当前位置:文档之家› 碳纤维用聚丙烯腈制备及其结构、性能

碳纤维用聚丙烯腈制备及其结构、性能

碳纤维用聚丙烯腈制备及其结构、性能
碳纤维用聚丙烯腈制备及其结构、性能

聚丙烯腈合成工艺

聚丙烯腈纤维及其合成工艺 摘要:聚丙烯腈纤维由聚丙烯腈或丙烯腈含量大于85%(质量百分比)的丙烯腈共聚物制成的合成纤维。丙烯腈的聚合属于自由基型链式反应,通常有丙烯腈经自由基引发剂引发聚合而成。其聚合方法根据所用溶剂(介质)的不同,可分为均相溶液聚合(一步法)和非均相溶液聚合(二步法)。 关键词:聚丙烯腈纤维;合成工艺;均相溶液聚合;水相沉淀聚合 一、前言 聚丙烯腈纤维的商品名是腈纶,由聚丙烯腈或丙烯腈含量大于85%(质量百分比)的丙烯腈共聚物制成的合成纤维。聚丙烯腈纤维的性能极似羊毛,弹性较好,伸长20%时回弹率仍可保持65%,蓬松卷曲而柔软,保暖性比羊毛高15%,强度比羊毛高1~2.5倍,有合成羊毛之称。因为聚丙烯腈纤维具有柔软、膨松、不易染、色泽鲜艳、耐光、抗菌、不怕虫蛀等优点,根据不同的用途的要求,可纯纺或与天然纤维混纺,其纺织品被广泛地用于服装、装饰等领域。 二、聚丙烯腈的结构和特性 1、聚丙烯腈的结构 聚丙烯腈自问世,因其严重的发脆、熔点高,当加热到280~290℃还未熔融就开始分解无法进行纺丝的缺点,应用受到限制。使用第二单体与丙烯腈共聚,聚合物分子间作用力降低,克服了脆性并改善了柔性和弹性,使聚丙烯腈成为重要的合成纤维品种。以后随着第三单体的引入,进一步改善了纤维的染色性,这样聚丙烯腈的生产才得到迅速发展。常用的第二单体有丙烯酸甲酯(CH 2 = CH-COOCH 3)、甲基丙烯酸甲酯[CH 2 C(CH 3 )COOCH 3 ]、醋酸乙烯酯(CH 2 =CHOOCCH 3 )等 中性单体,第三单体有丙烯磺酸[CH 2=C(SO 3 H)-CH 3 ]、丙烯酸(CH 2 =CHCOOH)、衣 康酸(CH 2=CHCOOHCH 2 COOH)等。例:由丙烯腈、丙烯酸甲酯和丙烯磺酸聚合成的聚 丙烯腈纤维的结构如下:

碳纤维布基本知识

碳纤维布基本知识 用途: 碳纤维布与结构胶配套使用成为碳纤维复合材料,适用于混凝土结构、木质结构的加固,可有效提高构件的承载力、抗震性能和耐久性。是处理下列工程问题的优秀备选方案: 1、建筑物使用荷载增加; 2、工程使用功能改变; 3、材料老化; 4、混凝土强度等级低于设计值; 5、结构裂缝处理; 6、恶劣环境服役构件修缮、防护。 其他用途:人造卫星、飞机、火箭、体育用品、工业产品等众多领域。 特点: 1、碳纤维抗拉强度高,高于普通钢10-15倍; 2、耐酸碱,抗腐蚀,适宜在恶劣环境中服役;与结构胶配合使用,能阻止有害介质浸渗,对内部结构起保护作用;

3、比重是钢材的23%,基本不增加构件自重,不改变构件截面尺寸; 4、可弯曲缠绕成型,对各类曲面、异型构件加固优势更为显著; 5、可任意剪裁,易粘贴,施工质量易于保证。不需大型施工机具,可搭接粘结任意延长,无明火作业,施工工期短。

碳纤维布使用说明 碳纤维布均与配套结构胶配合使用,形成高性能复合材料。碳纤维加固工艺流程:

构件表面处理→粘贴面修补找平(若平整,此步骤可省去)→涂底胶→卸荷(根据实际情况和设计要求,此步骤有时省去)→配置面胶和裁剪碳纤维布→粘贴碳纤维布→固化→检验→维护 1.构件表面处理 2.粘贴面修补找平(若平整,此步骤可省去) 3.配置底胶 4.卸荷(根据实际情况和设计要求,此步骤有时省去) 5.配置面胶和裁剪碳纤维布 6.粘贴碳纤维布 7.固化 8.检验 9.维护 碳纤维发展简史 1860年,斯旺制作碳丝灯泡 1878年,斯旺以棉纱试制碳丝

