当前位置:文档之家› X射线衍射基础

X射线衍射基础

X射线衍射基础
X射线衍射基础

X射线衍射基础

目录

1概述

2X射线的产生

3X射线管工作条件的确定

4X射线光谱

4.1 连续光谱

4.2 特征光谱

5物质对X射线的吸收,实验波长及滤波片的选择

5.1 线吸收系数

5.2 质量吸收系数

5.3 吸收系数与波长及元素的关系

5.4 实验波长的选择

5.5 滤波片

6晶体对X射线的衍射

6.1 衍射几何方程

6.2 多晶X射线的衍射强度

7X射线的检测

7.1 荧光板

7.2 照相方法

7.3 正比计数管

7.4 闪烁计数管

7.5 固体检测器

7.6 位敏正比计数管

7.7 成像屏

7.8 X射线电视

8X射线的防护

1.1 概述

1895年伦琴(W.C.Roentgen)研究阴极射线管时,发现管的对阴极能放出一种有穿透力的肉眼看不见的射线。由于它的本质在当时是一个"未知数",故称之为X射线。这一伟大发现当即在医学上获得非凡的应用——X射线透视技术。1912年劳埃(M.Von Laue)以晶体为光栅,发现了晶体的X射线衍射现象,确定了X 射线的电磁波性质。此后,X射线的研究在科学技术上给晶体学及其相关学科带来突破性的飞跃发展。由于X射线的重大意义和价值,所以人们又以它的发现者的名字为其命名,称之为伦琴射线。

X射线和可见光一样属于电磁辐射,但其波长比可见光短得多,介于紫外线与γ射线之间,约为10-2到102埃的范围(图1.1)。X射线的频率大约是可见光的103倍,所以它的光子能量比可见光的光子能量大得多,表现明显的粒子性。由于X射线波长短,光子能量大的两个基本特性,所以,X射线光学(几何光学和物理光学)虽然具有和普通光学一样的理论基础,但两者的性质却有很大的区别,X射线与物质相互作用时产生的效应和可见光也迥然不同。

图1.1 电磁波谱

X射线和其它电磁波一样,能产生反射、折射、散射、干涉、衍射、偏振和吸收等现象。但是,在通常实验条件下,很难观察到X射线的反射。对于所有的介质,X射线的折射率n都很接近于1(但小于1),所以几乎不能被偏折到任一有实际用途的程度,不可能像可见光那样用透镜成像。因为 n≈1,所以只有在极精密的工作中才需考虑折射对X射线作用介质的影响。X射线能产生全反射,但是其掠射角极小,一般不会超过20'~30'。

在物质的微观结构中,原子和分子的距离(1 ~10埃左右)正好落在X射线的波长范围内,所以物质(特别是晶体)对X射线的散射和衍射能够传递极为丰富的微观结构信息。可以说,大多数关于X射线光学性质的研究及其应用都集中在散射和衍射现象上,尤其是衍射方面。X射线衍射方法是当今研究物质微观结构的主要方法。

X射线穿透物质时都会被部分吸收,其强度将被衰减变弱;吸收的程度与物质的组成、密度和厚度有关。在此过程中X射线与物质的相互作用是很复杂的,会引起多种效应,产生多种物理、化学过程。例如,它可以使气体电离;使一些物质发出可见的荧光;能破坏物质的化学键,引起化学分解,也能促使新键的形成,促进物质的合成;作用于生物细胞组织,还会导致生理效应,使新陈代谢发生变化甚至造成辐射损伤。然而,就X射线与物质之间的物理作用而言,可以分为两类:入射线被电子散射的过程以及入射线能量被原子吸收的过程。

X射线散射的过程又可分为两种,一种是只引起X射线方向的改变,不引起能量变化的散射,称为相干散射,这是X射线衍射的物理基础;另一种是既引起X射线光子方向改变,也引起其能量的改变的散射,称为不相干散射或康普顿散射(或康普顿效应),此过程同时产生反冲电子(光电子)。

物质吸收X射线的过程主要是光电效应和热效应。物质中原子被入射X射线激发,受激原子产生二次辐射和光电子,入射线的能量因此被转化从而导致衰减。

二次辐射又称为荧光X射线,是受激原子的特征射线,与入射线波长无关。荧光辐射是X射线光谱分析的依据。如果入射光子的能量被吸收,却没有激发出光电子,那么其能量只是转变为物质中分子的热振动能,以热的形式成为物质的内能。

综上所述,X射线的主要物理性质及其穿过物质时的物理作用可以概括地用下图表示:

图1.2 X射线的物理性质和穿过物质时的作用

1.2 X射线的产生

现在人们已经发现了许多的X射线产生机制,其中最为实用的能获得有足够强度的X射线的方法仍是当年伦琴所采用的方法——用阴极射线(高速电子束)轰击对阴极(靶)的表面。各种各样专门用来产生X射线的X射线管工作原理可用下图表示:

图1.3 X射线管的工作原理

X射线管实际上是一只真空二极管,它有两个电极:作为阴极的用于发射电子的灯丝(钨丝)和作为阳极的用于接受电子轰击的靶(又称对阴极)。X射线管供电部分至少包含有一个使灯丝加热的低压电源和一个给两极施加高电压的高压发生器。由于总是受到高能量电子的轰击,阳极还需要强制冷却。

当灯丝被通电加热至高温时(达2000℃),大量的热电子产生,在极间的高压作用下被加速,高速轰击到靶面上。高速电子到达靶面,运动突然受阻,其动能部分转变为辐射能,以X射线的形式放出,这种形式产生的辐射称为轫致辐射。

轰击到靶面上电子束的总能量只有极小一部分转变为X射线能,靶面发射的X

射线能量与电子束总能量的比率ε可用下面的近似公式表示:

ε= 1.1×10-9 Z V (1.1)

式中Z为靶材组成元素的原子序数,V为X射线管的极间电压(又称管电压),以伏特为单位。例如对于一只铜靶的X射线管,在30KV工作时,ε= 0.1%,而一只钨靶的X射线管在100KV条件下工作时,也不过ε= 0.8%。可见X射线管产生X射线的能量效率是十分低的,但是,目前X射线管仍是最实用的发生X射线的器件。

因为轰击靶面电子束的绝大部分能量都转化为热能,所以,在工作时X射线管的靶必须采取水冷(或其他手段)进行强制冷却,以免对阴极被加热至熔化,受到损坏。也是由于这个原故,X射线管的最大功率受到一定限制,决定于阳极材料的熔点、导热系数和靶面冷却手段的效果等因素。同一种冷却结构的X射线管的额定功率,因靶材的不同是大不相同的。例如,铜靶(铜有极佳的导热性)和钼靶(钼的熔点很高)的功率常为相同结构的铁、钴、铬靶的两倍。

在晶体衍射实验中,常用的X射线管按其结构设计的特点可分为三种类型:

1. 可拆式管——这种X射线管在动真空下工作,配有真空系统,使用时需抽真空使管内真空度达到10-5毫帕或更佳的真空度。不同元素的靶可以随时更换,灯丝损坏后也可以更换,这种管的寿命可以说是无限的。

2. 密封式管——这是最常使用的X射线管,它的靶和灯丝密封在高真空的壳体内。壳体上有对X射线“透明”的X射线出射“窗孔”。靶和灯丝不能更换,如果需要使用另一种靶,就需要换用另一只相应靶材的管子。这种管子使用方便,但若灯丝烧断后它的寿命也就完全终结了。密封式X射线管的寿命一般为1000—2000小时,它的报废往往并不是与因灯丝损坏,而是由于靶面被熔毁或因受到钨蒸气及管内受热部分金属的污染,致使发射的X射线谱线“不纯”而被废用。

3. 转靶式管——这种管采用一种特殊的运动结构以大大增强靶面的冷却,即所谓旋转阳极X射线管,是目前最实用的高强度X射线发生装置。管子的阳极设计成圆柱体形,柱面作为靶面,阳极需要用水冷却。工作时阳极圆柱以高速旋转,这样靶面受电子束轰击的部位不再是一个点或一条线段而是被延展成阳极柱体上的一段柱面,使受热面积展开,从而有效地加强了热量的散发。所以,这种管的功率能远远超过前两种管子。对于铜或钼靶管,密封式管的额定功率,目前只能达到2 KW左右,而转靶式管最高可达90 KW。

