminals) and other different types of equipment in power wireless private network is carried out. Through distributed data acquisition, data ac-quisition and encapsulation are carried out for the network management of the core network, base station, terminal and other equipment in the wireless private network. Then, different sub nets are divided and unified in the upper layer integrated network management. The connection between terminal devices and base stations is indirectly constructed by resident small area codes. Finally, based on the computer graphics technology, all the equipments are managed hierarchi-cally, and the different equipments of the core network and wireless network are managed com-prehensively in the integrated network management. Keywords Electric Power Wireless Private Network, Mixed Network, Data Collection 电力无线专网一体化混合组网及综合管理技术研究 李星南1,施展1,汪莹1,丁雍2 1广东电网有限责任公司,广东广州 2南瑞集团有限公司,江苏南京

无线环境监测系统资料

南京邮电大学自动化学院实验报告 实验名称:无线环境参数测量系统 课程名称:智能仪器设计基础 所在专业:测控技术与仪器 学生姓名:林若愚 班级学号: B12050518 任课教师:徐国政 2014 /2015 学年第二学期 实验地点:教5-214 实验学时:8

目录 摘要: (2) 一、实验目的 (2) 二、实验内容 (2) 三、实验设备 (2) 四、实验硬件介绍 (3) 1. STC89C52RC (3) 2. STC15W4K32S4 (3) 3. NRF2401 (4) 4. LCD12864 (5) 5. AM2320 (5) 6. SD2068 (5) 7. BMP180 (6) 8. MQ135 (6) 五、系统实现介绍 (6) 1.系统结构 (6) 1.模块功能说明 (6) 2.系统框图 (7) 2. 电路图和实物图 (8) 六、软件程序 (10) (1)软件功能说明+程序流程图 (10) (2)软件具体实现 (10) LCD12864.h文件内容 (10) LCD12864.c文件内容 (11) Main.c内容 (12) 其他部分 (14) 七、实验数据及结果分析 (15) 八、总结及心得体会 (17)

摘要:无线环境参数测量系统 随着科技的发展,人们对自己的生活环境越来越在意,并且希望能直观的数字化参数化地衡量当前的环境质量。本系统虽然用的是传统传感器,但是在和传感器相连的显示器上能显示的基础之上增加了远程发送设备,能实现在测量某一点的实时环境参数的同时,在半径几米之内的任意位置都能直接直观的查看到这些数据。测量的参数包括温度湿度气压和空气质量,能让人们对生活环境的认识更加数字化。且本系统节能省电,实现了可持续发展。 一、实验目的 1.了解并能使用I2C总线进行传感器数据获取 2.了解双机通信与无线通信 3.使用labview图形化编程软件进行上位机界面设计 二、实验内容 1.使用STC15W4K32S4单片机驱动多种传感器完成多参数测量 2.实现STC15W4K32S4与STC89C52RC之间的串口通信并使用LCD12864显示接受到的信息 3.实现NRF24L01+进行信息无线收发 4.实现用labview制作上位机用来显示测量到的信息 三、实验设备 1.STC15W4K32S4单片机1只 2.STC89C52RC 单片机2只

水位远程监测系统方案设计

实用文档 水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求 (2) 二、方案概述 (2) 三、系统组成 (2) 3.1控制中心主站 (3) 3.2通讯网络 (3) 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功能 (5) 5.2特点 (6) 六、主要硬件设备概述 (9) 6.1 GPRS无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

一、客户需求 在某单位建立一套水位远程监测系统,来实对水位的实时监测,统一管理。 二、方案概述 作为行业领先者的水位远程监测系统的解决方案,经过我们多年的水位监测系统项目实施经验,依据用户的具体情况,并结合实际需求,我们提供并建立一个合理、完整的地下水位系统的决方案。 水位数据的收集不仅能够及时、准确地反应问题,分析问题,解决问题,从而指导工作实践,而且更是研究地下水位动态规律,掌握不同水文地质单元、不同层位、不同水源地地下水位变化特征的重要依据,对水资源的研究与管理具有重要意义。 可实现如下功能: (1)数据自动采集:自动实时采集计量点的地下水位数据,实现数据采集的准确性、完整性、及时性和可靠性,; (2)报警信息主动上报:现场监测箱开门、断电、设备运行异常等信息能够主动发送到监测中心; (4)计量装置监测:远程监测水位计运行信息,分析计量故障等信息,及时发现用户计量异常; (5)统计分析:配合水位监测体系的建立,实现各地下水位监测点的数据统计、做出日周月年报表、曲线、柱状图等。 三、系统组成 本系统主要地下水位监测中心主站、通信网络、现场监测设备三部分组成,利用前端监控、数据采集设备的数据远传通讯功能和系统软件功能实现。采集数据,使监测中心通过简单而又经济的计量手段,实现对整个地区地下水信息的实时监测,进而实现良好的社会效益和经济效益。