1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)1882年,碳丝电灯实用化1911年,钨丝电灯实用化 1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维 1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维 1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月) 1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加张力)的技术途径 1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维 1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸) 1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作 1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M40 1972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制1.聚丙烯腈基碳纤维(PAN-CF) 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 1.1聚丙烯腈基碳纤维的制备 聚丙烯基碳纤维是继粘胶基碳纤维后第二个开发成功的碳纤维。它是目前各种碳纤维中产量最高品种最多发展最快技术最成熟的一种碳纤维。 聚丙烯腈(PAN)是由(AN)聚合而成的链状高分子。 由于PAN在它的熔点317℃以前就开始热分解,因此不能采用熔融纺丝而只能通过溶剂进行湿法或干法纺丝。 聚丙烯腈碳纤维的生产过程分三步:(1)预氧化;(2)高温碳化处理;(3)高温石墨化处理。 (1)聚丙烯腈原丝的预氧化 预氧化的目的就是为了防止原丝在碳化时熔融,通过氧化反应使得纤维分子中含有羟基,羰基,这样可在分子间和分子内形成氢键,从而提高纤维的热稳定性。在聚丙烯腈纤维预氧化过程中可能发生的主要化学反应和氧化脱氢反应。 分析结果表明在大约200℃左右约有75%氰基发生了化学反应。未环化的杂化发生氧化脱氢反应,使纤维中结合一部分氧。一般认为,在制造聚丙烯腈碳纤维时,纤维仅需要部分氧化,含氧量在5%~10%较好。预氧化采用的方法有两种:空气氧化法和催化法。 原丝在200~300℃空气中预氧化时,其颜色从白→黄→棕→黑,说明聚合物发生了一系列的化学变化,并开始形成石墨微晶结构。催化环化是将聚丙烯腈原丝在225℃的SnCl4二苯醚溶液中催化成环。催化法有可能使部分氰基未被氧化,造成结构缺陷。目前工业生产上普遍采用的是空气预氧化法。 同时为了提高碳纤维的力学性能,在原丝预氧化时同时采用引力牵伸。 (2)预氧化的碳化 预氧化的碳化一般是在惰性气氛中,将预氧丝加热至1000~1800℃,从而除去纤维中的非碳原子(如H,O,N等) 。生成的碳纤维的含碳量约为95%。碳化过程中,未反应的聚丙烯腈进一步环化,分子链间脱水,脱氢交联,末端芳构化成氨。随着温度的进一步升高,分子链间的交联和石墨晶体进一步增大。碳化温度对碳纤维的力学性能有很大的影响。在碳化过程中,拉伸强度和弹性模量随温度的升高而升高。但在拉伸强度在1400℃左右达到最大值。这是由于随温度的提高,碳纤维中的石墨晶体增大,定向程度提高,因而拉伸模量升高而拉伸强度趋于下降。 (3)PAN的石墨化 石墨化过程是在高纯度惰性气体保护下于2000~3000℃温度下对碳纤维进行热处理。碳纤维经石墨化温度处理后,纤维中残留的氮,氢等元素进一步脱除,六角碳网平面环数增加,并转化为类石墨结构。 在PAN石墨纤维的制备中,牵伸贯穿生产全过程。不仅在生产PAN原丝时需要多次牵伸。牵伸使微晶沿纤维轴向择优取向,微晶之间堆积更加紧密,从而使密度和模量提高。

聚丙烯腈生产工艺与特点

聚丙烯腈生产工艺与特点 摘要:本文论述了用采用水相沉淀聚合法和均相溶液聚合法合成聚丙烯腈共聚物生产工艺,讨论两种不同聚合方法和聚合条件所合成的丙烯腈共聚物的生产工艺,并对生产聚丙烯腈的两种工艺进行综述评述。 关键词:聚丙烯腈溶液聚合水相沉淀聚合对比 聚丙烯腈,通常称为聚丙烯腈纤维(Polyacry-lonitrile or acrylic )}睛纶是聚丙烯腈纤维在我国的商品名。用85%以上的丙烯腈和其它第二、第三单体共聚的高分子聚合物纺制的合成纤维,又称聚丙烯腈纤维。如果丙烯腈含量在35%-85%之间,而第二单体含量占15%-65%,这种共聚物纤维则称为改性聚丙烯腈纤维。 聚丙烯腈的特点: 聚丙烯腈外观为白色粉末状,密度为1.14~1.15g/cm ,加热至220~300℃时软化并发生分解。玻璃化转变温度:104℃为白色或略带黄色的不透明粉末;相对密度1.12,玻璃化温度约90℃。它溶于二甲基甲酰胺、二甲基亚砜、环丁砜、硝酸亚乙基酯等极性有机溶剂,还能溶于硫氰酸盐、过氯酸盐、氯化锌、溴化锂等无机盐的浓水溶液,以及浓硝酸等特殊溶剂。它的软化温度和分解温度很接近,加热至200℃以上也不熔化,而是逐渐着色,以至碳化。 用途: 聚丙烯腈主要用于制造合成纤维(如腈纶)。用85%以上的丙烯腈和其他第二、第三单体共聚的高分子聚合物仿制的合成纤维。聚丙烯腈纤维的中国商品名。俗称人造羊毛。美国杜邦公司于20世纪40年代研制成功纯聚丙烯腈纤维(商品名为奥纶),因染色困难、易原纤化,一直未投入工业化生产。后来在改善聚合物的可仿性和纤维的染色性的基础上,腈纶才得以实现工业化生产。各个国家有不同的商品名,如美国有奥纶、阿克利纶、克丽斯纶、泽弗纶,英国有考特尔,日本有毛丽龙、开司米纶、依克丝兰、贝丝纶等。腈纶密度一般为 1.16~1.18克/厘米3,标准回潮率为1.0%~2.5%。纤维的特点是蓬松性和保暖性好,手感柔软,并具有良好的耐气候性和防霉、防蛀性能。主要用做人造纤维,俗称人造羊毛;制毛线、针织物(纯纺或与羊毛混纺)和机织物,尤其适宜作室内装饰布,如窗帘等。在材料学中常以聚丙烯腈为基体来合成多空材料,例如PAN基活性炭。 一、丙烯腈均相溶液聚合 聚丙烯腈不溶于丙烯腈,很难找到合适的溶剂,用纯聚丙烯腈原丝制取炭纤维,由于其化学结构存在大量的一CN基团,大分子间作用力强,又无侧链,致

