当前位置:文档之家› 湿法脱硫增效技术(简介)

湿法脱硫增效技术(简介)

一、两级处理高低PH值增效技术

二、吸收塔烟气均布增效技术

二吸收塔烟气均布增效技术

我公司致力于烟气脱硫技术的研发开发出了两级处理我公司致力于烟气脱硫技术的研发,开发出了两级处理高低PH 值湿法脱硫工艺。

技术特点:

1)适用于现有脱硫系统的增效改造,同时也适用于新建高硫煤烟气系统;

2)综合脱硫效率可达98.8%以上;

)综合脱硫效率可达以上

3)对煤质含硫量变化,锅炉负荷变化适应性强;

4)两级吸收采用高低PH值控制,利于SO2吸收和石膏

)两级收采用高低值控制利收和膏结晶;

5)第一级采用水平内错流吸收塔,占地面积小,使

5)第级采用水平内错流吸收塔占地面积小使得湿法增效改造可实现、易操作、更经济;

6)以传统串联工艺为基础,便于控制及稳定运行。

解决了脱硫扩容改造的如下问题:

*1原有吸收塔浆池容积固定,没有剩余容积,来满足吸收1.原有吸收塔浆池容积固定,没有剩余容积,来满足吸收效率提高后所需的浆池容积

*2.吸收塔的基础已经建成,额外增加基础荷载,不安全吸收塔的基建成额外增加基荷载不安

*3.改造工作量太大

*4.将现有脱硫系统停止运行时间较长

.将现有脱硫系统停止运行时间较长

本工艺直接对水平烟道改造成为级吸收的喷淋

本工艺直接对水平烟道改造成为一级吸收的喷淋区,且一级处理采用较高PH值,可适当降低液气比。减少改造所需的占地面积及二次投资成本。

无导流板塔内烟气流场(轴向断面)

1.原烟气进入喷淋塔后,扩容减速,受塔壁(弧形壁面)限制,烟气不能充分发展。

2.左侧区域形成一涡漩,烟气卷吸回流,有利于脱硫反应进行,但烟气量较小,降低了对脱硫的贡献。

3.右侧烟气流速较快,烟气逃逸严重,直接后果是造成脱硫效率的降低。

加导流板塔内烟气流场(轴向断面)

1.原烟气进入喷淋塔后,因导流板作用,烟气均布有了较大提高,高速烟气逼

近塔轴方向。

左侧区域漩仍存在烟气湍流强度较大有利脱硫浆液与烟气的传质反2.左侧区域涡漩仍存在,烟气湍流强度较大,有利于脱硫浆液与烟气的传质反应,提高脱硫效率。

3.脱硫浆液破碎、凝并等过程,塔内横梁等构件与烟气相互作用,可进一步促3.脱硫浆液破碎、凝并等过程,塔内横梁等构件与烟气相互作用,可进步促进烟气均布。

无导流板烟速分布分析(各喷淋层下1米径向断面)无导板烟分布分析各喷淋层米径向断面

2525

510152051015205101520

0-2

2-44-66-88-1010-1212-1414-16

0-22-44-66-88-1010-1212-1414-16

0-22-44-66-88-1010-1212-1414-16

(%))

(X—速度区间(m/s)Y—面域百分比(%) )

加导流板烟速分布分析(各喷淋层下1米径向断面)

25

5060

5

1015

20

102030401020304050

0-22-44-66-88-1010-1212-1414-16

0-22-44-66-88-1010-1212-1414-16

0-22-44-66-88-1010-1212-1414-16

(X—速度区间(m/s)

Y—面域百分比(%))

研究表明,脱硫效率较高的烟气流速范围的烟气占的比例大为提高,对SO2的吸收效率的提高有很大的帮助。脱硫塔内加入导流板后有以下几点优势:

1.加入导流板后,脱硫塔内涡旋减小,高速烟气分布逼近脱硫塔轴

加导流板脱硫塔内旋减小高速烟气分布逼脱硫塔轴径。

2.综合径向断面和轴向断面烟气分析,加入导流板后烟气在脱硫塔内的均布有了明显的提高。同时塔内小涡旋增多,提高了烟气的湍流强度,有利于提高脱硫效率。

通过数值分析发加导流板前烟气进喷淋的变化不

3.通过数值分析,发现加入导流板前后烟气进入一层喷淋的变化不大,压降稍有增加(20pa)。

各种湿法脱硫工艺比较

各种湿法脱硫工艺比较标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电厂各种湿法脱硫技术对比优劣一目了然 来源:化工707微信作者:小工匠2016/1/18 8:48:31 所属频道:关键词: :随着我国环境压力逐年增大,国家排放要求进一步收紧,电厂技术也得到了快速发展。目前烟气种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法烟气脱硫技术脱硫率高,但不适合大容量燃烧设备。不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接来下小七根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。 电厂脱硫技术的选择原则: 1、脱硫技术相对成熟,脱硫效率高,能达到环保控制要求,已经得到推广与应用。 2、脱硫成本比较经济合理,包括前期投资和后期运营。 3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。 4、对发电燃煤煤质不受影响,及对硫含量适用范围广。 5、脱硫剂的能够长期的供应,且价格要低廉 湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液的脱硫技术,最大的优点是反应速度快、脱硫效率高,最大的缺点就是前期投资、后期运行成本高和副产品处理困难。湿法烟气脱硫技术是目前技术最为成熟,也是我国使用最广泛的,据不完全统计, 已建和在建火电厂的烟气脱硫项目中, 90 % 以上采用湿法烟气脱硫技术。

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

半干法脱硫工艺特点介绍

半干法脱硫工艺的特点: 、工艺原理描述 锅炉尾气在CFB半干法烟气净化系统中得以净化,该系统主要是根据循环流化床理论和喷雾干燥原理,采用悬浮方式,使吸收剂 Ca(OH》在吸收塔内悬浮、反复循环,与烟气中的SO等酸性气体充分接触、反应来实现脱除酸性气体及其它有害物质的一种方法。烟 气脱硫工艺分7个步骤:⑴吸收剂存储和输送;⑵烟气雾化增湿调温;⑶脱硫剂与含湿烟气雾化颗粒充分接触混合;⑷二氧化硫吸收;⑸增湿活化;⑹灰循环;⑺灰渣排除。⑵、⑶、⑷、⑸四个步骤均在吸收塔中进行,其化学、物理过程如下所述。 A .化学过程: H2O 、SO2、H2SO3 反当雾化水经过双流体雾化喷嘴在吸收塔中雾化,并与烟气充分接触,烟气冷却并增湿,氢氧化钙粉颗粒同应生成干粉产 物,整个反应分为气相、液相和固相三种状态反应,反应步骤及方程式如下: ⑴S02被液滴吸收; S02(气)+H2O_^H 2SO3(液) ⑵吸收的S02同溶液的吸收剂反应生成亚硫酸钙; Ca(OH)2(液)+H2SO3(液)—CaSO(液)+2H2O Ca(OH)2(固)+H2SO3(液)—CaSO(液)+2H2O ⑶液滴中CaSO3达到饱和后,即开始结晶析出 CaSO3(液)—CaSO(固) ⑷部分溶液中的CaSQ与溶于液滴中的氧反应,氧化成硫酸钙

CaS03(液)+1/202(液)T CaSO(液) ⑸CaS04(液)溶解度低,从而结晶析出 CaS04(液)T CaS0(固) ⑹对未来得及反应的Ca(0H)2 (固),以及包含在CaS03(固)、CaSO(固)内的Ca(0H)2 (固)进行增湿雾化。 Ca(0H)2 (固)T Ca(0H2 (液) S02(气)+H2CTH 2SO3(液) Ca(0H)2 (液)+H2SO3(液)TCaSO(液)+2H2O CaS03(液)T CaS0(固) CaS03(液)+1/2O2(液)T CaS0(液) CaS04(液)T CaS0(固) ⑺布袋除尘器脱除的烟灰中的未反应的Ca(0H》(固),以及包含在CaSCS固)、CaS0(固)内的CaQH* (固)循环至吸收塔内继续反应。 Ca(0H)2 (固)T Ca(OH2 (液) S02(气)+H2CTH 2S03(液) Ca(0H)2 (液)+H2SO3(液)TCaS0(液)+2H2O CaS03(液)T CaS0(固) CaSQ(液)+1/2O2(液)T CaS0(液) CaSC4(液)T CaS0(固) B .物理过程: 物理过程系指液滴的蒸发干燥及烟气冷却增湿过程,液滴从蒸发开始到干燥所需的时间,对吸收塔的设计和脱硫率都非常重要。