无线专网技术在电力通信网中的应用 高峰

无线专网技术在电力通信网中的应用高峰 发表时间:2018-12-17T10:20:15.313Z 来源:《电力设备》2018年第21期作者:高峰[导读] 摘要:无线专网这项技术被称作是在全球内,使用微波对于互联网进行接入的技术。 (国网朔州供电公司山西朔州 036000)摘要:无线专网这项技术被称作是在全球内,使用微波对于互联网进行接入的技术。因此,电力当中使用的通信网具有大量的、复杂的进行参数收集的点,此类进行参数采集的单点,其输送的效率不大。而且,在电力通信网络进行正常运行期间,不可避免的会实施大量的优化改良。因此,电力通信网络需要有便捷的接入条件及高效的网络,以构成方式平稳、高效地开展输送保障,更加便捷的运行期间使 用的对策。 关键词:无线专网技术;电力通信网;应用 1电力无线专网特性 第一,施工难度较低:无线专网基站和终端一般都是安装于电力自有物业,无需和其他部门进行协调沟通,因此施工协调难度低也不会破坏环境的原有建设与规划,并且基站的建设可以依附于高楼或者自有电力设备,无需重新再建设基站,具有施工成本低、周期短、难度低等优势。第二,系统抗毁性较高:由于无线专网通信的传播载体为无线电波和无线设备是依附于电力自有设备上,无线电波和电力自有设备均对各种自然灾害和人为破坏具有很强的抗毁性。即使在大面积部署后遇到自然灾害或者人为破坏,也可以快速恢复通信,无线专网具有恢复难度低、恢复周期短的优势。第三,系统可维护性较好:当无线专网系统出现故障,网管可将问题迅速定位到每个终端,并且由于无线网络传播载体为无线电波的缘故,因此可以更加精准的定位到问题,进行问题的精准修复,具有系统后期可维护性较好、修复工作量较小的优势。第四,系统可扩展性较强:无线网络建设不易受地域、环境和距离的限制,因此具有扩展性好、扩展规划易、扩展周期短等优势,切合于未来电力业务大面积扩展的趋势,方便进行大规模扩展。第五,服务质量优:电力无线专网在网络资源分配、业务服务、优化调整、维护管理等方面都可以根据不同的需要进行实时自我调配,因此在响应及时性、服务质量等方面优于其他通信方式。第六,安全优势:无线专网可根据电力业务安全需求在核心网、基站、终端等多个层面采取安全措施,全面综合提升无线通信安全性;因此具有很强的安全性。 2无线专网技术在电力通信网中应用的意义 2.1可应用授权的230MHz频段 低频段具备覆盖范围大、覆盖领域广的优势,可达到县域电力通信网络中分散客户的实际需求,在此基础上,还能够很大程度上降低组网成本。因此,在广覆盖、低成本无线通信系统建设过程中,低频段是一项宝贵的、难得的频率资源。在电力领域中,230MHz频段是专用型频段,其覆盖距离大约为6倍左右的2.4GHz频段。但在最开始部署时无线系统并不会过高运用此频率段,如数传电台。其实通过研究发现,数传电台与2G技术体制所运用的频谱效率类似。但随着社会发展和国家进步,我国也在大力升级和改造低频段通信技术。在230MHz频段可运用TD-LTE宽带技术,完全能够取代数传电台进行工作,是在升级和改造当前电力无线通信体制,得到了我国无线电监测中心大力认可。其结合30MHz频段特点,运用相对应的无线通信技术,实现有效传输带宽数据信息,并结合传统信息系统,进而达到了建设智能化和信息化农网现实需求。 2.2具备支撑庞大的客户群进行在线交流的功能 在进行参数传输时,客户占据了大量无线电方面的资源,在输送无线参数以后,便会将无线资源进行输出,这就在很大程度上加强了对于无线方面的资源效率以及质量进行利用。TD-LTE这项技术还具备实时在线功能,不止能够将业务在实时性方面提出的相关要求进行满足,同样可以极大的提升业务全方位的效率。 2.3具有承受大量高宽带类型的服务方面的能力 使用这项技术,可以将无限的专用网组建成功,能够承担多种类型的业务。例如:进行配电状态的自动化、传统意义的语音、高速参数、收集使用电力资源的信息、流媒体等,在某种意义上来讲,这项技术完成了智能化在进行农网组建期间提出的相关需求。 2.4频谱水准优 联系实际工作时总结出来的经验,将无线专网技术使用到通信行业当中,对于频谱资源而言,其储备量不够充足。这项技术可以利用频谱在宽度上存在的差异,将其在进行实际应用时具备的灵活性以及有效性表现出来。 2.5能够保证客户身份信息的安全 在TD-LTE系统中运用两种保护机制来保护用户身份,即:临时身份标识机制、永久加密身份标识机制。永久加密身份标识指的是在空中对接口过程中尽量加密传输的身份标识。临时身份标识指的是在空中接口过程中,尽量运用一个频繁更新的身份标识来取代永久身份标识,进而保证用户信息的安全性。 3无线专网技术在电力通信网中的应用目前电力无线专网使用的技术体制主要包括230MHz数传电台、WiMAX(全球微波互联接入)、McWil(多载波无线信息本地环路)、TD-LTE(分时长期演进)等,现对主要技术应用展开分析:第一,230MHz数传电台由于调制方式相比于其他目前使用较多的技术体制比较落后,频谱利用率不高,并且数据采集方式仅限与串行的方式,方式单一,不能并行收集数据,具有采集率低下和灵活性不高的问题。在通信过程中容易造成重要信息或者设备故障信息不能及时上传,带来系统瘫痪等问题。 第二,WiMAX的工作频段主要是在2-11GHz范围内,由于其工作频段范围较短,导致其信号的绕射能力和抗遮挡能力较差,因此在电力通信相关的业务建设中只适合于地势相对平坦的地区,这样可以减少信号的衰减。故该技术的特征限制了其使用范围,对地势选择具有很高的严苛性,因此不能大面积的推广该技术。 第三,McWill是由旧通信技术发展而来的,弥补了旧通信技术中的缺点,对WiMAX中抗遮挡能力差的缺点进行了改善,提高了信号的抗遮挡能力,具有更强的抗干扰性,具有更强的覆盖能力。但是该技术目前可使用的频段不多,缺少成熟强大的终端芯片开发商,因此该技术应用不够广泛,处于研究成长阶段。

相关主题
文本预览
相关文档 最新文档