碳纤维综述

PAN 基碳纤维 摘要: 聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。本文简要介绍了其结构,制备方法,性能,应用领域及其前景。 关键词:PAN 基碳纤维 碳纤维结构 PAN 基碳纤维制备 PAN 基碳纤维性能 PAN 基碳纤维应用前景 航天 军事 体育用品 1. 碳纤维结构 碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。 碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。 2. PAN 基碳纤维的制备 从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN 的聚合, 原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。 2.1 PAN 的聚合 由于PAN 分子结构的特性,纯聚体PAN 不适宜作为碳纤维前驱体。工业生产中,往往采用共聚PAN 来制备PAN 原丝。引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。但也可能带来一些负作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。 2.2 原丝的制备 PAN 在熔点(317°C )以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。 干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内单体引发剂 聚合 纺丝 原丝 预氧化 预氧丝 炭化 石墨化 表面处理 上浆 碳纤维 石墨纤维

聚丙烯腈基碳纤维及其增强复合材料_柴晓燕

2011年第7期广东化工 第38卷总第219期https://www.doczj.com/doc/53998651.html, · 293 · 聚丙烯腈基碳纤维及其增强复合材料 柴晓燕,朱才镇,刘剑洪 (深圳大学化学与化工学院,广东深圳 518060) [摘要]聚丙烯腈(PAN)基碳纤维作为一种高比强度和高比模量的增强型与功能型高性能纤维材料,在航空航天、国防军工及文体用品等方面都有广泛的应用。文章主要介绍了聚丙烯腈基碳纤维的制备、结构与性能及其在复合材料中的应用。 [关键词]碳纤维;增强;复合材料 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2011)07-0293-03 PAN-based Carbon Fibers And Reinforce Composite Materials Chai Xiaoyan, Zhu Caizhen, Liu Jianhong (College of Chemistry and Chemical Engineering, ShenZhen University, Shenzhen 518060, China) Abstract: Polyacrylonitrile carbon fibers were widely used in many fields, such as aerospace, strategical missile, sports and leisure industries, because of which are the most crucial and imperative part of the reinforce of the composition. The paper mainly introduces the production, structure and property of PAN-based carbon fiber, and the applications in the composite materials. Keywords: carbon fibers;reinforce;composite material 碳纤维是由有机纤维经过一系列的热处理转化而成的含碳量在90 %以上的脆性材料,是一种纤维状的碳材料。作为一种新型材料,碳纤维具有低密度、高比强度、高比模量、耐高温和低温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、热膨胀系数小等一系列的优异性能,结构独特,集众多优异性能于一身,它既可以作为结构材料的增强基承载负荷,又可作为功能材料[1]。由于碳纤维的强度比钢大,相对密度比铝还轻,并且具有上述电学、热学和力学性能,在现代科学技术、现代工业和现代国防的发展中起着重要作用。随着碳纤维产量的提高,碳纤维市场的扩大,价格不断降低,民用应用领域不断扩大。