1.3 X射线管工作条件的确定

大多数晶体衍射实验都需要使用单一波长的X射线。特征谱线的存在,尤其是强度很大而且分得很开的Kα线的存在,给晶体衍射实验带来极大的方便。因为只要适当选择工作条件,一只X射线管就可视为近似单色的辐射源。

如何确定X射线管的最佳工作条件呢?这需要分析特征光谱强度与连续光谱强度之比随着X射线管的工作电压的改变是如何改变的。实验证明,特征光谱的强度I c是管电流i及管电压V的函数:

I c= C · i ·(V-V k)n(1.2)

式中指数 n 约1.5,V k为特征谱线的激发电压,C为比例常数。设W为X射线管可以采用的最大功率,则管电流i最多等于W/V,故特征光谱的最大强度I c将为:

I c = C · W ·(V-V k)1.5/V

= C · W · V k0.5·(V/V k - 1)1.5/(V/V k)(1.3)

I c作为V/V k的函数可用图1.4中的曲线a表示:电压V越高,特征线的强度越大,但是它的增加变慢。连续光谱的总强度I w是与W、Z、V成正比的(式1.1),我们可推求特征光谱与连续光谱的强度比:

I c/I w =(1/ V k0.5)·(V/V k - 1)1.5/(V/V k)2/Z (1.4)

图1.4中的曲线b给出了对于某一对阴极,I c/I w作为V/V k函数的曲线图:它初随V/V k增大而迅速增加,直到V/V k增至3左右以后,在一个比较大的范围内维持不变,而后缓慢地减小。对于给定的 V/V k,对阴极元素的原子序数越大,则连续光谱所占的比例也越高,因为I w正比于Z。

曲线a: 某一特征K

α线的最大发射强度

曲线b: K

α线与连续谱线强度比

图1.4 X射线管发射强度与管工作电压的关系

从上面的分析可知:在实验中,当需要用一个管子的特征谱线(例如用其Kα线)作为单色辐射源时,最有利的管压应该为该特征谱线激发电压的三倍以上。但也不宜太高,若太高,连续光谱所占的比例也增加(虽然比较慢)。对于原子序数较小的对阴极,其Kα线的能量与其波长附近同宽度带连续光谱的能量相比较虽然较高,例如在30KV下工作的Cu靶X射线管,发射光束中CuKα辐射的强度约为其附近连续光谱强度的90倍,但是在X射线管的光束总能量中,特征光谱只占很小的一个份额,因为I c/I w是远小于1的。所以,当需要使用“单色”

射线时,除应选用适当的工作电压外,还必须选择适当的“单色化”手段。当同一宽带的连续光谱起作用时,必须注意到它的作用是否可以同Kα线单独作用相比拟。

当需要“白色”X射线时,通常使用钨靶X射线管在50KV以上工作比较合适。在此条件下,光谱中只含有弱的钨的L线;K线仅在电压高于69KV时才会出现,但是此时它们的强度还是很弱的,因为V/V k才略大于1。

1.4 X射线光谱

由X射线管所得到的X射线,其波长组成是很复杂的。按其特征可以分成两部分:连续光谱和特征光谱(图1.5),后者只与靶的组成元素有关。这两部分射线是基于两种不同的机制产生的。

1.4.1 连续光谱

连续光谱又称为“白色”X射线,包含了从短波限λm开始的全部波长,其强度随波长变化连续地改变。从短波限开始随着波长的增加强度迅速达到一个极大值,之后逐渐减弱,趋向于零(图1.5)。连续光谱的短波限λm只决定于X射线管的工作高压。

图1.5 X射线管产生的X射线的波长谱

目前还没有一个简单的理论能够对连续光谱变化的现象给予全面的清楚的

解释,但应用量子理论可以简单说明为什么连续光谱具有一个短波极限。该理论认为,当能量为eV的电子和物质相碰撞产生光量子时,光量子的能量至多等于电子的能量,因此辐射必定有一个频率上限νm,此上限值应由下面的关系式决定:

hνm = hC/λm = eV (1.5)

式中h为普朗克常数,C为光速。当V以伏特为单位,波长λ以埃为单位时,短波极限λm可以表示为:

λm = 12395/V (1.6)

如果一个电子射入物质后在发生有效碰撞(产生光量子)之前速度有所降低,则碰撞产生光量子的能量就会减小。由于多种因素使得发生有效碰撞的电子速度可以从零到初速连续的取值,因而出现了连续光谱,其波长自λm开始向长波长方向伸展。但是,量子论的这个解释并不能给出能量从电子传递到光子的机制。

实验指出,X射线管对阴极所接受的能量与高压V成正比,而输出辐射能占所得总能量的百分数(式1.1)又与原子序数Z以及高压V成正比,因此可推求出光谱的总能量(图1.5中某一连续谱线下的面积)是和ZV2成正比的。可见,对于在一定条件(管电流i和管电压V)下工作的管子,因为连续光谱的强度和对阴极元素的原子序数Z成正比,所以,当需要用“白色”辐射(即包含有所有波长的连续辐射)时,选择重元素金属作靶的管子将更为有效,例如,用钨靶所得的“白色”辐射总能量是铜靶的2.6倍。从图1.5中我们还应注意到,连续光谱是从短波极限处突然开始的,大部分能量都集中在接近短波极限的位置,高电压对连续光谱有利。随着使用电压的增加,λm变短,“白色”辐射的能量相对更集中在短波极限一侧的一个范围内。在晶体衍射实验中,只有Laue法和能量色散型衍射仪需要使用连续光谱的X射线;而在其它的晶体衍射方法中,通常则要求使用“单色”X射线,连续光谱对这些方法所得的结果是不利的。因为连续光谱是这些衍射方法的衍射图背景产生的主要原因,此时需要适当选取X射线管的工作条件,同时需要采取必要的手段来避免连续光谱的不利影响。

1.4.2 特征光谱

在连续光谱上会有几条强度很高的线光谱(图1.5),但是它只占X射线管辐射总能量的很小一部分。特征光谱的波长和X射线管的工作条件无关,只取决于对阴极组成元素的种类,是对阴极元素的特征谱线。

阴极射线的电子流轰击到靶面,如果能量足够高,靶内一些原子的内层电子会被轰出,使原子处于能级较高的激发态。图1.6b表示的是原子的基态和K、L、M、N等激发态的能级图,K层电子被击出称为K激发态,L层电子被击出称为L 激发态,依次类推。原子的激发态是不稳定的,寿命不超过10-8秒,此时内层轨道上的空位将被离核更远轨道上的电子所补充,从而使原子能级降低,这时,多余的能量便以光量子的形式辐射出来。图1.6a描述了上述激发机理。处于K激发态的原子,当不同外层的电子(L、M、N…层)向 K层跃迁时放出的能量各不相同,产生的一系列辐射统称为K系辐射。同样,L层电子被击出后,原子处于L激发态,所产生一系列辐射则统称为L系辐射,依次类推。基于上述机制产生的X射线,其波长只与原子处于不同能级时发生电子跃迁的能级差有关,而原子

