当前位置:文档之家› 机会干扰对齐与盲干扰对齐技术研究

机会干扰对齐与盲干扰对齐技术研究

机会干扰对齐与盲干扰对齐技术研究
机会干扰对齐与盲干扰对齐技术研究

通信基站传输网络优化研究

通信基站传输网络优化研究 发表时间:2018-11-22T18:06:35.080Z 来源:《防护工程》2018年第22期作者:曾凡亮[导读] 基站传输网络是通信系统的基本组成部分,是移动台和网络系统信息交换的纽带 公诚管理咨询有限公司第三分公司广东东莞 523000 摘要:基站传输网络是通信系统的基本组成部分,是移动台和网络系统信息交换的纽带,为两者提供管理和传输通路。本文主要对目前基站通信传输网存在的问题及优化的内容进行分析,并提出电信网络无线基站传输网络的提升策略,以满足社会发展下的需求。 关键词:传输网络;无线网络;干扰技术;接通率无线基站传输网络是移动网络传输的最重要组成部分。目前,通信行业正处于一个需求旺盛、竞争激烈的市场环境之中,市场需求的不断变化和通信技术的快速发展,对通信企业的运营发展产生积极而深远的影响。为了适应通信技术的演进方向和满足客户的消费需求,提升企业的品牌形象和竞争优势,各大电信企业都在不断加大基站传输网络的建设力度。 1.案例分析 比如广州市的中华通信的一期工程就设置了3个基站,分别设置在国贸大厦、美丽华酒店和兴业银行,以国贸大厦为网络中心,这3个基站基本达到覆盖广东城区90%以上的人口及80%以上的区域。 如图1所示,以国贸大厦为网络中心,用光纤与网络中心将3个基站给连接起来,在国贸大厦配置交换机和网管,并使用路由器经中国移动或其他网络运营商的光纤网络接入互联网,开展数字数据网(Digital Data Network,DDN)接入、帧中继(Frame Relay,FR)接入、因特网接入、IP电话超市、局域网互联等业务。 图1 中华基站设置 2.关键技术的介绍 2.1 多天线技术的应用 多天线,顾名思义,就是将接收、发送信号的天线数量进行增加,从而增加无线基站传输信号的能力,优化电信网络结构,这个方法已经在TD-LTE系统中得到了充分的应用。在空间有限的大前提下,节省资源,充分增加了传输速率。在20世纪80年代,我们已经从理论上证实了无线系统可以无限的对多天线系统进行增容的可行性,其中最经典的方案就是BLAST传输方案。我们可以采取空间分集中的接收技术,来达到匹配接收天线的目的,进一步优化收发两端的技术,将错误率进行降低[1]。因为无线电波传播环境的复杂性和无线电波传播的开放性,会给系统接收信号时产生一定的干扰,同时,无线电波的衰落性也和天线的形状有关,致使接收到的信息到达天线的时间不一样。但我们也有相对应的技术还原已经被破坏的信号。这个技术能够提高无线网络的通话质量。现在科技发展的脚步越来越快,以前的网络技术已经远远满足不了人们如今的需求,所以,在无线网络信号传输方面,还有很大的提升空间。 2.2 干扰处理 在无线电信网络传输方面,运用多天线技术可以有效地将无线基站传送信号的能力增强。但是,多个天线、多个用户都处于同一个基站中,它们同时运行及使用,会给系统造成很大的干扰,这也给后期系统进一步升级带来了很大的困难。所以,清除干扰是无线电信网络传输方面必不可少的一步。系统的干扰主要分为两个方面—发送端干扰和接收端干扰,我们可以从比较有代表性的两方面—波束成形和预编码,来对发送端的干扰进行处理。不同的是,当处理接收端的干扰时,我们需要使用一些技术来辅助,比如,均衡技术,多用户检测技术。上述的情况都是在干扰比较强烈的前提下进行讨论的,也有例外情况,这时就可以把微小的干扰当作噪声来清除[2]。目前还有一种被称作干扰回避的方法,这种方法是通过让不同用户使用不同资源,从而避免用户之间的信号干扰为原理,进而运用如频分多址、时分多址和码分多址等技术,来将干扰降到最低。那什么是干扰清除法呢?其实就是在干扰比较强的大前提下,将接收端接收到的信号干扰给处理掉。我们要充分地利用多天线带来的拓宽空间的好处,将干扰进行协调,并对其进行协调和抑制,将干扰控制在一定的范围内,这种方法叫作干扰协调法[1]。 3.研究现状 3.1 干扰对齐 现在最常用的新型去除干扰技术是干扰对齐法,研究的重点也放在了干扰技术是否拓展到多用户的多输出多输入系统中。整个小区多用户的系统干扰对齐问题更为复杂,楼与楼之间和用户之间的信号干扰同时都在系统中存在,给网络优化造成了较大的负担,对整个电信网络的承受量和空间拓展起到了抑制作用[3]。当主要干线的通信情况抑制了次要干线的通信情况,这个会对系统的总自由度产生浪费现象,在实际的生产生活中,如果能够把主线和次线的网络状况给平衡好,就能够减少系统的束缚度,同时也能够增加用户的使用量,使次线的通话质量不受影响,得到保障[2]。 3.2 绿色干扰协调 随着如今社会的发展,无线网络得到了普及,但随之而来的信号污染问题也出现了,随着环保理念的普及,广大人民群众对于节能减排的要求也越来越高,因此,我们如今加入了绿色环保观念,将通信效率通过科学管理的方法来提高,将功率分配联合优化方法进行合理应用,更详细一点就是将使用最大能量效率作为统一优化原则,这里我们所指的能量效率波束形成法,就是从根本上将无线网络传输信号的能量效率加以提高,这在有限的空间内去除了系统的大部分频谱效率[3]。但上述方法具有局限性,要不就是只关注了频谱效率,要不就是对能量效率的最大化过于关注。但是,通过实验表明,要想同时满足能源效率的最大化和频谱效率的最优化必须在低信号噪区域进行信号发射,在高信噪进行发射是达不到这样的效果的,所以,怎样将这两者的优势最大化地发挥出来是绿色通信的难点与重点,应该将对资源进行平均分配,这样不仅能够降低网络的耗能,还能够增加系统的寿命,简直就是一举两得,未来的通信将会朝着这个方向发展。 4.提高系统接通率,优化移动网络 4.1 提高无线接通率