目前碳纤维已经渗透到高尔夫球杆、网球拍、滑雪板、钓鱼竿、游艇、赛艇、汽车构件、火车零件、石油、化工等多个领域,被誉为21世纪最有生命力的新型材料[2]。 碳纤维起源于19世纪60年代,而工业化则起步于20世纪50~60年代,是应宇航工业对耐烧蚀和轻质高强材料的迫切需求而发展起来的。l9世纪末,爱迪生首先用碳丝制作了白炽灯的灯丝,1959年,日本大阪工业试验所的近藤昭男发明了利用聚丙烯腈(PAN)纤维制造碳纤维的新方法,这一工艺很快受到重视,并实现了通用型PAN基碳纤维的工业化生产。而英国在此基础上开发了高性能的PAN基碳纤维的生产技术,处于了领先地位。20世纪70年代后,由于美国航天工业的高速发展,极大地促进了聚丙烯腈基碳纤维的发展[2]。 目前工业生产中主要采用聚丙烯腈(PAN)纤维、沥青纤维和粘胶纤维为原丝来生产碳纤维[3]。其中粘胶基和沥青基碳纤维用途较单一,产量也较为有限,而聚丙烯腈基碳纤维生产工艺简单,产品力学及高温性能优异,具有良好的结构和功能特性,因而发展较快,成为高性能碳纤维发展和应用的最主要和占绝对地位的品种,主要用于高性能结构及功能复合材料,在航天,航空、兵器、船舶等国防领域具有不可替代的作用。 1 PAN基碳纤维 1.1 PAN基碳纤维的制备工艺 PAN基碳纤维的制备包括PAN原丝的纺丝、预氧化和碳化三大工艺过程。优质的PAN原丝是制造高性能碳纤维的首要条件。原丝纺丝工艺有湿法、干法、干湿法和熔融法等[3-5],其中干湿法和熔融法是新的发展趋势,而湿法工艺则相对较为成熟。湿法成形的纤维纤度变化小、残留溶剂少,而且容易控制原丝质量,因而湿法纺丝仍是目前广泛应用的纺丝工艺。PAN基碳纤维的制备工艺流程如图1所示。 PAN原丝的预氧化,又称热稳定化,一般在180~300 ℃的空气气氛中进行。因为当温度低于180 ℃时反应速度很慢,耗时太长,生产效率过低;然而,当温度高于300 ℃时将发生剧烈的集中放热反应,导致纤维熔融断丝。在预氧化过程中要对纤维施加适当牵伸以抑制收缩、维持大分子链对纤维轴向的取向。预氧化的目的是使热塑性PAN线形大分子链转化为非塑性的耐热梯形结构,从而使纤维在碳化高温下不熔不燃,继续保持纤维形态[7-9]。预氧化方法包括恒温预氧化、连续升温预氧化和梯度升温预氧化。其中,前两种预氧化方法效率较低,目前主要用于实验室研究,而梯度升温预氧化则是当前工业化生产所普遍采用的。预氧化温度及其分布梯度、预氧化时间、张力牵伸等是影响预氧化过程的主要工艺参数。恰当的预氧化工艺可以在较短的时间内使纤维得到稳定化,为后期碳化提供均质的预氧丝;而不恰当的预氧化工艺则会造成原丝热稳定化的过度或不足,在高温碳化过程中纤维可能发生熔断或形成较多结构缺陷,严重影响最终碳纤维的性能。预氧化过程在整个碳纤维制备流程中耗时最长,预氧化时间一般为60~120 min,碳化时间为几分钟到十几分钟,而石墨化时间则以秒计算。可见,预氧化过程是决定碳纤维生产效率的主要环节。 碳化过程一般包括低温碳化和高温碳化两个阶段,低温碳化的温度一般为300~1000 ℃,高温碳化的温度为1100~1600 ℃。碳化时需要采用高纯度氮气作为保护气体。在碳化过程中,较小的梯形结构单元进一步进行缩聚,且伴随热解,向乱层石墨结构转化的同时,释放出许多小分子副产物。非碳元素O、N、H 逐步被脱除,C元素逐步富集,最终生成含碳量在90 %以上的碳纤维。 图1 PAN基碳纤维的制备工艺流程[6] Fig.1 The production of PAN-based carbon fiber 1.2 聚丙烯腈基碳纤维的结构 丙烯腈(AN)在一定的聚合条件下双键被打开,生成大分子链,同时放出反应热。氰基中的氮原子电负性大于碳原子,使氰基中的碳原子与氮原子间的电子云偏向氮原子,氮原子呈负电性,碳原子呈正电性。与氰基相连的主链上的碳原子与氰基中碳原子之间的电子云由于诱导作用的影响,偏向氰基碳原子,所以形成了很强的偶极矩。同一条聚丙烯腈大分子链上的氰基极性相同,互相排斥,呈现出僵硬的刚性,按照一定角度排列形成了对称的圆棒体,如图2所示。圆棒体的直径约为0.6 nm,长度约为10~100 nm。几根至几十根圆棒平行排列形成了有序的结晶区,而杂乱堆砌的大分子链则形成非晶区,即无定形区如图3所示。 聚丙烯腈原丝的预氧化过程从无定形区开始,逐渐发展到结晶区。纤维在预氧化初期是半融状态,丝束结构消失后呈块状的堆垛结构;预氧化中期,块状堆垛结构由束状向片状发散排列结构转变,并且在预氧化的后期趋于稳定。碳纤维是由片状石墨微晶沿纤维轴向方向堆砌而成的所谓“乱层”结构,通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、 [收稿日期] 2011-06-10 [作者简介] 柴晓燕(1985-),女,浙江人,硕士,助教,主要研究方向为碳纤维的结构与性能。