的能级是由原子结构决定的,因此,这些有特征波长的辐射将能够反映出原子的结构特点,我们称之为特征光谱。

图1.6 元素特征X射线的激发机理

元素的每条线光谱都是近单色的,衍射峰的半高宽小于0.01埃。参与产生特征X射线的电子层是原子的内电子层,内层电子的能量可以认为仅决定于原子核而与外层电子无关,(外层电子决定原子的化学性质和它们的紫外、可见光谱),所以,元素的X射线特征光谱比较简单,且随原子序数作有规律的变化,特征光谱只取决于元素的种类而不论物质处于何种化学或物理状态。各系X射线特征辐射都包含几个很接近的频率。例如,K系辐射包含Kα1、Kα2和Kβ三个频率,Kα1、Kα2波长非常接近,相距0.004埃,在实际使用时常常分不开,统称为 Kα线,Kβ线比Kα线频率要高,波长要短一些(见图1.5)。Kα线是电子由 L层跃迁到K 层时产生的辐射,而Kβ线则是电子由M层跃迁到K层时产生的(图1.6a)。实际上L、M等能级又可分化成几个亚能级,依照选择法则,在能级之间只有满足一定选律要求时跃迁才会发生。例如跃迁到K层的电子如果来自 L层,则只能从 LⅡ和LⅢ亚层跃迁过来;如果来自M层,则只能从MⅡ及MⅢ亚层跃迁过来。所以,Kα线就有Kα1和Kα2之分,Kβ线理论上也应该是双重的,但是Kβ线的两根线中有一根非常弱,因此可以忽略。

各个系X射线的相对强度与产生该射线时能级的跃迁机遇有关。由于从 L

层跃迁到K层的机遇最大,所以Kα强度大于Kβ的强度,而在Kα线中,Kα1的强度又大于Kα2的强度。Kα2、Kα1和Kβ三线的强度比约为50﹕100﹕22 。考虑到Kα1的强度是Kα2强度的两倍,所以,Kα的平均波长应取两者的加权平均值:λKα = (2λKα1 +λKα2)/3 (1.7)

1.5 物质对X射线的吸收,实验波长及滤波片的选择

X射线穿过物质之后,强度会衰减。前面已经指出,这是因为X射线同物质相互作用时经历各种复杂的物理、化学过程,从而引起各种效应转化了入射线的部分能量。如下图所示:

图1.7 X射线的衰减

1.5.1 线吸收系数

实验证明,X射线穿透物质后的强度衰减与射线在物质中经过的距离成正比。假设入射线的强度为I0,进入一块密度均匀的吸收体,在x处时其强度为I x,当通过厚度dx时强度的衰减为dI,定义μ为X射线通过单位厚度时被吸收的比率,则有:

-dI = μI x dx

(1.8)

考虑边界条件并进行积分,则得:

I x = I0 e-μx

(1.9)

式中μ称为线衰减系数,x为试样厚度。我们知道,衰减至少应被视为物质对入射线的散射和吸收的结果,系数μ应该是这两部分作用之和。但由于因散射而引起的衰减远小于因吸收而引起的衰减,故通常直接称μ为线吸收系数,而忽略散射的部分。

1.5.2 质量吸收系数

式(1.9)常常写成如下形式:

I x= I0 e –(μ/ρ)ρx

(1.10)

式中ρ为吸收体的密度,(μ/ρ)称为质量吸收系数,它是物质固有的特性,对于一定波长的入射X射线,每种物质都具有一定的值。质量吸收系数常用μ*或μm来表示。X射线被物质吸收的性质与物质的化学组成有关。在理想情况下,作为一级近似,元素的质量吸收系数可以认为与元素的物理化学状态无关,由两种元素以上组成的化合物、混合物、溶液等物质的质量吸收系数μm可以由各组成元素的μ/ρ进行线性加和得到。假定物质的各组成元素的μ/ρ分别为

(μ1/ρ1)、(μ2/ρ2)、(μ3/ρ3)… 其质量百分数分别为x1、x2、x3… 则物质的μm可按下式计算:

μm = x1(μ1/ρ1)+x2(μ2/ρ2)+x3(μ3/ρ3)+…(1.11)

1.5.3 吸收系数与波长及元素的关系

元素的吸收系数是入射线的波长和吸收元素原子序数的函数。如图1.8a所

示,对于一种元素其质量吸收系数μm随着波长的变化有若干突变,发生突变的

波长称为吸收限(或称吸收边)。在各个吸收限之间质量吸收系数随波长增加而增大。所以短波长的X射线(所谓硬X射线)穿透能力大,而长波长的X射线(所谓软X射线)则容易被物质吸收。对于X射线的实验技术来说,最有用的是第一吸收限,即K吸收限。质量吸收系数随着波长的变化有突变的原因,也就是元素特征光谱产生的原因。当入射X射线的能量足够把内层电子轰出时(即光电效应),能量便被吸收,并会部分转化为元素二次辐射的能量。各个吸收限之间的区域内质量吸收系数符合下面的近似关系:

μ/ρ= Kλ3 Z3

(1.12)

式中K为常数。对于给定的波长λ,μm随Z的增大也有类似的规律,如图1.8b 所示。

图1.8物质的质量吸收系数(μ*)

1.5.4 实验波长的选择

在X射线衍射实验中:如果所用X射线波长较短,正好小于样品组成元素的吸收限,则X射线将大量地被吸收,产生荧光现象,造成衍射图上不希望有的深背景;如果所用X射线波长正好等于或稍大于吸收限,则吸收最小。因此进行衍射实验时应该依据样品的组成来合理地选择工作靶的种类:应保证样品中最轻元素(钙和原子序数比钙小的元素除外)的原子序数比靶材元素的原子序数稍大或相等。如果靶材元素的原子序数比样品中的元素原子序数大2~4,则X 射线将被大量吸收因而产生严重的荧光现象,不利于衍射分析。

1.5.5 滤波片

使X射线管产生的X射线单色化,常采用滤波片法。利用滤波片的吸收限进行滤波,除去不需要的Kβ线,使用滤波片是最简单的单色化方法,但只能获得近似单色的X射线。原子序数低于靶元素原子序数1或2的元素,其K吸收限波长正好在靶元素的Kα和Kβ波长之间,因此对于每种元素作为靶的X射线管,理论上都能找到一种物质制成它的Kβ滤波片。使用Kβ滤波片还可以吸收掉大部分的“白色” 射线(图1.8)。滤波片的厚度通常按Kβ的剩余强度为透过滤波片前的0.01计算,此时Kα通常被衰减掉一半。

图1.9Cu的X射线光谱在通过Ni滤片之前(a)

和通过滤片之后(b)的比较(虚线为Ni的质量吸收系数曲线)

1.6 晶体对X射线的衍射

X射线照射到晶体上发生散射,其中衍射现象是X射线被晶体散射的一种特殊表现。晶体的基本特征是其微观结构(原子、分子或离子的排列)具有周期性,当X射线被散射时,散射波中与入射波波长相同的相干散射波,会互相干涉,在一些特定的方向上互相加强,产生衍射线。晶体可能产生衍射的方向决定于晶体微观结构的类型(晶胞类型)及其基本尺寸(晶面间距,晶胞参数等);而衍射强度决定于晶体中各组成原子的元素种类及其分布排列的坐标。晶体衍射方法是目前研究晶体结构最有力的方法

1.6.1 衍射几何方程

联系X射线衍射方向与晶体结构之间关系的方程有两个:劳埃(Laue)方程和布拉格(Bragg)方程。前者基于直线点阵,而后者基于平面点阵,这两个方程实际上是等效的。

.1 劳埃(Laue)方程

首先考虑一行周期为a0的原子列对入射X射线的衍射。如图1.10所示(忽略原子的大小),当入射角为α0时,在αh角处观测散射线的叠加强度。相距为a0的两个原子散射的X射线光程差为a0(cosαh-cosα0),当光程差为零或等于波长的整数倍时,散射波的波峰和波谷分别互相叠加而强度达到极大值。光程差为零时,干涉最强,此时入射角a0等于出射角,衍射称为零级衍射。

图1.10一行原子列对X射线的衍射

晶体结构是一种三维的周期结构,设有三行不共面的原子列,其周期大小分别为a0、b0、c0,入射X射线同它们的交角分别为α0、β0、γ0,当衍射角分别为αh、βk、γl,则必定满足下列的条件:

a0(cosαh-cosα0)=hλ

b0(cosβk-cosβ0)=kλ

(1.13)

c0(cosγl-cosγ0)=lλ

式中h,k,l为整数(可为零和正或负的数),称为衍射指标,λ为入射线的波长。式(1.13)是晶体产生X射线衍射的条件,称劳埃方程。衍射指标hkl的整数性决定了晶体衍射方向的分立性,每一套衍射指标规定了一个衍射方向。