湿法脱硫技术介绍

2湿法脱硫技术介绍 2.1脱硫方法简介 目前,世界范围内的火电厂脱硫技术多种多样,达数百种之多。 按脱硫工艺在燃烧过程中所处位臵不同可分为:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫。燃烧前脱硫主要是洗煤、煤的气化和液化,洗煤仅能脱去煤中很少一部分硫,只可作为脱硫的一种辅助手段,煤气化和液化脱硫效果好,是解决煤炭作为今后能源的主要途径,但目前从经济角度看,还不能与天然气及石油竞争。 燃烧中脱硫主要方式是循环流化床锅炉,循环流化床锅炉是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有投资省、燃料适应性广等优点,是一种正在高速发展,并正在迅速得到商业推广的方法。但循环流化床燃烧技术在锅炉容量上受到限制,主要用于135MV以下机组。 燃烧后脱硫即烟气脱硫,是目前唯一大规模商业应用的脱硫方 式,烟气脱硫技术很多,主要有石灰石/石膏湿法、旋转喷雾干燥法、炉内喷钙加尾部烟道增湿活化烟气脱硫工艺(芬兰Tempell和IVO公司的LIFAC)、海水烟气脱硫工艺、电子束照射加喷氨烟气脱硫工艺、气体悬浮吸收脱硫技术FLS- GSA、ABB新型一体化烟气脱硫工艺 (NID)、德国WULF公司回流式烟气循环流化床(RCF—FGD脱硫技术等。 2.2湿法脱硫工艺

湿式石灰石/石膏法脱硫工业化装臵已有四十余年的历史,经过多年不断改进发展与完善,目前已成为世界上技术最为成熟、应用最为广泛的脱硫工艺,在脱硫市场特别是大容量机组脱硫上占主导地位,约占电厂装机容量的85%。应用的单机容量已达1000MW 1湿法脱硫工艺特点优点: 1)〃技术成熟、可靠,国外应用广泛,国内也有运行经验。 2)〃脱硫效率咼>=95%。 3)〃适用于大容量机组。 4)〃吸收剂价廉易得。 5)〃系统运行稳定、煤种和机组负荷变化适应性广。 6)〃脱硫副产品石膏可以综合利用。缺点: 1)〃系统复杂、运行维护工作量大。 2)〃水消耗较大,存在废水处理问题。 3)〃系统投资较大、运行维护费用高、装臵占地面积也相对较大。2反应原理 该工艺的主要反应是在吸收塔中进行的,送入吸收塔的吸收剂一石灰石(石灰)浆液与经烟气再热器冷却后进入吸收塔的烟气接触混合,烟气中的二氧化硫(S02)与吸收剂浆液中的碳酸钙(CaC03以及鼓入的空气中的氧气(O2)发生化学反应,生成二水硫酸钙(CaSO42H2O) 即石膏;脱硫后的烟气依次经过除雾器除去雾滴、烟气再热器加热升温后,经烟囱排入大气。 该工艺的化学反应原理如下:

湿法烟气脱硫技术的研究现状与进展

1.研究背景 众所周知,二氧化硫是当今人类面临的主要大气污染物之一,根据15年来60多个国家监测获得的统计资料显示,由人类制造的二氧化硫每年达1.8亿吨,比烟尘等悬浮粒子1.0亿吨还多,己成为大气环境的第一大污染物。 在我国的能源结构中,能源结构中煤炭所占比例高达73%,石油为21%,天然气和水能仅占2%和4%。这个比例在一个相当长的时期内不会有根本性的改变。而据对主要大气污染物的分类统计分析,在直接燃烧的燃料中,燃煤排放的大气 污染物数量约占燃烧排放总量的96%,大气中90%S0 2,71%CO,85%的CO 2 ,70%的 NO以及70%的粉尘来自煤炭的直接燃烧。因此,我国的大气环境污染仍然以煤烟 型为主,主要污染物是二氧化硫和烟尘。目前我国S0 2 年排放量连续超过2000 万吨,超过欧洲和美国,使我国成为世界S0 2 排放第一大国。 二氧化硫污染对人类造成的危害己被世人所知,二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及 材料等方面都造成了一定程度的危害。S0 2 污染排放问题已成为制约我国国民经 济发展的一个重要因素,对S0 2 排放的控制与治理己刻不容缓。其中,火力发电机组二氧化硫排放量的削减更成为了重中之重。 与此同时,气候变暖也已经成为一项全球性的环境问题,受到了许多国家的关注。人类活动所释放的二氧化碳是导致全球变暖的最重要的温室气体。其中火 电厂燃用矿物燃料所释放的CO 2 ,是全球二氧化碳浓度增加的主要原因之一。 随着我国经济的快速发展,控制能源消耗造成的环境污染,特别是控制燃煤造成的二氧化硫污染和二氧化碳的排放成为保证社会和经济可持续发展的迫切要求。 烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的主要技术手段。湿法石灰石一石膏烟气脱硫作为一种相对较成熟、脱硫效率较高的脱硫技术,得到了广泛的应用。石灰石- 石膏湿法烟气脱硫因其脱硫效率高、工艺成熟、安全性可靠性高、系统运行稳定、维护简单、投资成本与运行成本较低、脱硫副产物可综合利用等优势而成为目前火电厂烟气脱硫最常采用的工艺。世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。 2.湿法石灰石/ 石膏脱硫工艺原理 当采用石灰为吸收剂时,石灰粉经经破碎磨细成粉状后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的So2与浆液中的碳酸钙进行化学反应、再通过鼓入空气氧化,最终产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排人烟囱。脱硫石膏浆经脱水装置脱水后回收。 石灰或石灰石法主要的化学反应机理为:

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放”处理技术 随着中国水环保政策趋于严控,火力发电厂脱硫废水“零排放”理念不断升温。脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与成本。本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。 一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置(FGD)当中浆液循环系统的平衡度,避免离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。为保证脱硫系统的安全运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即“三联箱”技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。排入自然水系后还会影响环境,潜在环境风险高。随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。传统的脱硫废水处理工艺达到的水质排放标准越来越不符合当下国家越来越严格的环保发展形势,电力企业实现脱硫废水零排放的需求越来越迫切,减排和近零排放成为必然趋势。三、脱硫废水的产生及其水质特点脱硫废水主要来自石膏旋流器或废水旋流器的溢流,是维持脱硫装置浆液循环系统物质平衡,控制石灰石浆液中可溶部分(即Cl-)含量、保证石膏质量的必要工艺环节。废水中所含物质繁杂,大体分为氯化物、氟化物、亚硫酸盐、硫酸盐、硫化物、悬浮物以及重金属离子(如Hg2+,Pb2+、Cr2+等)、氨氮等。脱硫废水具有污染物成份复杂、波动范围大等特点。pH值较低,呈酸性,水中悬浮物含量高、盐含量高、存在重金属超标的可能,氯根含量很高,腐蚀性很强,是电厂中最难处置的废水。四、脱硫废水深度处理方法1.废水浓缩处理技术目前,国内的脱硫废水浓缩处理主要采用膜浓缩、热法浓缩和烟气浓缩技术路线。(1)膜浓缩技术目前,膜浓缩技术广泛应用于脱硫废水的深度处理和浓缩研究,以减少废水处理系统中蒸发结晶的污水处理量,使得电厂零排放技术更经济可行。(1.1)反渗透(RO)技术。在外界高压力作用下,利用反渗透膜的选择透过性,水溶液中水由高浓度一侧向低浓度一侧移动,使得溶液中的溶质与水得到分离。(1.2)电渗析技术。利用离子交换膜的选择透过性,溶液中的带电阴、阳离子在直流电场作用下定向迁移,实现对废水的浓缩和分离。Cui等利用电渗析法去除脱硫废水中的氯离子,结果表明,在最佳条件下,当氯离子质量浓度为19.2g/L时,氯离子的去除率为83.3%,得到副产品Cl2、H2和Ca(OH)2,处理成本0.15$/kg。(2)热法浓缩技术热法浓缩技术包括多效蒸发(MED)和机械蒸汽再压缩(MVR)等。(2.1)多效蒸发(MED)技术。将蒸汽的热能进行循环并多次重复利用,以减少热能消耗,降低成本。加热后的盐水在多个串联的蒸发器中蒸发,利用前效蒸发产生的二次蒸汽,作为后效蒸发器的热源,后效中水的沸点温度和压力比前效低,效与效之间的热能再生利用可以重复多次。(2.2)机械蒸汽再压缩(MVR)技术。将蒸发器蒸发产生的原本需要冷却水冷凝的二次蒸汽,经压缩机压缩后,提高压力和饱和温度,增加热焓,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,二次蒸汽的潜热得以充分利用,同时还省去了二次蒸汽冷却水