聚丙烯腈合成工艺

聚丙烯腈合成工艺 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

聚丙烯腈纤维及其合成工艺 摘 要:聚丙烯腈纤维由聚丙烯腈或丙烯腈含量大于85%(质量百分比)的丙烯腈共聚物制成的合成纤维。丙烯腈的聚合属于自由基型链式反应,通常有丙烯腈经自由基引发剂引发聚合而成。其聚合方法根据所用溶剂(介质)的不同,可分为均相溶液聚合(一步法)和非均相溶液聚合(二步法)。 关键词:聚丙烯腈纤维;合成工艺;均相溶液聚合;水相沉淀聚合 一、 前言 聚丙烯腈纤维的商品名是腈纶,由聚丙烯腈或丙烯腈含量大于85%(质量百分比) 的丙烯腈共聚物制成的合成纤维。聚丙烯腈纤维的性能极似羊毛,弹性较好,伸长20%时回弹率仍可保持65%,蓬松卷曲而柔软,保暖性比羊毛高15%,强度比羊毛高1~倍,有合成羊毛之称。因为聚丙烯腈纤维具有柔软、膨松、不易染、色泽鲜艳、耐光、抗菌、不怕虫蛀等优点,根据不同的用途的要求,可纯纺或与天然纤维混纺,其纺织品被广泛地用于服装、装饰等领域。 二、聚丙烯腈的结构和特性 1、聚丙烯腈的结构 聚丙烯腈自问世,因其严重的发脆、熔点高,当加热到280~290℃还未熔融就开始分解无法进行纺丝的缺点,应用受到限制。使用第二单体与丙烯腈共聚,聚合物分子间作用力降低,克服了脆性并改善了柔性和弹性,使聚丙烯腈成为重要的合成纤维品种。以后随着第三单体的引入,进一步改善了纤维的染色性,这样聚丙烯腈的生产才得到迅速发展。常用的第二单体有甲酯(CH 2=CH-COOCH 3)、甲基丙烯酸甲酯 [CH 2C(CH 3)COOCH 3]、酯(CH 2=CHOOCCH 3)等中性单体,第三单体有丙烯磺酸[CH 2= C(SO 3H)-CH 3]、丙烯酸(CH 2=CHCOOH)、衣康酸(CH 2=CHCOOHCH 2COOH)等。例:由丙烯 腈、丙烯酸甲酯和丙烯磺酸聚合成的聚丙烯腈纤维的结构如下: 2、聚丙烯腈的特性 (1)聚丙烯腈纤维的热学性能 聚丙烯腈纤维具有特殊的热收缩性,将纤维热拉伸~倍后骤然冷却,则纤维的伸长暂时不能恢复,若在松弛状态下高温处理,则纤维会相应地发生大幅度回缩,这种性质称为聚丙烯腈纤维的热弹性。 (2)聚丙烯腈纤维的吸湿性与染色性 吸湿性较差,标准回潮率为%~2%。由于聚丙烯腈纤维中加入了第二、第三单 体,改善了染色性,可采用阳离子染料或酸性染料染色。 (3)聚丙烯腈纤维的物理性质 聚丙烯腈为白色粉末状物质,密度为~cm 2,在220℃~230℃软化的同时发生分 解。聚丙烯腈纤维大分子中含有氰基,能吸收日光中的紫外线而保护分子主链,因而