无线通信系统中干扰对齐技术的研究

无线通信系统中干扰对齐技术的研究 未来移动通信网络要满足更好覆盖、更高传输速率、更低发射功率的需求,但又面临着有限频谱资源和复杂传输环境的困境,因此新型网络架构和传输机制被提出,如自组织网络、异构网、中继协同传输等。这些新型网络架构和传输机制的引入实质上构成了新的干扰网络,必然带来新干扰问题。 近年来,干扰对齐被学术界视为一种能够有效抑制干扰的创新性无线传输策略,在网络容量分析方面取得了重大理论突破。干扰对齐从理论转化到实用面临着众多挑战,因此成为当前的研究热点。 本文主要关注制约干扰对齐实用化的两个重要因素,分别为信道状态信息获取和空域维度受限,以降低实施干扰对齐的反馈开销和空域维度需求为目标,对不同场景下的干扰对齐方案展开研究。主要工作如下:1. MIMO干扰信道中的反馈拓扑设计。 在MIMO干扰信道场景中,通过合理的反馈拓扑结构设计能够有效降低干扰对齐实施过程中产生的CSI开销。然而,传统反馈拓扑结构具有明显的缺陷:集中式反馈拓扑结构要么将大量的计算和反馈负担强加于系统中的某个接收节点,要么需要在网络中额外部署的新的硬件单元;而信道状态信息交互式反馈拓扑结构会产生较大的反馈时延。 因此,本文设计了三种新型的反馈拓扑结构,具体设计思路分别为:对收发节点进行配对分组、优化信令交互过程中传递节点的顺序,以及构思全新的干扰对齐闭式解。所提的三种新型结构不仅可以克服传统反馈拓扑结构的上述缺陷,同时能够进一步降低CSI开销。 2. MIMO干扰广播信道中基于干扰对齐的天线资源分配方案。通过对齐相邻

小区的同频干扰,干扰对齐技术能够大幅提升多小区MIMO干扰广播信道的空分 复用增益。 传统的干扰对齐闭式解方案由于对齐实施方法上存在的差异,在获得相同自由度的条件下对基站和用户的天线数目提出了不同的要求。从实用化角度考虑,用户终端不可能配备大量的天线,而基站可以部署大规模天线阵列。 因此,本文提出了一种基于干扰对齐的天线资源分配方案,通过灵活调节基 站和用户两侧的天线需求数目,能够实现天线资源用量与自由度增益的有效折中。此外,针对多小区两用户以及三用户的场景,提出了低复杂的干扰对齐实施算法,能够在保持自由度不变的条件下进一步降低现有算法的复杂度。 3.异构网中干扰对齐方案的天线资源用量分析和低空域维度需求的闭式解 研究。对于由C个微微小区和一个宏小区同频组网的异构网络,下行链路时系统中有C个微微用户和K个宏用户同时接收对应基站发送的数据(每用户接收d个数据流),这将带来严重的同级干扰与跨级干扰。 本文基于上述异构网模型,分别在封闭式接入(Closed Subscriber Group, CSG)模式和开放式接入(Open Subscriber Group, OSG)模式下建立了线性干扰对齐的广义可行性条件,并从广义可行性条件中推导出干扰对齐方案获得(C+K)d 个自由度的最少总天线资源用量,利用这个衡量指标可以验证具有任意天线配置的方案在天线利用方面的最优性。本文验证了传统的分级干扰对齐方案在CSG 模式下使用了最少的天线数量,然而在OSG模式下(无论天线数目和每用户数据 流个数如何取值)不是最优的天线利用方案。 对于CSG模式下的广义MIMO异构网,如何利用最少总天线资源用量得到干扰对齐闭式解是一个公开问题。因此,放宽最少总天线资源用量的制约后,设计了新