燃煤电厂脱硫废水处理技术方案设计

脱硫废水处理工艺设计初步构思 1脱硫废水的主要来源 煤粉在锅炉燃烧后会产生烟气,烟气经电除尘器设备除尘后进入引风机再引出到脱硫系统,经增压风机、吸收塔、除雾器后,洁净的烟气通过烟囱排入大气。 在吸收塔中,随着吸收剂吸收二氧化硫过程的不断进行,吸收剂有效成分不断被消耗从而生成的亚硫酸钙经强制氧化生成石膏,在吸收剂洗涤烟气时,烟气中的氯化物也会逐渐溶解到吸收液中从而产生氯离子的富集。氯离子浓度的增高会带来两个不利的影响:一是降低了吸收液的pH值,以致引起脱硫率的下降和CaSO4结垢倾向的增大;此外,氯离子浓度过高会降低副产品(石膏)的品质,从而降低产出石膏的价值。当吸收塔浆液质量浓度达到700g/L,吸收剂基本完全反应,脱硫能力相当弱,吸收塔浆液中氯离子的质量浓度达到最大允许质量浓度(20mg/L)左右,这就要将吸收塔浆液抽出送至石膏脱水车间使用真空皮带脱水机脱水。脱硫系统排放的废水,处理的清洗系统排出的废水、水力旋流器的溢流水和皮带过滤机的滤液都是废水产生的来源。 2 脱硫废水水质的基本特点 脱硫废水的成分及浓度对处理系统的运行管理有很大影响,是影响处理设备的选择、腐蚀等的关键性因素。脱硫废水一般具有以下几个特点。 (1)水质呈弱酸性:国外 pH 值变化围为 5.0~6.5,国一般为 4.0~6.0。酸性的脱硫废水对系统管道、构筑物及相关动力设备有很强的腐蚀性。 (2)悬浮物含量高,其质量浓度可达数万mg/L,而且大部分的颗粒物黏性低。(3)COD、氟化物、重金属超标,其中包括第 1 类污染物,如 As、 Hg、Pb 等。(4)脱硫废水的一般温度在45度左右。 (5)脱硫废水生化需氧量(BOD5)低。

湿法烟气脱硫的原理(内容清晰)

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。这里用Ca(OH)2溶液吸收SO2加以说明。 SO2(气体)

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

脱硫废水处理方法

脱硫废水处理方法 湿式烟气脱硫装置可净化含有众多杂质的烟气,各种金属及非金属污染物在脱硫吸收塔 中发生反应被去除,生成可溶性物质和固体物质,而未充分处理的烟气脱硫废水直接排放会 对环境造成极大威胁。石灰石-石膏湿法烟气脱硫工艺主要处理热力发电厂化石燃料燃烧产生 的S02,山于湿法烟气脱硫工艺优越的性能,其在烟气处理领域得到广泛应用,成为当今世 界燃煤发电厂烟气脱硫的主导工艺。据美国环境署报道,美国已有108座燃煤电厂安装了湿 式烟气脱硫装置,预测到2025年安装湿式烟气脱硫装置的燃煤电厂将占燃煤电厂总数的69%。 石灰石-石膏湿法烟气脱硫废水成分极其复杂,主要为重金属、酸根离子、悬浮物等。口前, 各燃煤电厂的脱硫废水成分存在差异,出现这一现象主要是煤源、烟气脱硫吸收塔塔形、锅 炉补给水水质、添加剂类型、操作条件不同导致的。传统的脱硫废水处理工艺采用中和、反 应、絮凝及沉淀的处理方式,但对脱硫废水中高浓度的硫酸根及氯离子等未达到良好的去除 效果。 近年来脱硫废水排放问题受到全世界的广泛关注,我国2006年颁布的《火电厂石灰石- 石膏湿法脱硫废水水质控制指标》(DL/T 997-2006)中虽未对硫酸根和氯离子等排放标准做 岀要求,但采用传统丄艺处理的脱硫废水已不允许直接排放,所以亟待研究烟气脱硫废水的 处理新工艺。U 前我国脱硫废水的处理工艺主要有常规物理化学沉淀法、化学沉淀-微滤膜法、 多级过滤+反渗透法。山于脱硫废水水质较差,反渗透及预处理工艺费用高,尚未得到推广。 杨培秀等采用零溢流水湿排渣系统处理脱硫废水,但是受到排渣方式的限制。此外,脱硫废 水的各种零排放技术作为有潜力的解决方案被提岀,但鉴于零排放技术的高能源消耗强度和 许多尚未解决的技术问题,不能保证其成功地长期使用。对于其他技术如离子交换和人工湿 地也进行了大量探讨,但成功的前景似乎不大。综上所述,该行业仍然在寻找一个可靠的、 低成本和高性能的烟气脱硫废水处理技术。 2脱硫废水的危害 脱硫废水成分复杂,对设备管道和水体结构都有一定的影响,其危害主要体现在以下方 面: (1) 脱硫废水中的高浓度悬浮物严重影响水的浊度,并且在设备及管道中易产生结垢现象, 影响脱硫装置的运行。 (2) 脱硫废水呈弱酸性,重金属污染物在其中都有较好的溶解性,虽然它们的含量较少, 但直接排放对水生生物具有一定毒害作用,并通过食物链传递到较高营养阶层的生物。 (3) 脱硫废水中氯离子浓度很高,会引起设备及管道的孔腐蚀、缝隙腐蚀、应力腐蚀,当 浓度达到一定程度后会严重影响吸收塔的运行和使用寿命,还会抑制吸收塔内物理和化学反 应过程,影响S02吸收,降低脱硫效率;山于氯离子的存在会抑制吸收剂的溶解,所以脱硫吸 收剂的消耗量随氯化物浓度的增大而增大,同时石膏浆液中剩余的吸收剂增大,使吸收剂的 脱硫效率降低,还会造成后续石膏脱水困难,导致成品石膏中含水量增大,影响石膏品质。 ? ―?沉浸?n *污泥外运