项目名称:聚丙烯腈基碳纤维原丝制备新技术

项目名称: 聚丙烯腈基碳纤维原丝制备新技术 来源: 第十二届“挑战杯”作品 小类: 能源化工 大类: 科技发明制作A类 简介: 碳纤维是一种高科技纤维,具有重要战略意义。本课题依托我校与吉林化纤公司联合自主研发 的三元无机水相悬浮聚合,湿法二步法制备聚丙烯腈基碳纤维原丝新技术。该技术具有工艺流 程短,成本低,质量稳定,产量高,适合大规模工业生产等特点,是国内首家独创。吉林化纤 公司采用该技术正进行万吨级原丝生产线的建设,建成后将成为国内最大PAN基碳纤维原丝生 产企业,并可实现年增销售收入12亿元,年增利润7亿元。 详细介绍: 碳纤维产品以其优异的特殊性能已成为经济发展和国防事业的重要战略物资,美、日等发达国 家极为重视并大力发展,但由于我国碳纤维原丝质量不过关一直影响碳纤维产品的质量,美、 日等国家又严格限制对我国出口碳纤维,从而极大制约了我国军事及航天事业的发展,同时也 限制了相关民用领域的开发。为打破制约我国碳纤维产业发展的关键技术、关键装备及其相关 配套技术,提高我国碳纤维产业的整体研发、生产技术水平具有重要战略意义。吉林化纤股份 有限公司是当今世界最大腈纶生产企业,具有丰富的腈纶生产经验。2008年3月,公司抽调出 具有丰富经验的专家及技术人员组成20余人的攻关小组,研发碳纤维。攻关组依托企业自身腈 纶生产工艺和技术优势,积极联系相关科研部门和院校,合作研发碳纤维生产技术。并于2009 年1月与我校合作,开展T300级PAN基碳纤维原丝工业化攻关。攻关组整合了实验室成果与 工业化腈纶生产控制技术,集成创新出生产PAN基碳纤维原丝的工业化生产技术。双方科研人 员共同设计并制造了实验室聚合釜,2009年2月研发出PAN基碳纤维原丝用聚合配方,2009 年4月,用自主研发的聚合釜和聚合配方生产出30 kg碳纤维原丝用聚合物,先后在意大利蒙 特公司的实验线和化纤公司现有设备改造的生产线上进行试纺,生产出了第一批碳纤维原丝, 其各项技术指标达到国内碳纤原丝指标水平,尽管存在一定不足,但有了突破性进展。2009年 5月,双方共同设计并制造了年产30吨聚合釜,5月末完成设备安装调试并投入使用,生产出 碳纤维原丝用聚合物,同时对化纤公司已有的纺丝生产线进行改造。经过两个月时间,30 吨/ 年聚合釜和改造后的纺丝线工艺设备都具备了试生产碳纤维原丝条件,09年8月正式生产。在 此基础上,公司又对已有的生产线进行了进一步改造,将生产能力提高到1500吨/年,并于2010 年2月21日正式投产。到目前为止,年产1500吨生产装置已稳定生产出各项指标达到或超过 日本东丽公司T300的水平的碳纤维原丝,且已全部投放市场,产品供不应求。公司生产的1K 丝,目前已应用于中国航天科技集团(43所)、北京玻璃钢研究所(251所)等单位的尖端产 品上。目前,国内碳纤维原丝生产技术均采用一步法,即通过溶液聚合直接纺丝方法生产碳纤 维原丝,但此方法由于反应后期体系粘度过大,造成体系换热困难,因此该反应反应釜不能太 大,到目前为止,采用该方法制备碳纤维原丝的生产厂家最大的反应釜只有一吨。我们生产碳 纤维原丝的方法是建立在吉林化纤原有腈纶生产方法之上,采用无机氧化还原引发、三元水相 悬浮聚合法生产PAN基碳纤维原丝聚合物,湿法、二步法生产碳纤维原丝,与一步法相比,由 于两步法聚合反应在水相中进行,换热容易,聚合釜可以做的很大,其容量可达28吨,大大超 过一步法生产用聚合釜。因此本方法具有产量高、适合大规模生产、产品质量稳定、生产成本 低等特点,是国内首家独创。吉林化纤公司生产的碳纤维原丝经碳化后性能指标可达到或超过

聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况 摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。 关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距 碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。 一、碳纤维及其发展史 1.1碳纤维的先驱——斯旺和爱迪生 碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。 爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线 黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。 1.3聚丙烯腈碳纤维的发明者――近藤昭男 近藤昭男从业于大阪工业大学技术实验所,在碳研究室从事于碳素的崩散现象和碳素的崩散碳素胶状粒子的研究。他研究了应运腈纶在一系列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。虽然近藤昭男发明了用PAN原丝制造碳纤维的方法,但英国人瓦特在预氧过程中施加张力牵伸,打通了制取高性能碳纤维的工艺流程,从而牵伸贯穿了氧化和碳化的始终,成为研制碳纤维的重要工艺参数。所以近藤昭男发明了用PAN基原丝制造碳纤维的新方法,瓦特打通了制造高性能PAN基碳纤维新工艺。 1.4从日本东丽公司碳纤维发展历程看PAN基原丝的重要性。 日本东丽公司无论碳纤维的质量还是产量都居世界之首,以该公司研发碳纤维历程给人们一个启迪,即原丝是制取高性能碳纤维的前提,没有质量好的原丝就不可能产出好的碳纤维 东丽公司成立于1926年,1962年开始研制PAN基碳纤维,原丝为民用腈纶,产不出

聚丙烯腈基碳纤维的制备表面处理

聚丙烯腈基碳纤维的制备-表面处理

————————————————————————————————作者: ————————————————————————————————日期: ?