LTE干扰抑制技术

LTE系统采用OFDM技术,小区内用户通过频分实现信号的正交,小区内的干扰基本可以忽略。但是同频组网时会带来较强的小区间干扰,如果两个相邻小区在小区的交界处使用了相同的频谱资源,则会产生较强的小区间干扰,严重影响了边缘用户的业务体验。因此如何降低小区间干扰,提高边缘用户性能,成为LTE系统的一个重要研究课题。 小区间干扰抑制技术 在LTE的研究过程中,主要讨论了三种小区间干扰抑制技术:小区间干扰随机化、小区间干扰消除和小区间干扰协调。小区间干扰随机化主要利用了物理层信号处理技术和频率特性将干扰信号随机化,从而降低对有用信号的不利影响,相关技术已经标准化;小区间干扰消除也是利用物理层信号处理技术,但是这种方法能“识别”干扰信号,从而降低干扰信号的影响;小区间干扰协调技术是通过限制本小区中某些资源(如频率、功率、时间等)的使用来避免或降低对邻小区的干扰。这种从RRM的角度来进行干扰协调的方法使用较为灵活,因此有必要深入研究以达到有效抑制干扰、提高小区边缘性能的目的。 小区间干扰协调的基本思想就是通过小区间协调的方式对边缘用户资源的使用进行限制,包括限制哪些时频资源可用,或者在一定的时频资源上限制其发射功率,来达到避免和减低干扰、保证边缘覆盖速率的目的。 小区间干扰协调通常有以下两种实现方式。 静态干扰协调:通过预配置或者网络规划方法,限定小区的可用资源和分配策略。静态干扰协调基本上避免了X 接口信令,但导致了某些性能的限制,因 2 为它不能自适应考虑小区负载和用户分布的变化。 半静态干扰协调:通过信息交互获取邻小区的资源以及干扰情况,从而调整本小区的资源限制。通过X 接口信令交换小区内用户功率/负载/干扰等信息, 2 周期通常为几十毫秒到几百毫秒。半静态干扰协调会导致一定的信令开销,但算法可以更加灵活的适应网络情况的变化。

瞬态传导抗扰度测试常见问题对策及整改措施

4.1 综述 电磁兼容所说的瞬态脉冲是指干扰脉冲是断续性的,一般具有较高的干扰电压,较快速的脉冲上升时间,较宽的频谱范围。一般包括:静电放电、电快速瞬变脉冲群、浪涌冲击等。由于它们具有以上共同特点,因此在试验结果的判断及抑制电路上有较大的共同点。在此处先进行介绍。 4.1.1 瞬态脉冲抗扰度测试常见的试验结果说明 对不同试验结果,可以根据该产品的工作条件和功能规范按以下内容分类: A:技术要求范围内的性能正常; B:功能暂时降低或丧失,但可自行恢复性能; C:功能暂时降低或丧失,要求操作人员干预或系统复位; D:由于设备(元件)或软件的损坏或数据的丧失,而造成不可恢复的功能降低或丧失。 符合A的产品,试验结果判合格。这意味着产品在整个试验过程中功能正常,性能指标符合技术要求。 符合B的产品,试验结果应视其产品标准、产品使用说明书或者试验大纲的规定,当认为某些影响不重要时,可以判为合格。 符合C的产品,试验结果除了特殊情况并且不会造成危害以外,多数判为不合格。 符合D的产品判别为不合格。 符合B和C的产品试验报告中应写明B类或C类评判依据。符合B类应记录其丧失功能的时间。 4.1.2常用的瞬态脉冲抑制电路: 4.1.2.1 箝位二极管保护电路: 图10二极管保护电路 工作原理如图10。 使用2只二极管的目的是为了同时抑制正、负极性的瞬态电压。瞬态电压被箝位在V++VPN~V--VPN范围内,串联电阻担负功率耗散的作用。利用现有电源的电压范围作为瞬态电压的抑制范围,二极管的正向导通电流和串联电阻的阻值决定了该电路的保护能力。本电路具有极好的保护效果,同时其代价低廉,适合成本控制比较严、静电放电强度和频率不十分严重的场合。 4.1.2.2 压敏电阻保护电路: 压敏电阻的阻值随两端电压变化而呈非线性变化。当施加在其两端的电压小于阀值电压时,器件呈现无穷大的电阻;当施加在其两端的电压大于阀值电压时,器件呈现很小电阻值。此物理现象类似稳压管的齐纳击穿现象,不同的是压敏电阻无电压极性要求。使用压敏电阻保护电路的特点是简单、经济、瞬态抑制效果好,且可以获得较大的保护功率。 4.1.2.3 稳压管保护电路: 背对背串接的稳压管对瞬态抑制电路的工作原理是显而易见的。当瞬态电压超过V1的稳压值时,V1反向击穿,V2正向导通;当瞬态电压是负极性时,V2反向击穿,V1正向导通。将这2只稳压管制作在同一硅片上就制成了稳压管对,使用更加方便。 4.1.2.4 TVS(瞬态电压抑制器)二极管: 这是最近发展起来的一种固态二极管,适用用于ESD保护。一般选择工作电压大于或等于电路正常工作电压的器件。TVS二极管是和被保护电路并联的,当瞬态电压超过电路的正常工作电压时,二极管发生雪崩,为瞬态电流提供通路,使内部电路免遭超额电压的击穿或超额电流的过热烧毁。由于TVS二极管的结面积较大,使得它具有泄放瞬态大电流的优点,具有理想的保护作用。但同时必须注意,结面积大造成结电容增大,因而不适合高频信号电