湿法烟气脱硫除尘一体化技术

湿法烟气脱硫除尘一体化技术 根据世界卫生组织对60个国家10~15年的监测发现,全球污染最严重的 10个城市中我国就占了8个,我国城市大气中二氧化硫和总悬浮微粒的浓度 是世界上最高的。大气环境符合国家一级标准的不到1%,62%的城市大气中 二氧化硫年日平均浓度超过了3级标准(100mg/m3)。全国酸雨面积已占国土资源的30%,每年因酸雨和二氧化硫污染造成的损失高达1100亿元。1997 年下半年,世界银行环境经济专家的一份报告指出:中国环境污染的规模居世 界首位,大城市的环境污染状况在目前是世界上最严重的,全球大气污染最严 重的20个城市中有10个在中国。大气中的二氧化硫和氮氧化物与降水溶合成酸雨,现在中国是仅次于欧洲和北美的第三大酸雨区。大气污染严重破坏生态 环境和严重危害人体呼吸系统,危害心血管健康,加大癌症发病率,甚至影响 人类基因造成遗传疾病。 我国政府对二氧化硫和酸雨污染十分重视。1990年12月,国务院环委会 第19次会议通过了《关于控制酸雨发展的意见》;1992年国务院批准在贵州、长沙等九大城市开展征收工业烧煤二氧化硫排污费和酸雨结合防治试点工 作。1995年8月,全国人大常委会通过了新修订的《中华人民共和国大气污 染防治法》,规定在全国划定酸雨控制区和二氧化硫控制区,并在“两控区 ”内强化对二氧化硫和酸雨的污染控制。1998年1月,国务院正式批准《酸 雨控制区和二氧化硫控制区划分方案》。为了实现两控区的控制目标,国务 院文件还具体规定:新建、改造烧煤含硫量大于1%的电厂,必须建设脱硫的 设施。现有烧煤含硫量大于1%的电厂,要在2010年前分期分批建成脱硫设 施或采取其他相应结果的减排SO2的措施。 削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量, 是目前及未来相当长时间内我国环境保护的重要课题之一。 二氧化硫污染控制技术颇多,诸如改善能源结构、采用清洁燃料等,但 是,烟气脱硫也是有效削减SO2排放量不可替代的技术。烟气脱硫的方法甚 多,但根据物理及化学的基本原理,大体上可分为吸收法、吸附法、催化法 三种。吸收法是净化烟气中SO2的最重要的应用最广泛的方法。吸收法通常 是指应用液体吸收净化烟气中的SO2,因此吸收法烟气脱硫也称为湿法或湿 式烟气脱硫。 湿法烟气脱硫的优点是脱硫效率高,设备小,投资省,易操作,易控制, 操作稳定,以及占地面积小。目前常见的湿法烟气脱硫有:石灰石/石灰— —石膏法抛弃法、钠洗法、双碱法、威尔曼——洛德法及氧化镁法等。 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关, 2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, -,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO在气流中的扩散,2 2、扩散通过气膜 3、 SO被水吸收,由气态转入溶液态,生成水化合物2 4、 SO水化合物和离子在液膜中扩散2 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO水化合物与溶解的石灰石粉发生反应)2 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。密度比2 空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。SO为酸性氧化物,具有酸性氧化物的通性、2 还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。 ②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫 22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降