碳纤维表面处理 碳纤维作为一种具有高强度高模量的先进材料,通常需要与其他基体材料进行复合制备成复合材料进行使用。由于碳纤维本身经过1300℃以上的高温处理,纤维中90%以上由碳元素组成,纤维表面活性官能团很少,具有较强的惰性,与高分子树脂等基体进行复合时,纤维与树脂的结合较差,影响纤维优异力学性能的发挥,并最终影响复合材料的性能。因此在碳纤维制备过程中,通常需要对碳纤维进行表面处理,增加其表面的活性基团,增强与树脂等基体之间的结合。 5.3.1 表面处理方法 由于碳纤维表面处理对其复合材料性能提高的作用,因此表面处理方法的研究也是碳纤维制备技术研究的重点。经过多年的研究,科研工作者开发了多种对碳纤维进行表面处理方法,表5.11列出了可以对碳纤维进行表面处理的不同方法及其影响因素。在这些处理方法中,目前应用在工业化生产上的基本上都是电解氧化法。 表5.11 碳纤维表面处理方法和影响因素 序 号 类型处理方法影响因素 1 气相氧化O2、O3、NO2、NO、SO2、NH3、空气、水蒸气/空气、NO/ 空气时间、温度、浓度、流量 2 液相氧化HNO3、H2O、KMnO4、NaClO3、Na2Cr2O7/H2SO4、H2O 2/ H2SO4、NaClO3/H2SO4、KMnO4/ H2SO4 时间、温度、组成比例、 3 电解氧化氨水、碳酸氢铵、H2SO4、HNO3、H3PO4、NaOH、KOH、 NaCl、Na2CO3、NH4NO3、NaHCO3等水溶液时间、电压、电流密度、电解质浓度 4 催化氧化硝酸铜、醋酸铜、硝酸铅、硝酸亚铅、硝酸铁、硫酸铁、硝 酸铋、钒酸盐、钼酸盐 时间、温度、催化剂量 5电引发聚 合物涂层丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、苯乙烯、 醋酸乙烯、丙烯酰胺、乙烯基吡咯烷 时间、电压、电流、溶 剂、单体浓度 6 聚合物电 沉积涂层苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、乙烯基甲基醚与马 来酸酐共聚物 时间、电压、电流、溶 剂、共聚物离子浓度 7表面涂覆PVA、PVC、PAN、硅烷物,硬性聚氨酯炭黑树脂组成含量、涂覆量 8高温气相 沉积SiC、TiC、TiO2、ErC、NiC、B、BN、NbC、TaC、 石墨晶须、碳 温度、时间、载气、试 剂含量 9表面聚合 物接枝丙烯酸、丙烯酸甲酯、苯乙烯、丙烯腈-苯乙烯、丙烯腈、异 氰酸酯 时间、氧化程度、接枝 量、浓度 10等离子体 处理 O2、NH3、Ar、N2、空气、SiC涂层、AN聚合时间、真空度、功率、 流动速度 11 电子辐照γ射线等辐照剂量、时间 5.3.1.1 气相氧化法 气相氧化法是将碳纤维暴露在气相氧化剂(如空气、氧等)中,在加温、加催化剂等特殊

聚丙烯腈碳纤维性能表征要求规范

聚丙烯腈碳纤维性能表征规范 聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。电性能主要为体积电阻率以及电磁屏蔽方面的性能。对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。对于热物理性能,相关的测试标准较少。 5.5.1 碳纤维性能测试标准 日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。 表5.30 日本碳纤维测试标准 序号标准号标准名称 1 JIS R7601-1986 碳纤维试验方法 2 JIS R7602-1995 碳纤维织物试验方法 3 JIS R7603-1999 碳纤维-密度的试验方法 4 JIS R7604-1999 碳纤维-上浆剂附着率的试验方法 5 JIS R7605-1999 碳纤维-线密度的试验方法 6 JIS R7606-2000 碳纤维单纤维拉伸性能试验方法 7 JIS R7607-2000 碳纤维单纤维直径及断面面积试验方法 8 JIS R7608-2007 碳纤维-树脂浸渍丝拉伸性能测试方法 9 JIS R7609-2007 碳纤维体积电阻率测试方法 10 JIS R7601-2006 碳纤维试验方法(修正1) 日本东丽公司作为世界聚丙烯腈基碳纤维生产能力和水平最高的企业,也有自己的碳纤

聚丙烯腈PAN纳米纤维的制备方法

聚丙烯腈纳米纤维的制备 一、背景 PAN大分子的的结构式如图所示,和一般的高聚物的分子一样,PAN的分子具有链状结构,由于其大分子链上有强极性和体积较大的氰基,使其分子间形成强的作用力。 聚丙烯腈纳米纤维的应用领域非常广泛,主要应用于超级电容器、能源和催化等领域。Changhua Wang等以聚丙烯腈(PAN)为静电纺丝载体,以硝酸铋为前驱体,通过静电纺丝以及后烧结的方法制备了三氧化二铋的纳米纤维[1]。Dongfeng Shao等以PAN为载体,醋酸锌为前驱体,结合静电纺丝、溶胶凝胶法制备了表面涂覆氧化锌涂层的碳纳米纤维,该方法可以改善纤维的多种物理化学性能[2]。Liu等在利用动态水浴法收集了一定量平行电纺PAN 纤维后,对纤维进行了沸水牵伸,而牵伸后的电纺PAN纤维无论是结晶度还是取向度都有大幅度增长,其研究更加说明了电纺PAN在制备高性能纳米碳纤维方面的巨大潜能。路静通过严格控制PAN电纺过程的各项参数,使电纺纤维在沉积时发生自组装,形成了蜂窝状多孔纳米纤维无纺膜,并将该膜进行热处理后应用于超级电容器电极[4]。 二、纳米纤维的制备 2.1仪器和试剂 仪器:静电纺丝装置(SS-2535);磁力搅拌器;电子天平;扫描电镜。 试剂:聚丙烯腈粉末(PAN1015);DMF(市售,分析纯); 2.2聚丙烯腈纳米纤维膜的制备 使用静电纺丝装置制备纳米纤维膜。按照一定质量比,将PAN粉料与DMF混合放置在烧瓶中,密封后置于75℃恒温水浴中机械搅拌24h,直至获得透明均一溶液。使用静电纺丝机进行PAN纤维的制备,正极电压可调节范围为16~20kV,PAN溶液用注射器装盛,针头接电源正极。将带有PAN/DMF溶液的注射器固定在推注上,设定好接收距离。接收器为一长35cm,直径10cm的不锈钢滚动圆筒,接电源负极,负电压为2kV。打开电源,按照实验计划设置实验进行静电纺丝实验。 三、结构表征 扫描电子显微镜广泛应用于对静电纺纤维表面形貌的观察。在实际的应用中能够有效地 PAN分子结构