.2布拉格方程

晶体的空间点阵可划分为一族平行且等间距的平面点阵(hkl),或者称晶面。同一晶体不同指标的晶面在空间的取向不同,晶面间距d(hkl)也不同。设有一组晶面,间距为d(hkl),一束平行X射线射到该晶面族上,入射角为θ。对于每一个晶面散射波的最大干涉强度的条件应该是:入射角和散射角的大小相等,且入射线、散射线和平面法线三者在同一平面内(类似镜面对可见光的反射条件),如图1.11a所示,因为在此条件下光程都是一样的,图中入射线s0在P,Q,R处的相位相同,而散射线s在P’,Q’,R’处仍是同相,这是产生衍射的必要条件。

图1.11布拉格方程的推引

现在考虑相邻晶面产生衍射的条件。如图1.11b所示的晶面1,2,3,…… 间距为d(hkl),相邻两个晶面上的入射线和散射线的光程差为:MB+BN,而MB=BN=d(hkl) sinθn,即光程差为2d (hkl) sinθn,当光程差为波长λ的整数倍时,相干散射波就能互相加强从而产生衍射。由此得晶面族产生衍射的条件为:

2 d (hkl) sinθn=nλ (1.14)

式中n为1,2,3,……等整数,θn为相应某一n值的衍射角,n则称衍射级数。式(1.14)称为布拉格方程,是晶体学中最基本的方程之一。

根据布拉格方程,我们可以把晶体对X射线的衍射看作为“反射”,并乐于借用普通光学中“反射”这个术语,因为晶面产生衍射时,入射线、衍射线和晶面法线的关系符合镜面对可见光的反射定律。但是,这种“反射”并不是任意入射角都能产生的,只有符合布拉格方程的条件才能发生,故又常称为“选择反射”。据此,每当我们观测到一束衍射线,就能立即想象出产生这个衍射的晶面族的取向,并且由衍射角θn便可依据布拉格方程计算出这组平行晶面的间距(当实验波长也是已知时)。

由布拉格方程,我们可以知道如果要进行晶体衍射实验,其必要条件是:所用X射线的波长λ< 2d。但是λ不能太小,否则衍射角也会很小,衍射线将集中在出射光路附近的很小的角度范围内,观测就无法进行。晶面间距一般在10埃以内,此外考虑到在空气中波长大于2埃的X射线衰减很严重,所以在晶体衍射工作中常用的X射线波长范围是0.5至2埃。对于一组晶面hkl,它可能产生的衍射数目n决定于晶面间距d,因为必须满足nλ< 2d。如果我们把第n级衍射视为和晶面族hkl平行但间距为d/n的晶面的第一级衍射(依照晶面指数的定义,这些假想晶面的指数为nh,nk,nl,在n个这样的假想晶面中只有一个是实际晶体结构的一个点阵平面),于是布拉格方程可以简化表达为:

2 d sinθ=λ (d = d/n) (1.15)

因为在一般情况下,一个三维晶体对一束平行而单色的入射X射线是不会使之发生衍射的,如果要产生衍射,则至少要求有一组晶面的取向恰好能满足布拉

格方程,所以对于单晶的衍射实验,一般采用以下两种方法:1.用一束平行的“白色”X射线照射一颗静止的单晶,这样,对于任何一组晶面总有一个可能的波长

能够满足布拉格方程;2.用一束平行的单色X射线照射一颗不断旋转的晶体,在晶体旋转的过程中各个取向的晶面都有机会通过满足布拉格方程的位置,此时晶面与入射X射线所成的角度就是衍射角。对于无织构的多晶样品(如微晶的聚晶体,很细的粉末等),当使用单色的X射线作入射光时,总是能够产生衍射的。因为在样品中,晶粒的取向是机遇的,所以任意一种取向的晶面总是有可能在某几颗取向恰当的晶粒中处于能产生衍射的位置,这就是目前大多数多晶衍射实验所采用的方法,称为“角度色散”型方法。对于多晶样品采用“白色”X 射线照射,在固定的角度位置上观测,则只有某些波长的X射线能产生衍射极

大,依据此时的角度大小和产生衍射的X射线波长就能计算得出相应的晶面间距大小,这就是所谓“能量色散”型的多晶X射线衍射方法。

1.6.2 多晶X射线的衍射强度

劳埃(Laue)方程和布拉格(Bragg)方程只是确定了衍射方向与晶体结构基本周期的关系,通过对衍射方向的测量,理论上我们可以确定晶体结构的对称类型和晶胞参数。而X射线对于晶体的衍射强度则决定于晶体中原子的元素种类及其排列分布的位置,此外,还与诸多其它的因素有关。

所谓衍射强度是指“积分强度”,积分强度是一个能量的概念,一个在理论上能够计算并且实验上也能测量的量。在晶体衍射的记录图中(照片、照片的光度计扫描图或衍射仪记录图等),照片的黑度或衍射仪记录图的强度曲线下面的面积,应该与检测点处的衍射线功率成正比,比例系数是仪器条件的函数。在理论上以检测点处通过单位截面积上衍射线的功率定义为某衍射线的强度(绝对积分强度)。纯物质衍射线强度的表达式很复杂,但是可以简明地写成下面的形式:

I = I0·K·|F|2

(1.16)

式中:I0为单位截面积上入射的单色X射线功率;|F|称为结构因子,取决于晶体的结构以及晶体所含原子的性质。结构因子可由下式求算:

F hkl= ∑ f n·exp[2πi(h x n + k y n +l z n)]

(1.17)

式中f n是晶体单胞中第n个原子的散射因子,(x n、y n、z n)是第n个原子的坐标,h、k、l是所观测的衍射线的衍射指标,公式求和计算时需包括晶体单胞内所有原子;K是一个综合因子,它与实验时的衍射几何条件,试样的形状、吸收性质,温度以及一些物理常数有关。对于粉末衍射仪而言(粉末衍射仪使用时将样品压成平板状,入射线和衍射线对样品平面的交角总是相等的),K由下式求算:

(1.18)

①② ③ ④⑤ ⑥ ⑦

式中:

因子①与实验条件有关:A为样品受照射的面积,R为衍射仪圆的扫描半径;

因子②是一些物理常数:e为电子的电荷,m为电子的质量,C为光速,λ

为实验时X射线的波长;

因子③称作多重性因子,在粉末衍射中,晶面间距相等的晶面其衍射角相等,由于对称性的联系,这些晶面可能有j种晶面指标;

因子④中V是单位晶胞的体积;

因子⑤是衍射仪条件下的洛伦茨偏振因子;

因子⑥为温度因子,原子的热振动将使衍射减弱,故衍射强度与温度有关;

因子⑦ 是衍射仪条件下的吸收因子,它只和样品的吸收性质有关。

1.7 X射线的检测

利用X射线和物质相互作用的一些效应,我们可以有很多有效的检测X射线的方法。常用的检测手段如下:

1.7.1 荧光板

荧光板是将ZnS、CdS等荧光材料涂布在纸板上制成,常用来确认光源产生的原射线束的存在。

1.7.2 照相方法

照相法是最早使用的检测并记录X射线的方法,直到现在仍是一种常用的基本方法。X射线与可见光一样,能够使感光乳剂感光。当感光乳剂受到X射线照射后,AgBr颗粒离解形成显影核,经过显影而游离出来的单质银微粒使感光处变黑。

在一定的曝光条件下,黑度是与曝光量成比例的。黑度也和波长有关。测量黑度的简单方法是目估,较为准确的测量方法则需要事先制作好黑度标准,或者用光电黑度计来扫描测量。

1.7.3 正比计数管(PC)

正比计数管(PC)和电离室、盖革计数管都是气体器件,但后两者在X射线分析仪器中已经不常使用。PC一般以一个内径约25mm的金属圆筒作为阴极,圆筒中心有一根拉成直线的钨丝作为阳极,筒内充满0.5至1个大气压的氩气或氙