EMC整改 方案

传导干扰分析及抑制措施: 视频LED显示屏的电源电源对此项的测试影响较大、电源本身性能的好坏直接关系到本身指标是否合格。有时也存在电源单独做电磁兼容试验是合格的、一旦装到整机时,由于整机中其他部件在某个频点具有较强的干扰信号,电源的滤波单元无法完全滤除该干扰信号,从而导致测试结果的超标。 对于电源端子骚扰电压的超标,有以下途径可以解决:首先、排除电源因数的干扰,在条件允许的情况下可将电源取出,连接额定纯阻性负载进行试验。如果此时原超标频点没有了,说明该频点的骚扰来源于主控板。此时应把重点放在主控板的滤波上,主控板中主要的干扰是晶振,应该对晶振进行良好的滤波和接地;其次、晶振也是辐射发射测试项目超标的一个主要因素,检查主控板中晶振和信号线接地、电源接地是否良好,在保证这几点的情况下,如果传导测试仍不合格,说明干扰信号的确很强。此时可在电源的输入端加整件滤波器X、Y电容,加强电源的滤波作用。注意:滤波器选择时,应关注滤波器不同平率的插入损耗情况,还要根据阻抗和负载阻抗的高低。 滤波:此类产品由于数字脉冲信号的存在,以至于辐射发射一般都比较强,可在晶振旁边接旁路滤波电容,且保证晶振接地良好、接地电阻尽可能小。如果条件允许,也可以使用经过扩频的晶振、且保证不影响时钟电路的条件下,使晶振在一个较小的频率范围内发生频偏,单频点的能量被分散,这样整体的辐射就会减小,还可以在显示屏的电源线和内部各个显示单元之间的信号线上使用铁氧体磁环对高频共模干扰电流进行滤波处理(共模电流的存在是导致辐射发射过大的主要因素)。当然铁氧体磁环的选择要结合其插入损耗随频率变化的曲线选择合适的规格,效果才会好。 屏蔽:对于已经成型的显示屏来说,屏蔽是抑制辐射发射的一项重要措施。此类产品的前面板是由LED灯组成的显示阵列,因此,对前面板的屏蔽是整机屏蔽效果好坏的关键,建议整个箱体使用金属板材制成,用金属网格屏蔽前面板→即在LED灯的行与行之间、列与列之间使用导电性能较好的金属网格,这样会对整体的辐射发射能量有一定的衰减作用。也可以在箱体的前面板和控制板之间加一层金属屏蔽网格,效果会更好些。箱体里面的各个扫描板之间的信号线尽量使用屏蔽线,且保证其金属屏蔽层能和箱体等电位。

干扰对齐翻译

干扰校对指南 Farzad Talebi 摘要: 作为无线网络中的必然现象,干扰在通信网的设计中总是备受着关注。在此,我们将提到一些传统的抗干扰方法。因为不论用户数目的多少还是抗干扰方法本身都不能概括为两个以上用户案例,所以可以使用这些抗干扰的方法来提高网络的总容量。(因为不论是用户数量还是这种方法本身对两个以上用户都不具有一般性,所以网络的总体能力将会被干扰所限制。)干扰校对是一个令人诧异的方法,通过这种方法,时变干扰网络的总容量就可以使用像时间,频率这样受限的资源,其中这些资源是随着用户数量呈线性增长的。这里将要给出一些容易理解的干扰校对的特例,也会给出对这种方法有用的一些不完美的或者受限的信道状态信息。最后,我们将会讨论干扰校对方法的优势和劣势。 Ⅰ、简介 干扰信道就是当多对发送—接收机共享一个信息时,信息从一个发送机传送到与其对应的接收机时将会干扰其它发送—接收机的信息传送[文献1],在此教程中我们把高斯白噪声看为衰落干扰和X 信道。干扰信道的信号输出是在公式(1)中提出的。X信道与干扰信道有相同的输出,但是在这种情况下每个发送机对每个接收机发送一个特殊的信息,而不仅仅向与它相匹配的接收机。在干扰信道