镁法脱硫废水处理技术初探

氧化镁湿法烟气脱硫废水处理技术探讨 1镁法脱硫技术的发展 氧化镁法在湿法烟气脱硫技术中是仅次于钙法的又一主要脱硫技术。据介绍,氧化镁再生法的脱硫工艺最早由美国开米科公司(Chemico—Basic)在20世纪60年代开发成功,70年代后费城电力公司(PECO)与United&Constructor合作研究氧化镁再生法脱硫工艺,经过几千小时的试运行之后,在三台机组(其中两台分别为150MW和320MW)进行了全规模的FGD系统和两个氧化镁再生系统建设,上述系统于1982年建成并投入运行,1992年以后停运硫酸制造厂,直接将反应产物硫酸镁销售。1980年美国DUCON公司在PHILADELPHAELECTRICEDDYSTONESTATION成功建成实施氧化镁湿法脱硫系统,运行至今,效果良好。随后韩国和台湾地区也发展了自己的湿式镁法脱硫技术,目前在台湾95%的电站采用氧化镁法脱硫。 近几年国内的氧化镁湿法脱硫发展较快,2001年,清华大学环境系承担了国家“863”计划中《大中型锅炉镁法脱硫工艺工业化》的课题,对镁法脱硫的工艺参数、吸收塔优化设计和副产品回收利用等进行了深入的研究,并在4t/h、12t/h锅炉上进行了中试,在35t/h锅炉上进行了工程应用。 湿式镁法脱硫工艺又可分为氧化镁/亚硫酸镁法、氧化镁/硫酸镁抛弃法、氧化镁/硫酸镁回收法等。本文主要介绍应用规模较大、前景广阔的氧化镁/亚硫酸镁工艺中的废水处理工艺。 2脱硫废水处理技术概况 湿法烟气脱硫工艺中存在废水处理问题,虽然有很多电厂的脱硫系统

都配有废水处理系统,但国内目前对脱硫废水的处理工艺研究较少,其中关注最多的是石灰石/石膏法产生的脱硫废水,对于镁法脱硫产生的废水的研究就更少了。镁法脱硫废水处理现在多是引用和借鉴石灰石/石膏法脱硫废水处理经验。为了维持脱硫装置浆液循环系统物质的平衡,防止烟气中可溶物质超过规定值和保证副产物品质,必须从循环系统中排放一定量的废水。因此,没有预处理塔的镁法脱硫和石灰石/石膏法脱硫过程产生的废水均来源于吸收塔的排放水。 3镁法脱硫废水水量和水质 3.1脱硫废水水量 脱硫废水的水量与烟气中的HCl和HF、吸收塔内浆液中的Cl-和SO42-浓度、脱硫用水的水质等有关。当进入吸收塔内的烟气量一定时,废水排放量由以下条件确定: (1)脱硫废水的水量取决于烟气中的HCl(HF)浓度,而烟气中的HCl(HF)主要来自于机组燃烧的煤。煤中Cl(F)的含量越高,烟气中的HCl(HF)浓度就越高,废水排放量也就越大。 (2)脱硫废水的水量关键取决于吸收塔内Cl-的控制浓度。浆液中的Cl-浓度太高,亚硫酸镁品质下降且脱硫效率降低,对设备的抗腐蚀要求提高;对浆液中的Cl-浓度要求过低,脱硫废水的水量增大,废水处理的成本提高。根据经验,脱硫废水中的Cl-浓度控制在10~20g/L为宜。 (3)脱硫废水的水量还取决于吸收塔内SO42-的控制浓度。浆液中SO42-浓度太高,会造成浆液粘性增加,影响亚硫酸镁的结晶,脱硫效率降低;浆液中SO42-的控制浓度过低,SO32-氧化成SO42-的正反应加速,

各种湿法脱硫工艺比较

电厂各种湿法脱硫技术对比优劣一目了然 北极星电力网新闻中心来源:化工707微信作者:小工匠2016/1/18 8:48:31 我要投稿 北极星火力发电网讯:随着我国环境压力逐年增大,国家排放要求进一步收紧,电厂烟气脱硫技术也得到了快速发展。目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法烟气脱硫技术脱硫率高,但不适合大容量燃烧设备。不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接来下小七根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。 电厂脱硫技术的选择原则: 1、脱硫技术相对成熟,脱硫效率高,能达到环保控制要求,已经得到推广与应用。 2、脱硫成本比较经济合理,包括前期投资和后期运营。 3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。 4、对发电燃煤煤质不受影响,及对硫含量适用范围广。 5、脱硫剂的能够长期的供应,且价格要低廉 湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液的脱硫技术,最大的优点是反应速度快、脱硫效率高,最大的缺点就是前期投资、后期运行成本高和副产品处理困难。湿法烟气脱硫技术是目前技术最为成熟,也是我国使用最广泛的,据不完全统计, 已建和在建火电厂的烟气脱硫项目中, 90 % 以上采用湿法烟气脱硫技术。 1 石灰石—石膏湿法脱硫工艺 工艺流程