气,并加有10%左右的淬灭气体(一般为CH4、乙醇或Cl2)。圆筒的侧壁或一端设有入射X射线的“窗”,由于衍射实验使用的X射线的多为软X射线,因此要求窗壁极薄,所用窗口材料通常为云母片或者铍片。

图1.12 正比计数管的结构

在使用正比计数管时,两电极间需要加上1000至2000伏的直流高压。计数管在被X射线照射时,管内气体被电离,初始产生的离子对数目与X射线的量子能量成比例,在极间电压的作用下,离子定向运动并在运动过程中不断碰撞其它的中性气体分子,由此产生二次以至多次的电离并伴随着光电效应,此时电离的数目大量增殖从而形成放电(称为电子雪崩或气体放电),直到所有电荷都聚集到相应的电极上,放电才停止,每次放电的时间历程极短,约0.2~0.5微秒。因此,每当有一个X射线量子进入计数管时,两极间将有一脉冲电流通过。正比计数管工作在气体放电的正比区,脉冲电流在负载电阻上产生的平均电压降(即脉冲电压幅度)与入射X射线的量子能量成正比,故称正比计数管。

正比计数管在接收单一波长的射线时,每个X射线量子产生的电脉冲幅度实际上不是严格相同的,而是分布在以平均幅度为中心的比较狭窄的一个范围内的,根据PC的放电特性,平均幅度的大小由入射X射线的量子能量决定,若脉冲分布的宽度越窄,其能量分辨能力就越好。能量分辨能力可用能量分辨率η来表示,作为计数管的一个重要特性:

能量分辨率η=分布的半高宽W ÷平均脉冲幅度h ×100%

图1.13 不同能量的X射线的脉冲幅度分布

1.7.4 NaI(Tl)闪烁计数管(SC)

X射线衍射分析中使用的闪烁计数管,其闪烁体大多使用掺有Tl的NaI晶体。下图示出闪烁计数管的基本结构,它由三部分组成:闪烁体、光电倍增管和前置放大器。

图1.14 闪烁计数管的基本结构及工作原理

闪烁体是掺有0.5%左右的Tl作为激活剂的NaI透明单晶体的切片,厚约1~2mm。晶体被密封在一个特制的盒子里,以防止NaI晶体受潮损坏。密封盒的一面是薄的铍片(不透光),用来作为接收X射线的窗;另一面是对蓝紫光透明的光学玻璃片。密封盒的透光面紧贴在端窗式的光电倍增管的光电阴极窗面上,界面上涂有一薄层光学硅脂以增加界面的光导率。NaI晶体被X射线激发能发出4200埃(蓝紫色)的可见光,每个入射X射线量子将使晶体产生一次闪烁,每次闪烁将激发倍增管光电阴极产生光电子,这些一次光电子被第一级打拿极(D1)收集并激发出更多的二次电子,再被下一级打拿极(D2)收集,又倍增出更多的电子,如此,光电阴极发射的光电子经10级打拿极的倍增作用后,最后收集极能获得约为初始电子数目105倍的电子,从而形成可检测的电脉冲信号。

目前,闪烁计数管仍是各种晶体X射线衍射工作中通用性最好的检测器。它的主要优点是:对于晶体X射线衍射工作使用的各种X射线波长,均具有很高的接近100%的量子效率(图1.15);稳定性好;使用寿命长;此外,它和正比计数管一样具有很短的分辨时间(10-7秒),因而实际上不必考虑检测器本身所带来的计数损失;它对晶体衍射用的软X射线也有一定的能量分辨力。因此现在的X射线衍射仪大多配用SC。

图1.15 计数管计数效率的比较

1.7.5 固体检测器(SSD)

SSD又称半导体检测器,图1.16示出Si(Li)半导体检测器的基本结构。

图1.16 Si(Li)检测器的基本结构

SSD的工作原理如下:当X射线照射半导体时,由于射线量子的电离作用,能产生一些电子-空穴对,以图1.16的结构为例,在本征区产生的电子-空穴对在电极间的电场作用下,电子集中在n区,空穴则聚集在p区,其结果将有一股小脉冲电流向外电路输出,本征区起着“电离箱”的作用。SSD被电离产生一对电子-空穴对所需的能量约为3.8eV,而PC约为30eV,SC约为500eV,由此可见SSD与PC和SC三者相比,其能量分辨率最佳。现在,Si(Li) SSD的能量分辨力可达160eV。图1.17示出三种检测器能量分辨率的对比图。此外,SSD的脉冲分辨时间约为10-8秒,可见SSD是性能极其优异的检测器。

X射线衍射与电子衍射比较

采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。 1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。电子衍射虽 电子衍射 与X射线衍射有相同的几何原理。但它们的物理内容不同。在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。 2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。 物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力为什么在对这些问题展开讨论之后,小结在最后将会被给出。希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了! 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law): 2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。

x射线衍射仪原理

x射线衍射仪原理及应用 课程名称材料分析测试技术 系别金属材料工程系 专业金属材料工程 班级材料**** 姓名______ * *_ 学号******** 化学工程与现代材料学院制

x射线衍射仪原理及应用 基本原理: x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子,在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。 基本特征: X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰 基本构成: 1,高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

X射线衍射参考答案

第一部分X射线衍射 1.X射线的本质是什么?谁首先发现了X射线,谁揭示了X射线的本质? 2.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X 射线的波长和强度,从而研究物质的原子结构和成分。 3.为什么特征X射线的产生存在一个临界激发电压?X射线管的工作电压与其靶材的临界激发电压有什么关系?为什么? 4. 产生X射线需具备什么条件? 答:实验证实:在高真空中,凡高速运动的电子碰到任何障碍物时,均能产生X射线,对于其他带电的基本粒子也有类似现象发生。 电子式X射线管中产生X射线的条件可归纳为:1,以某种方式得到一定量的自由电子;2,在高真空中,在高压电场的作用下迫使这些电子作定向高速运动;3,在电子运动路径上设障碍物以急剧改变电子的运动速度。 5.X射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 答:波动性主要表现为以一定的频率和波长在空间传播,反映了物质运动的连续性;微粒性主要表现为以光子形式辐射和吸收时具有一定的质量,能量和动量,反映了物质运动的分立性。 6.什么是光电效应?光电效应在材料分析中有哪些用途? 光电效应是指以光子激发电子所发生的激发和辐射过程称为光电效应。光电效应在材料分析可用于光电子能谱分析与荧光光谱分析。

01-X射线衍射参考答案

01-X射线衍射参考答案

第一部分X射线衍射 1.X射线的本质是什么?谁首先发现了X射线,谁揭示了X射线的本质? 2.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X 射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。 3.为什么特征X射线的产生存在一个临界激发电压?X射线管的工作电压与其靶材的临界激发电压有什么关系?为什么? 4. 产生X射线需具备什么条件?

答:实验证实:在高真空中,凡高速运动的电子碰到任何障碍物时,均能产生X射线,对于其他带电的基本粒子也有类似现象发生。 电子式X射线管中产生X射线的条件可归纳为:1,以某种方式得到一定量的自由电子;2,在高真空中,在高压电场的作用下迫使这些电子作定向高速运动;3,在电子运动路径上设障碍物以急剧改变电子的运动速度。 5.X射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 答:波动性主要表现为以一定的频率和波长在空间传播,反映了物质运动的连续性;微粒性主要表现为以光子形式辐射和吸收时具有一定的质量,能量和动量,反映了物质运动的分立性。 6.什么是光电效应?光电效应在材料分析中有哪些用途? 光电效应是指以光子激发电子所发生的激发和辐射过程称为光电效应。光电效应在材料分析可用于光电子能谱分析与荧光光谱分析。 7. 分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射; (3)用CuKαX射线激发CuLα荧光辐射。 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层

实验一-X射线衍射技术及物相分析

实验一 X射线衍射技术及物相分析 一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,

01X射线衍射参考答案解析(可编辑修改word版)