或者X信道中,干扰比噪声更会受关注,因为如果所有的用户都运行于高信噪比中,噪声将会变得不是那么的重要,但干扰将会变得越来越有挑战性。下面是一些已经验证过的实用干扰的管理方法:干扰的解码 当干扰强度强于信号本身时,它将会被解码,即从期望信号中减去干扰信号。因此,它允许接收机解码期望信号。由于复杂的多用户检测,期望信号与实际信号相差很大[文献2],有关强干扰信息理论也验证了这种说法[文献3]。关于这个方法的重要注解是将这种方法推广到两个以上用户并不是那么的简单。 正交化 用实用的方法对抗与信号强度一样的干扰,就是把信号按照时间,频率,代码进行正交。在这里设定其后将被确定的自由度为1,如果有K个用户,那么每个用户的可用率将会是1/Klog(SNR)+o(log(SNR)),其中o(log(SNR))代表的是一种与k无关的log(SNR)的功能。 视它为噪声 不管是在实际上还是在理论上,把弱干扰看作噪声都证明是非常有用的,因为我们知道,在弱干扰中引入结构并没有什么作用。 自由度 在网络文学中自由度是一项重要的容量近似。在这里给出一个值得记录的网络自由度的简单表面描述: 1、网络自由度由于可解释成可解决的信号空间维度的数目。

LTE干扰协调技术专题-李勇

LTE小区间干扰协调研究 第一章、现状 LTE系统中采用正交频分复用传输技术,各子载波之间是正交的。相对CDMA系统,LTE系统解决了小区内部的干扰,但作为代价,LTE系统小区之间的干扰比CDMA系统更加严重。为了降低小区间的干扰,可以采用频率复用的方法。高的频率复用系数可以有效地抑制小区间干扰,但频谱利用率却大大降低。然而,未来的宽带移动通信系统对频谱利用率提出很高的要求,在保证频谱利用率的前提下,如何有效地抑制小区间干扰已成为业界研究的焦点。因此,研究如何抑制LTE系统中的小区间干扰具有十分重要的意义。 目前正在研究的LTE系统干扰抑制技术包括小区间干扰随机化(ICI Randomization)、小区间干扰消除(ICI Cancellation)和小区间干扰协调(ICI Coordination)。这三种技术都能够在一定程度上降低小区间的干扰,但干扰协调技术被认为是最有效和可实现性最高的技术,也是目前各公司和研究组织研究的焦点。本文将主要给大家介绍了几种典型的干扰协调技术,并通过经典方案展示这些技术在现阶段的运用。 第二章、干扰协调控制原理 小区间干扰协调的方法很多,但基本的原理都是对下行资源管理设置一定的限制,以协调多个小区的动作,避免产生严重的小区间干扰。这种限制可以是对频率资源调度的限制,即避免干扰小区使用可能造成干扰的频率资源,也可以是对某个频率资源内发射功率的限制,如控制干扰小区在可能造成干扰的频率资源内的发射功率。这种限制可能是改进接收机的接收载干比(C/I),从而改进服务小区边缘的数据率和覆盖情况。对频率资源调度的限制,可以看作一种“软频率复用”;对发射功率的限制,可以看作一种“部分功率控制”。结合小区间实际情况来统一调度频率与功率资源可以认为是“系统调度控制”。下面将一一介绍这三种基本控制原理。 2.1频率复用 2.1.1软频率复用 如果将干扰协调和传统频率复用进行对比,则可以将干扰协调看作一种“分数频率复用”(Fractional Frequency Reuse)或“软频率复用”。干扰协调实际上是通过有限制的频域调度来实现的。如图所示,按照常理,eNodeB对小区中心的终端采用较低的功率发射,因此可以认为在这些频带上的信号能量能够较好地被限制在小区内部,而不会对相邻小区造成明显干扰。而对小区边缘的终端,eNodeB需要采用较高的功率发射,因此其信号能量很可能