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

湿法脱硫技术

湿法脱硫技术 神头发电厂田斌 【摘要】介绍了石灰石/石灰抛弃法,石灰石/石膏法等湿法脱硫法技术,并对有关问题进行了探讨。 关键词烟气脱硫湿法脱硫 1 前言 我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。火电厂以煤作为主要燃料进行发电,煤直接燃烧释放出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加。加强环境保护工作是我国实施可持续发展战略的重要保证。所以,加大火电厂SO2的控制力度就显得非常紧迫和必要。SO2的控制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),目前湿法烟气脱硫被认为是最成熟、控制SO2最行之有效的途径。 2 湿法烟气脱硫技术的开发与应用 2.1湿法烟气脱硫技术 所谓湿法烟气脱硫,特点是脱硫系统位于烟道的末端、除尘器之后,脱硫过程的反应温度低于露点,所以脱硫后的烟气需要再加热才能排出。由于是气液反应,其脱硫反应速度快、效率高、脱硫剂利用率高,如用石灰做脱硫剂时,当Ca/S=1时,即可达到90%的脱硫率,适合大型燃煤电站的烟气脱硫。但是,湿法烟气脱硫存在废水处理问题,初投资大,运行费用也较高。

2.1.1石灰石/石灰抛弃法 以石灰石或石灰的浆液作脱硫剂,在吸收塔内对SO2烟气喷淋洗涤,使烟气中的SO2反应生成CaCO3和CaSO4,这个反应关键是Ca2+的形成。石灰石系统Ca2+的产生与H+的浓度和CaCO3的存在有关;而在石灰系统中,Ca2+的生产与CaO的存在有关。石灰石系统的最佳操作PH值为5.8—6.2,而石灰系统的最佳PH值约为8(美国国家环保局)。 石灰石/石灰抛弃法的主要装置由脱硫剂的制备装置、吸收塔和脱硫后废弃物处理装置组成。其关键性的设备是吸收塔。对于石灰石/石灰抛弃法,结垢与堵塞是最大问题,主要原因在于:溶液或浆液中的水分蒸发而使固体沉积:氢氧化钙或碳酸钙沉积或结晶析出;反应产物亚硫酸钙或硫酸钙的结晶析出等。所以吸收洗涤塔应具有持液量大、气液间相对速度高、气液接触面大、内部构件少、阻力小等特点。洗涤塔主要有固定填充式、转盘式、湍流塔、文丘里洗涤塔和道尔型洗涤塔等,它们各有优缺点,脱硫效率高的往往操作的可靠性最差。脱硫后固体废弃物的处理也是石灰石/石灰抛弃法的一个很大的问题,目前主要有回填法和不渗透地存储法,都需要占用很大的土地面积。由于以上的缺点,石灰石/石灰抛弃法已被石灰石/石膏法所取代。 2.1.2石灰石/石膏法 该技术与抛弃法的区别在于向吸收塔的浆液中鼓入空气,强制使CaSO3都氧化为CaSO4(石膏),脱硫的副产品为石膏。同时鼓入空气产生了更为均匀的浆液,易于达到90 %的脱硫率,并且易于控制结垢与堵塞。由于石灰石价格便宜,并易于运输与保存,因而自8 0年代以来石灰石已经成为石膏法的主要脱硫剂。当今国内外选择火电厂烟气脱硫设备时,石灰石/石膏强制氧化系统成为优先选择的湿法烟气脱硫工艺。 石灰石/石膏法的主要优点是:适用的煤种范围广、脱硫效率高(有的装置Ca/S=1时,脱硫效率大于90%)、吸收剂利用率高(可大于90%)、设备运转率高(可达90%以上)、工作的可靠性高(目前最成熟的烟气脱硫工艺)、脱硫剂—石灰石来源丰富且廉价。但是石灰石/石膏法的缺点也是比较明显的:

相关主题
文本预览
相关文档 最新文档