第一部分X 射线衍射 1.X 射线的本质是什么?谁首先发现了X 射线,谁揭示了X 射线的本质? 2.X 射线学有几个分支?每个分支的研究对象是什么? 答:X 射线学分为三大分支:X 射线透射学、X 射线衍射学、X 射线光谱学。 X 射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测 工件内部的缺陷等。 X 射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构 变化的相关的各种问题。 X 射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的 X 射线的波长和强度,从而研究物质的原子结构和成分。 3.为什么特征X 射线的产生存在一个临界激发电压?X 射线管的工作电压与其靶材的临界激发电压有什么关系?为什么? 4.产生X 射线需具备什么条件? 答:实验证实:在高真空中,凡高速运动的电子碰到任何障碍物时,均能产生 X 射线,对于 其他带电的基本粒子也有类似现象发生。 电子式 X 射线管中产生 X 射线的条件可归纳为:1,以某种方式得到一定量的自由电子;2,在高真空中,在高压电场的作用下迫使这些电子作定向高速运动;3,在电子运动路径上 设障碍物以急剧改变电子的运动速度。 5.X 射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 答:波动性主要表现为以一定的频率和波长在空间传播,反映了物质运动的连续性;微粒性主要表现为以光子形式辐射和吸收时具有一定的质量,能量和动量,反映了物质运动的分立性。 6.什么是光电效应?光电效应在材料分析中有哪些用途? 光电效应是指以光子激发电子所发生的激发和辐射过程称为光电效应。光电效应在材料分析可用于光电子能谱分析与荧光光谱分析。

X射线衍射图

X射线衍射分析的实验方法及其应用 自1896年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。本文主要介绍X射线衍射的原理和应用。 1、 X射线衍射原理 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。 衍射线空间方位与晶体结构的关系可用布拉格方程表示: 1.1 运动学衍射理论 Darwin的理论称为X射线衍射运动学理论。该理论把衍射现象作为三维Frannhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。 1.2 动力学衍射理论 Ewald的理论称为动力学理论。该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。动力学理论在参考文献里有详细介绍。 2 X射线衍射方法: 研究晶体材料,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。 2.1 单晶衍射法 单晶X射线衍射分析的基本方法为劳埃法与周转晶体法。 2.1.1 劳埃法 劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的

X射线衍射数据处理软件

Jade的一些使用经验 摘要:本文简单介绍了作者在使用X射线衍射数据处理软件Jade进行物相检索、物相定量分析、晶胞参数修正以及晶粒尺寸与微应变计算等方面的一些经 验和技巧。 Jade是一个32位Windows程序,用于处理X射线衍射数据。除基本的如显示图谱、打印图谱、数据平滑等功能外,主要功能有物相检索、结构精修、晶 粒大小和微观应变计算等许多功能。 1 Jade的物相检索方法和技巧 Jade的物相检索功能是非常强大的,通过软件基本上能检索出样品中全部 物相。物相检索的步骤包括: (1) 给出检索条件:包括检索子库(有机还是无机、矿物还是金属等等)、 样品中可能存在的元素等; (2) 计算机按照给定的检索条件进行检索,将最可能存在的前100种物相列 出一个表; (3) 从列表中检定出一定存在的物相(人工完成)。 一般来说,判断一个物相的存在与否有三个条件: (1) 标准卡片中的峰位与测量峰的峰位是否匹配; (2) 标准卡片的峰强比与样品峰的峰强比要大致相同; (3) 检索出来的物相包含的元素在样品中必须存在。 Jade物相检索的常用方法有:无限制检索法和限定条件检索法。其中可限定的条件包括:PDF卡片库、元素组合、设置检索焦点、单峰检索。另外,也 可以对物相进行反查。 1.1 无限制检索 无限制检索就是对图谱不作任何处理、不规定检索卡片库、也不作元素限定、检索对象选择为主相(S/M Focus on Major Phases)。 这种方法一般可检测出样品中的主要的物相。在对样品无任何已知信息的情况下可试着检索出样品中的主要物相,进而通过检索出来的主要物相了解样品中元素的组成。另外,在考虑样品受到污染、反应不完全的情况可试探样品中是否存在未知的元素。但是,这种方法不可能检索出全部物相,并且检索结果可能与实际存在的物相偏差较大,需要其它实验作进一步证实。

X射线衍射实验报告

实验报告:X 射线衍射 一、实验原理 X 射线衍射分析技术是一种十分有效的材料分析方法,在众多领域的研究和生产中被广泛应用。X 射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体) 进行衍射分析时,该物质被X 射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。因此,X 射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。 X 射线与物质的相互作用 X 射线与物质的相互作用分为两个方面,一是被原子吸收,产生光电效应;二是被电子散射。X 射线衍射中利用的就是被电子散射的X 射线。 X 射线散射:当光子和原子上束缚较紧的电子相互作用时,光子的行进方向受到影响而发生改变,但它的能量并不损失,故散射线的波长和原来的一样,这种散射波之间可以相互干涉,引起衍射效应,这是相干散射,是取得衍射数据的基础。 X 射线的相干散射是XRD 技术应用的基础,接下来研究一下X 射线衍射的条件,找到其与物质本身结构之间的关系。 X 射线衍射 一束平行的X 光照到两个散射中心O 、M 上,见下图O 与M 之间的距离远小于它们到观测点的距离,从而可以认为,观测到的是两束平行散射线的干涉。 下面考查散射角为2θ时散射线的干涉情况。 0?s 和?s 分别表示入射线和散射线方向上的单位矢量。两条散射线之间的光程差为mo on δ=+ 即00????()s r s r s s r δ=-?+?=-? 其中r 为两个散射中心之间的 位置矢量,与δ相应的相位差φ应 为 0??22s s r π φδπλλ-=?=? 散射线之间的相位差φ是决定 散射线干涉结果的关键量。因此有 必要再进一步讨论。 定义 0??s s s λ-= 为散射矢量 如右图所示,散射矢量与散射角2θ的角平分线垂直,它 的大小为 2sin s θ λ= 由此可见,散射矢量的大小只与散射角和所用波长有关,

X射线衍射实验方法和数据分析

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1)X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

第4章 X射线衍射仪实验技术与应用.

第4章 X射线衍射仪实验技术与应用 Beijing China , 2010.09 He Chong Zhi 1. D8 X射线衍射仪系列系统与功能简介 2. 核心部件与功能 3. Bragg-Brentano 衍射几何 4. 光学系统及其参数选择对采集数据质量影响 5. 平行光束-Geobel 镜和掠射入射衍射 6. X射线透镜 7. 探测器 8. 控测、采集数据与测量条件 9. 非常态结构动态衍射分析 10. 应用X射线衍射仪衍射关心的具体问题1. D8 X射线衍射仪系列系统与功能简介 配置光学编码器的测角仪 高精度的Dovetail导轨, 模块化的 光学器件快速互换 射线防护好:0.2 Sv/h 通过欧 洲安全论证,2 套安全电路

配置各种特殊功能的附件,即 可组成具有各种功能的衍射 仪系统,如高低温及不同气氛 与压力下的结构变化的动态 分析等。 在 D8 Advance 基础上,组建 D8 X射 线衍射仪系列产品。 D8 Advance D8 DISCOVER 单晶外延膜、薄膜分析高分辨衍射分析单晶外延膜的结构特征, 用Bond法超精度地测点阵参数、点阵错 配、化学组份,用Rocking曲线测定测算 嵌镶结构、取向,作倒易空间测绘; 用 于分析薄膜的厚度、密度、表面与界面 粗糙度等。 高精度的尤拉环 高强度的织构及应力测量 D8 GADDS 系统Fast phase ID microdiffraction percent crystallinity 功能:Powders, Texture, Stress,SAXS.