干扰对齐优化方案

干扰对齐优化方案设想以3用户MIMO干扰信道示例

定义 ()()()()11 232311 1 323211 11 12[][]123()111 2323111 323211123,,arg max (),,arg min ,k ij ij ij ij ij ij M m ij m k k ij ij H m m jm F eig E j m F H H F F H H F H j j H j j kk k k G H U U v v F F F v f F H H F F H H F G G I F F I j G G G H F G λλλ--====--?? ?????= ????? ??? ?? =?? ??=====∑∑2 3 12 3 1 1231 31/2 max arg min () ,,()()arg max ()() k k k M H kk k k k kk k G k F H F k H H H kk k k k kk k kk k k k kk k k H H k kk k k kk k k G M H H k kk k k kk H F G G H F A tr A A G G G tr H F G G H F H F G G H F tr G H F F H G G v H F F H =====-=??=--?? ??=?? ?? =∑∑∑∑为发射 机j(j=1,2,...,K)与接收机i(i=1,2,...,K)之间的信道矩阵,假设信道为平坦瑞利信道,信道中元素独立同分布,服从均值为0和方差为1的复高斯分布。接收机k 接收到的信号(矢量)为: 11,k k k kj j j k kk k k kj j j k j j j k y H F s n H F s H F s n ==≠=+=+ +∑∑ 其中,j F 为发射机j 的发送预编码矩阵,j s 为发射机j 的发送信号矢量, k n 为接受机k 的加性高斯白噪声矢量。上式中已将接收信置号分成有用信号kk k k H F s 和干扰信号 1,k kj j j j j k H F s =≠∑ .

干扰对齐相关知识

干扰对齐相关知识Revised on November 25, 2020

1.干扰对齐(Interference Alignment IA) 是一种有效的干扰管理机制,通过预编码技术使干扰在接收端重叠在一起,以彻底消除干扰对期望信号的影响。与忽略干扰、解码/消除干扰以及正交接入(避免干扰)等现有处理干扰的方法不同,IA通过压缩干扰所占的信号维度,使系统获得最大自由度。由于可以彻底消除干扰,能够显着提高系统容量,IA 技术受到了广泛的关注获得预编码矩阵的方法有两种:直接法和迭代法,直接法需要理想的全局CSI,而迭代法则需要在收发双方反复交替迭代。 2. 无线频谱资源缺乏的新武器---干扰对齐 当多个用户进行无线通信时,相互之间会存在干扰,而干扰会影响信号接收质量,减小接收机的信道容量。现有的处理干扰的技术,如频分复用(FDMA),时分复用(TDMA),和码分复用(CDMA)主要是通过信号的正交化来消除干扰信号对期望信号的影响。其实,当多用户共享频谱资源时,这种处理方法只能做到将频谱资源在K个用户之间进行分配。例如,当相互影响的用户数为K时,每个用户所能获得的频谱资源为单个用户时的1/K。因此,当用户数量很大时,每个用户所能获得的频谱资源仍然非常有限。 干扰对齐技术的提出就是为了解决这一问题,它将信号空间划分为期望信号空间和干扰信号空间两个部分,通过预编码技术使干扰在接收端重叠,从而压缩干扰所占的信号容量,消除干扰对期望信号的影响,达到提高信道容量的目的。 目前加州大学欧文分校的Jafar助理教授已经从理论上证明,通过干扰对齐,在K个用户的无线通信信道中,每个用户最多能获得相当于只有一个用户时,总频谱资源的1/2,K个用户能够获得的频谱资源为只有一个用户时的k/2倍。得克萨斯大学奥斯汀分校的Health教授对干扰对齐进行了实验验证,实验结果表明,干扰对齐能够极大提高系统的频谱利用率。 当然,干扰对齐技术还处于研究阶段,还有很多问题没有解决。首先是干扰对齐所要求的全局信道状态信息在实际中很难达到;其次随着用户数量的增加,干扰对齐的约束条件会急剧增加而导致难以实现,这也是当前干扰对齐领域研究的热点。