碳纤维用聚丙烯腈基原丝的研究进展

碳纤维用聚丙烯腈基原丝的研究进展 碳纤维根据原丝类型可分为:聚丙烯腈(PAN)基碳纤维、黏胶基碳纤维、沥青基碳纤维、酚醛基碳纤维,其中聚丙烯腈基碳纤维由于其优越的性能,受到最广泛的应用。聚丙烯腈(PAN)原丝质量决定着碳纤维最终性能,目前是制约我国碳纤维工业发展的重要因素。本文详细介绍了国内外PAN原丝的发展现状,对目前国内外纺丝工艺所用纺丝方法和溶剂等发展状况进行了系统的阐述。 标签:碳纤维;聚丙烯腈基原丝;研究进展 1 前言 PAN碳纤维具有高强度、高模量、耐高温、耐腐蚀、抗疲劳、热膨胀系数小等优异性能,可与树脂、金属、陶瓷、碳复合而成增强复合材料,被广泛应用于航天航空工业领域和民用领域,如卫星、运载火箭、飞机等尖端领域,及体育器材、建筑材料、医疗器械、运输车辆、机械工业等。高性能碳纤维的生产需要高性能的原丝,因此原丝的生产技术是碳纤维生产的关键技术。要进一步提高碳纤维的性能,必须进一步提高原丝的质量。 2 国内外PAN原丝的发展状况 2.1 PAN纺丝液的制备 目前,国内外普遍采用DMSO法丙烯腈间歇溶液聚合,这种方式虽然获得的纺丝液质量较好,但是其聚合的主反应过程并不稳定,放热集中,黏度变化大,同时,间歇聚合采用分批次进、出料,而不同批次的物料使得聚合液的黏度和分子量存在差异,影响聚合液的均一性和稳定性。溶液聚合投料的浓度较低,需要大量溶剂,并且纺丝效率低,溶剂回收过程能耗大,成本高。而本体聚合不需要溶剂,大大提高了生产效率,降低生产成本,且聚合工艺过程简单、设备简单,虽然存在反应体系黏度大、聚合反应热不易导出,影响PAN分子量分布的缺点,但在未来可能会成为PAN聚合的发展方向。 2.2 PAN原丝的制备及预氧化 目前,国内外生产用于碳纤维的PAN原丝主要采用湿法纺丝工艺,并且大多公司采用有机溶剂,以DMSO为溶剂生产的原丝产量最大。比如:日本东丽采用DMSO,日本三菱和中国台湾台塑采用二甲基甲酰胺。也有不少公司使用无机溶剂,比如:日本杜邦公司采用ZnCl2水溶液,吉林化工公司采用HNO3。湿法纺丝速度低、生产成本高,因此提高纺丝速度、降低生产成本成为了必然的趋势。 3 PAN原丝的纺丝工艺

聚丙烯腈碳纤维的工艺流程

聚丙烯腈碳纤维的工艺流程 1.概述 碳纤维是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。聚丙烯碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 2.制备 聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。对原料的要求是:杂质、缺陷少;细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。 生产中制取聚丙烯腈纤维的过程是:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲醋、甲叉丁二脂等)共聚生成共聚聚丙烯腈树脂(分子量高于 6~8万),然后树脂经溶剂(硫氰酸钠、二甲基亚矾、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干-湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。若将聚丙烯腈纤维直接加热易熔化,不能保持其原来的纤维状态。因此,制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。预氧化处理是纤维碳化的预备阶段。一般将纤维在空气下加热至约270℃,保温0.5h~3h,聚丙烯腈纤维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。这是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果。再将预氧化纤维在氮气中进行高温处理(l 600℃),即碳化处理,则纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维。 由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。 3.性能 碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软; ④耐磨、耐疲劳、减振吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性、吸附性强的活性碳纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热;高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波遮蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低; ⑨生物相容性好,生理适应性强。

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

相关主题
文本预览
相关文档 最新文档