特点:Fast speed,Micro-diffraction, Versatility. fast stress fast texture 2D SAXS GADDS - all applications with ONE instrument 18Kw 转靶 X射线衍射仪 X射线光源: X射线发生器最大输出功率≥18kW ;额定 电压20- 60kV; 最大额定电流450 mA;电流电压稳定度优于 ±0.01% (外电压波动10%时, X光源自旋转阳极; 光 源震动0.2 微米以下; 焦斑尺寸0.5 x 10 mm 测角仪: 扫描方式θ/2θ测角仪,测角仪垂直放置; 测角仪采用光学编码器技术;角度重现性 0.0001?, 驱动方式:步进马达驱动; 最高定位速度:1500?/min 狭缝系统:包括索拉狭缝、发散狭缝、防散射狭缝、 接受狭缝等 闪烁计数器;线性范围:≥2 x 106 cps; 背底噪声: <0.5 cps,可配备闪烁计数器、万特探测器、固体探测器、面探测器

X射线衍射分析讲解的问题

X 射线衍射分析讲解的问题,应用及分析过程 一、X 射线衍射分析讲解的问题 X 射线衍射分析从X 射线的物理学基础讲起,分析了X 射线的物理性质如X 射线波长范围在约0.01~0.1nm ,而用于衍射的约在0.05~0.25nm ;振动方程为)(2cos 0t y A A νλπ-=等。然后说明了X 射线的产生方式,即二极管的装置原理,电气线路和所产生的两种线谱——连续谱和特征谱。其中连续谱的强度公式为21)(ZU K d I I SWL λλλλ==?∞连,特征谱的强度为m n U U i K I )(3-=特。随后讲述了X 射线与物体的相互作用方式,其中分别讲述了X 射线的透射,吸收和散射。透射系数为t l e I I μ-=0,质量吸收系数为ρ μμl m =,相干散射的强度公式为φπμ222 2020sin )()4(m e R I I e =(入射线偏振),22cos 1)()4(22220 20θ πμ+=m e R I I e (入射 线偏振),非相干散射的波长变化为θθλλλ2'sin 0486.0)2cos 1(00243.0=-=-=?。 之后讨论了X 射线的衍射问题,分别讨论了X 射线衍射方向,X 射线衍射方法,X 射线的衍射强度的影响因素。最后阐述了X 射线衍射分析的方法。单晶衍射法——劳埃法,周转晶体法;多晶体衍射法——照相法,衍射仪法;双晶体衍射法。 二、X 射线衍射分析的应用 1、物相分析: 由于不同的物质各具有自己特定的原子种类、原子排列方式和点阵参数,进而呈现出特定的衍射花样;多相物质的衍射花样互不干扰,相互独立,只是机械地叠加;衍射花样可以表明物相中元素的化学结合态,这就是X 射线衍射物相分析的原理。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相花样的强度正比于该组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。这种方法是由J.D.Hanawalt 于1963年创立的。目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF 卡片)”进行物相分析。目前,物相分析存在的问题主要有:(1)待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。这时若以该线作为某相的最强线将找不到任何对应的卡片。(2)在众多卡片中找出满足条件的卡片,十分复杂而繁锁。虽然可以利用计算机辅助检索,但仍难以令人满意。(3)定量分析过程中,配制试样、绘制定标曲线或者K 值测定及计算,都是复杂而艰巨的工作。为此,有人提出了可能的解决办法,认为从相反的角度出发,根据标准数据(PDF 卡片)利用计算机对定性分析的初步结果进行多相拟合显示,绘出衍射角与衍射强度的模拟衍射曲线。通过调整每一物相所占的比例,与衍射仪扫描所得的衍射图谱相比较,就可以更准确地得到定性和定量分析的结果,从而免去了一些定性分析和整个定量分析的实验和计算过程

X射线衍射分析法原理概述

第十四章 X射线衍射分析法 14.1概述 X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ是入射波长的整数倍时,即 2dsinθ=nλ (n为整数) 两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途。在此主要介绍其在物相分析等方面的应用。 14.1.1 物相定性分析 1.基本原理 组成物质的各种相都具有各自特定的晶体结构(点阵类型、晶胞形状与大小及各自的结构基元等),因而具有各自的X射线衍射花样特征(衍射线位置与强度)。对于多相物质,其衍射花样则由其各组成相的衍射花样简单叠加而成。由此可知,物质的X射线衍射花样特征就是分析物质相组成的“指纹脚印”。制备各种标准单相物质的衍射花样并使之规范化(1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片),将待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相,这就是物相定性分析的基本原理与方法。 2.物相定性分析的基本步骤 (1) 制备待分析物质样品,用衍射仪获得样品衍射花样。 (2) 确定各衍射线条d值及相对强度I/I1值(Il为最强线强度)。 (3) 检索PDF卡片。 PDF卡片检索有三种方式: 1)检索纸纸卡片 物相均为未知时,使用数值索引。将各线条d值按强度递减顺序排列;按三强线条 d1、d2、d3的d—I/I1数据查数值索引;查到吻合的条目后,核对八强线的d—I/I1值;当八强线基本符合时,则按卡片编号取出PDF卡片。若按d1、d2、d3顺序查找不到相应条目,则可将d1、d2、d3按不同顺序排列查找。查找索引时,d值可有一定误差范围:一般允许△d=±(0.01~0.02)。 2)光盘卡片库检索 通过有点的检索程序,按给定的检索窗口条件对盘卡片库检索(如PCPDFWin程序)。 3)计算机自动检索

X射线衍射分析习题

X 射线衍射分析 习题及参考答案 一、判断题 1只要原子内层电子被打出核外即产生特征X射线(X ) 2、在K系辐射线中K a2波长比K a l旳长(V) 3、管电压越高则特征X 射线波长越短(X ) 4、X 射线强度总是与管电流成正比(V) 5、辐射线波长愈长则物质对X 射线旳吸收系数愈小(X ) 6、满足布拉格方程2 d sin B =入必然发生X射线反射(X) 7、衍射强度实际是大量原子散射强度旳叠加(V) 8、温度因子是由于原子热振动而偏离平衡位置所致(V) 9、结构因子与晶体中原子散射因子有关(V) 10、倒易矢量代表对应正空间中旳晶面(V) 11大直径德拜相机旳衍射线分辨率高但暴光时间长(V ) 12、标准PDF 卡片中数据是绝对可靠旳(X ) 13、定性物相分析中旳主要依据是d 值和I 值(V) 14、定量物相分析可以确定样品中旳元素含量(X ) 15、定量物相分析K 法优点是不需要掺入内标样品(V) 16、利用高温X 射线衍射可以测量材料热膨胀系数(V) 17、定量物相分析法中必须采用衍射积分强度(V)

18、丝织构对称轴总是沿着试样旳法线方向(X ) 19、为获得更多衍射线条须利用短波长X射线进行衍射(V) 20、板织构有时也具有一定旳对称性(V) 21、材料中织构不会影响到各晶面旳衍射强度(X) 22、粉末样品不存在择优取向即织构问题(X ) 23、常规衍射仪X射线穿透金属旳深度通常在微米数量级(V) 24、粉末样品粒度尺寸直接关系到衍射峰形质量(V) 25、X射线应力测定方法对非晶材料也有效(X) 26、禾I」用谢乐公式D=入/(B cos9 )可测得晶粒尺寸(X ) 27、宏观应力必然造成衍射峰位移动(V) 28、微观应力有时也可造成衍射峰位移动(V) 29、材料衍射峰几何宽化仅与材料组织结构有关(X ) 30、实测衍射线形是由几何线形与物理线形旳代数叠加(X ) 二、选择题 1、与入射X射线相比相干散射旳波长 (A)较短,(B)较长,(C)二者相等,(D)不一定 2、连续X射线旳总强度正比于 (A)管电压平方,(B)管电流,(C)靶原子序数,(D)以上都是 3、L层电子回迁K层且多余能量将另一L层电子打出核外即产生

实验一-X射线衍射技术及物相分析

一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS 配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射