基于干扰对齐的认知MIMO系统频谱共享与用户调度

2014年1月Journal on Communications January 2014 第35卷第1期通信学报V ol.35No. 1 基于干扰对齐的认知MIMO系统频谱共享与用户调度 李钊,李建东,刘勤,申彪 (西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071) 摘要:在认知MIMO多用户通信场景中,设计基于干扰对齐的信号处理算法,将认知信号与授权信号通过相互正交的子空间进行传输,实现认知用户对授权系统空闲空间信道的无冲突利用,并根据不同信道矩阵的空间传输性能的差异,实现合理的用户调度。仿真结果表明,所提方法能够有效利用空闲空间信道资源,获得多用户分集增益,在不影响授权业务的前提下提高认知用户的传输速率。 关键词:干扰对齐;认知无线电;MIMO系统;多用户 中图分类号:TN929.5 文献标识码:A 文章编号:1000-436X(2014)01-0167-06 Interference alignment based spectrum sharing and user scheduling for cognitive radio MIMO system LI Zhao, LI Jian-dong, LIU Qin, SHEN Biao (State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China) Abstract: In communication scenario with multiple cognitive radio (CR) multi-input multi-output (MIMO) users, signal processing algorithm was designed based on interference alignment (IA) such that transmissions of cognitive and autho-rized signal were carried out in mutual orthogonal sub-spaces. Conflict-free utilization of spare spatial channel(s) autho-rized by primary system was achieved by cognitive user. Moreover, the difference of spatial transmission performance originating from various channel matrices was exploited to implement appropriate user scheduling. Simulation results show that the proposed method can utilize spare spatial channel resource effectively and obtain multiuser diversity gain. On the premise that authorized service is protected from disturbing, transmission rate of cognitive user is improved. Key words: interference alignment; cognitive radio; MIMO system; multiuser 1引言 随着无线通信系统的快速发展,频谱资源稀缺与频谱利用率低的矛盾越来越受到人们的关注。认知无线电(CR, cognitive radio)作为一种非常有前景的提高频谱利用率的技术,最早由Mitola提出[1],经过十几年的研究,研究人员将认知通信场景主要划分为重叠(underlay)方式、覆盖(overlay)方式以及交织(interweave)方式[2,3]。在Underlay方式中,允许认知业务与授权业务共存,但认知发射端对授权接收端的干扰需控制在某一预设门限之下。Overlay 方式强调协作传输,认知用户通过信号处理或编码等技术手段产生的信号能够使授权通信的质量得到改善。Interweave方式则以机会的方式,在不干扰授权业务的前提下利用空闲的时间、频率或空间空洞[3]完成通信。 随着研究的深入,人们对“频谱机会”的认识也更加丰富,尝试从多个维度发掘通信机会,空域 收稿日期:2012-08-25;修回日期:2013-06-06 基金项目:国家自然科学基金资助项目(61231008, 61102057);重大专项基金资助项目(2012ZX03003005-005);国家重点基础研究发展计划(“973”计划)基金资助项目(2009CB320404);高等学校引智计划基金资助项目(B08038);长江学者和创新团队发展基金资助项目(IRT0852);ISN基金资助项目(ISN1103005) Foundation Items:The National Natural Science Foundation of China (61231008, 61102057); National S&T Major Project (2012ZX03003005-005); The National Basic Research Program of China (973 Program) (2009CB320404); The 111 Project (B08038); Program for Changjiang Scholars and Innovative Research Team in University (IRT0852); ISN Project (ISN1103005) doi:10.3969/j.issn.1000-436x.2014.01.019

干扰协调方法和系统

(10)申请公布号 CN 102026361 A (43)申请公布日 2011.04.20C N 102026361 A *CN102026361A* (21)申请号 200910092560.3 (22)申请日 2009.09.11 H04W 52/30(2009.01) H04W 72/12(2009.01) (71)申请人普天信息技术研究院有限公司 地址100080 北京市海淀区海淀北二街6号 (72)发明人张莉莉 潘瑜 路杨 高伟东 (74)专利代理机构北京德琦知识产权代理有限 公司 11018 代理人谢安昆 宋志强 (54)发明名称 干扰协调方法和系统 (57)摘要 本发明公开了一种干扰协调方法,包括:终 端(UE)向基站反馈自身为一中继的干扰终端 (I-UE);所述基站在针对所述中继的中继物理下 行控制信道(R-PDCCH)中增加所述I-UE 的调度信 息,并将所述R-PDCCH 发送给所述中继;所述中继 根据接收到的调度信息,在自身的接入链路上分 配与所述I-UE 使用的时频资源正交的时频资源, 实现干扰协调。本发明同时公开了一种干扰协调 系统。应用本发明所述的方法和系统,能够较好地 实现LTE-A 系统中的干扰协调。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 3 页 说明书 9 页 附图 8 页

1.一种干扰协调方法,其特征在于,该方法包括: 终端UE向基站反馈自身为一中继的干扰终端I-UE; 所述基站在针对所述中继的中继物理下行控制信道R-PDCCH中增加所述I-UE的调度信息,并将所述R-PDCCH发送给所述中继; 所述中继根据接收到的调度信息,在自身的接入链路上分配与所述I-UE使用的时频资源正交的时频资源,实现干扰协调。 2.根据权利要求1所述的方法,其特征在于,所述UE向基站反馈自身为一中继的I-UE之前,进一步包括:UE确定自身为一中继的I-UE,包括: UE确定自身处于所述基站的覆盖范围之内,且接收到的来自所述基站的信号强度与接收到的来自所述中继的信号强度的差值大于零且小于预先设定的第一阈值,则确定自身为所述中继的I-UE。 3.根据权利要求1所述的方法,其特征在于,所述I-UE的调度信息包括:所述I-UE 的标识以及所述I-UE使用的时频资源; 所述中继根据所述调度信息获知所述I-UE使用的时频资源。 4.根据权利要求1所述的方法,其特征在于,所述基站在针对所述中继的R-PDCCH 中增加所述I-UE的调度信息包括: 所述基站将所述I-UE的调度信息与所述基站到所述中继的控制信息进行联合编码调制。 5.根据权利要求1所述的方法,其特征在于,该方法进一步包括: UE向基站反馈自身为一中继的联合终端C-UE; 所述基站在针对所述C-UE反馈的中继的R-PDCCH中增加所述C-UE的调度信息,并将所述R-PDCCH发送给所述C-UE反馈的中继;同时,所述基站在向所述C-UE发送数据时,在目的地址列表中增加所述C-UE反馈的中继的标识; 所述C-UE反馈的中继根据接收到的调度信息以及数据信息,对所述C-UE与基站进行联合传输。 6.根据权利要求5所述的方法,其特征在于,所述UE向基站反馈自身为一中继的C-UE之前,进一步包括:UE确定自身为一中继的C-UE,包括: UE确定自身处于所述基站的覆盖范围之内,且接收到的来自所述基站的信号强度与接收到的来自所述C-UE反馈的中继的信号强度的差值大于零且小于预先设定的第二阈值,则确定自身为所述中继的C-UE。 7.根据权利要求5所述的方法,其特征在于,所述C-UE的调度信息包括:所述C-UE的标识、所述C-UE使用的时频资源,以及传输控制信息。 8.根据权利要求5所述的方法,其特征在于,所述基站在针对所述C-UE反馈的中继的R-PDCCH中增加所述C-UE的调度信息包括: 所述基站将所述C-UE的调度信息与所述基站到所述C-UE反馈的中继的控制信息进行联合编码调制。 9.根据权利要求1所述的方法,其特征在于,该方法进一步包括: UE通过主中继向基站反馈自身为一协作中继的C-UE;同时,所述主中继向所述基站反馈所述C-UE的调度信息;