X射线衍射习题

X射线衍射分析 习题及参考答案 一、判断题 1、只要原子内层电子被打出核外即产生特征X射线(×) 2、在K系辐射线中Kα2波长比Kα1的长(√) 3、管电压越高则特征X射线波长越短(×) 4、X射线强度总是与管电流成正比(√) 5、辐射线波长愈长则物质对X射线的吸收系数愈小(×) 6、满足布拉格方程2 d sinθ=λ必然发生X射线反射(×) 7、衍射强度实际是大量原子散射强度的叠加(√) 8、温度因子是由于原子热振动而偏离平衡位置所致(√) 9、结构因子与晶体中原子散射因子有关(√) 10、倒易矢量代表对应正空间中的晶面(√) 11、大直径德拜相机的衍射线分辨率高但暴光时间长(√) 12、标准PDF卡片中数据是绝对可靠的(×) 13、定性物相分析中的主要依据是d值和I值(√) 14、定量物相分析可以确定样品中的元素含量(×) 15、定量物相分析K法优点是不需要掺入内标样品(√) 16、利用高温X射线衍射可以测量材料热膨胀系数(√) 17、定量物相分析法中必须采用衍射积分强度(√) 18、丝织构对称轴总是沿着试样的法线方向(×) 19、为获得更多衍射线条须利用短波长X射线进行衍射(√) 20、板织构有时也具有一定的对称性(√) 21、材料中织构不会影响到各晶面的衍射强度(×) 22、粉末样品不存在择优取向即织构问题(×) 23、常规衍射仪X射线穿透金属的深度通常在微米数量级(√) 24、粉末样品粒度尺寸直接关系到衍射峰形质量(√) 25、X射线应力测定方法对非晶材料也有效(×)

26、利用谢乐公式D=λ/(βcosθ) 可测得晶粒尺寸(×) 27、宏观应力必然造成衍射峰位移动(√) 28、微观应力有时也可造成衍射峰位移动(√) 29、材料衍射峰几何宽化仅与材料组织结构有关(×) 30、实测衍射线形是由几何线形与物理线形的代数叠加(×) 二、选择题 1、与入射X射线相比相干散射的波长 (A)较短,(B)较长,(C)二者相等,(D)不一定 2、连续X射线的总强度正比于 (A)管电压平方,(B)管电流,(C)靶原子序数,(D)以上都是 3、L层电子回迁K层且多余能量将另一L层电子打出核外即产生 (A)光电子,(B)二次荧光,(C)俄歇电子,(D) A和B 4、多晶样品可采用的X射线衍射方法是 (A)德拜-谢乐法,(B)劳厄法,(C)周转晶体法,(D) A和B 5、某晶面族X射线衍射强度正比于该晶面的 (A)结构因子,(B)多重因子,(C)晶面间距,(D) A和B 6、基于X射线衍射峰位的测量项目是 (A)结晶度,(B)点阵常数,(C)织构,(D)以上都是 7、基于X射线衍射强度的测量项目是 (A)定量物相分析,(B)晶块尺寸,(C)内应力,(D)以上都是 8、测定钢中奥氏体含量时的X射线定量物相分析方法是 (A)外标法,(B)内标法,(C)直接比较法,(D) K值法 9、X射线衍射仪的主要部分包括 (A)光源,(B)测角仪光路,(C)计数器,(D)以上都是 10、Cu靶X射线管的最佳管电压约为 (A) 20kV,(B) 40kV,(C) 60kV,(D) 80kV 11、X射线衍射仪的测量参数不包括 (A)管电压,(B)管电流,(C)扫描速度,(D)暴光时间

x射线衍射成像技术最新发展

课程论文 题目X射线衍射成像技术的 原理以及最新发展与应用学院 专业 班级 学生 学号 二〇年月日

摘要 随着科技的发展,基于傅里叶光学的X射线衍射技术发展越来越先进,形成了X射线衍射成像(X-ray diffraction imaging,XDI)和相干X射线衍射成像(coherent X-ray diffractive imaging,CXDI/CDI)等技术,它们广泛应用于材料、医学、生物、物理等领域,为人们探索微观世界的结构提供很好的工具。本文主要论述了X射线衍射的基本原理,并讲述了它们在不同应用中的最新发展,包括X 射线衍射成像和相干X射线衍射成像的二维、三维成像等技术,同时简单的说明了它们在一些领域的应用。 关键词:X射线衍射;X射线衍射成像;相干X射线衍射成像 1前言 近几十年来,X射线衍射成像技术得到快速发展,它具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点,大量的用于材料内部结构分析、生物分子探究、医学以及危险品扫描等领域。近一个世纪以来,科学家们不断探索测定物质结构的方法,希望能够看到物质内部的原子是如何排列的。而传统用的最多的方法是X射线晶体衍射分析的方法(XRD)能够实现物质的结构的测定,但它存在一定的局限性,然而在实际应用中,会受到很多的限制,为了更好的研究物质的结构,科学家们做了大量的工作,对X射线衍射技术进行改进升级,取得了一些最新的更成果,例如X射线衍射成像技术(X- ray diffraction imaging,XDI)、相干X射线衍射成像技术(coherent X-ray diffractive imaging,CXDI/CDI)等。 近年来,X射线衍射增强成像(X Ray Diffraction enhanced imaging,DEI)也发展迅速。射线相位衬度成像是一种新型的X射线成像技术,通过记录射线穿过物体后相位的改变对物体进行成像,可以提供比传统的X射线吸收成像更高的图像衬度以及空间分辨力。衍射增强成像方法(X Diffraction enhanced imaging,DEI)是X射线相位衬度成像方法之一,利用一块放置在物体和探测器之间的分析晶体提取物体的吸收、折射以及散射信息并进行成像。但是它跟X射线衍射成像方法不同,不是同一种技术。 2 X射线衍射基本原理

X射线衍射的应用

X射线衍射相分析(phase analysis of xray diffraction)利用X射线在晶体物质中的衍射效应进行物质结构分析的技术。每一种结晶物质,都有其特定的晶体结构,包括点阵类型、晶面间距等参数,用具有足够能量的x射线照射试样,试样中的物质受激发,会产生二次荧光X射线(标识X射线),晶体的晶面反射遵循布拉格定律。通过测定衍射角位置(峰位)可以进行化合物的定性分析,测定谱线的积分强度(峰强度)可以进行定量分析,而测定谱线强度随角度的变化关系可进行晶粒的大小和形状的检测。 发现衍射现象 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有 X射线衍射的产生 X射线衍射的产生 相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: 2dsinθ=nλ 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 运动学衍射理论 Darwin的理论称为X射线衍射运动学理论。该理论把衍射现象作为三维Fraunhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。 动力学衍射理论 Ewald的理论称为动力学理论。该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。 发展方向 X射线分析的新发展,金属X射线分析由于设备和技术的普及已逐步变成金属研究和有机材料,纳米材料测试的常规方法。而且还用于动态测量。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 详细内容 原理

X射线衍射的基本原理

三.X 射线衍射的基本原理 3.1 Bragg 公式 晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。晶体的外形中每个晶面都和一族平面点阵平行。 当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。取晶体中任一相邻晶面P 1和P 2,如图3.1所示。两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为θ,散射X 射线的散射角也同样是θ。这两个晶面产生的光程差是: θsin 2d OB AO =+=? 3.1 当光程差为波长λ 的整数倍时,散射的X 射线将相互加强,即衍射: λθn d hkl =sin 2 3.2 上式就是著名的Bragg 公式。也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。式中:n 为任意正整数,称为衍射级数。入射X 射线的延长线与衍射X 射线的夹角为2θ(衍射角)。为此,在X 射线衍射的谱图上,横坐标都用2θ 表示。 图3.1 晶体对X 射线的衍射 由Bragg 公式表明:d hkl 与θ 成反比关系,晶面间距越大,衍射角越小。晶面间距的变化直接反映了晶胞的尺寸和形状。每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。

3.2 物相分析 物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。 对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。 正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。自1941年以来,共发行衍射卡片近20万个。为了使大量的卡片方便进行人工物相鉴定,还出版了对这些卡片进行检索的索引。PDF卡片的标准形式如图3.2所示,对应此图编号的内容说明如表3.1所示。 图 图3.2 PDF卡片的标准形式 每一张卡片上不一定包括表3.1所述的所有内容,但有效数据都将一一列出。 物相分析的方法就是将未知试样与标准卡片上数据进行对比,由此来确定物相。先测试未知试样,然后按图3.3所示的步骤从PDF索引中查找。找出该物相的卡片号后,按卡片号查该物相的卡片,仔细核对后再判定该物相。

相关主题
文本预览
相关文档 最新文档