EMI传导与辐射超标整改方案

传导与辐射超标整改方案 开关电源电磁干扰的产生机理及其传播途径 功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。现在按噪声干扰源来分别说明: 1、二极管的反向恢复时间引起的干扰 交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。由电流波形可知,电流中含有高次谐波。大量电流谐波分量流入电网,造成对电网的谐波污染。另外,由于电流是脉冲波,使电源输入功率因数降低。 高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。 2、开关管工作时产生的谐波干扰 功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。 3、交流输入回路产生的干扰 无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。 4、其他原因 元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(pcb)走线通常采用手工布置,具有很大的随意性,pcb的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成emi干扰。这增加了pcb分布参数的提取和近场干扰估计的难度。 flyback 架构noise 在频谱上的反应 0.15 mhz处产生的振荡是开关频率的3次谐波引起的干扰。 0.2 mhz处产生的振荡是开关频率的4次谐波和mosfet 振荡2(190.5khz)基波的迭加,引起的干扰;所以这部分较强。 0.25 mhz处产生的振荡是开关频率的5次谐波引起的干扰; 0.35 mhz处产生的振荡是开关频率的7次谐波引起的干扰; 0.39 mhz处产生的振荡是开关频率的8次谐波和mosfet 振荡2(190.5khz)基波的迭加引起的干扰; 1.31mhz处产生的振荡是diode 振荡1(1.31mhz)的基波引起的干扰; 3.3 mhz处产生的振荡是mosfet 振荡1(3.3mhz)的基波引起的干扰; 开关管、整流二极管的振荡会产生较强的干扰 设计开关电源时防止emi的措施: 1.把噪音电路节点的pcb铜箔面积最大限度地减小;如开关管的漏极、集电极,初次级绕组的节点,

LTE系统的小区间干扰协调技术

LTE系统的小区间干扰协调技术 作者:北京邮电大学无线理论与技术中心白炜张欣杨大成 LTE系统中采用频率复用方式对小区间的干扰进行协调,可以适用于各种带宽的业务,实现简单,并且对抑制小区间的干扰、改善小区边缘用户传输质量有很好的效果。 LTE采用正交频分多址接入技术(OFDMA,orthogonalfrequencydividedmultiple access),OFDMA技术利用频率之间的正交性作为区分用户的方式,将用户的信息承载在相互正交的不同的载波上,可以有效对抗频率选择性衰落。另外,由于小区内用户使用的频率相互正交,所有的干扰全部来自于其他小区,这样也可以大大提高小区中心用户的信号干扰噪声比(SINR),从而可以提供更高的数据速率和更好的服务质量。而对于小区边缘的用户,由于相邻小区占用同样载波资源的用户对其干扰比较大,加之本身距离基站较远,其SINR 相对就较小,导致虽然整个小区的吞吐量较高、但小区边缘用户服务质量较差、吞吐量较低的情况。 为了解决这个LTE系统在小区边缘干扰严重的问题,3GPP提出了多种解决方案,包括干扰随机化、干扰删除以及干扰协调技术。其中干扰随机化利用干扰的统计特性对干扰进行抑制,误差较大。干扰删除技术可以显著改善小区边缘的系统性能,获得较高的频谱效率,但是对于带宽较小的业务(如VoIP)则不太适用,在OFDMA系统中实现也比较复杂,后续对它的研究不多。干扰协调/避免则是目前研究的一项热门技术,其实现简单,可以应用于各种带宽的业务,并且对于干扰抑制有很好的效果。 LTE小区间干扰分析 正交频分复用(OFDM)由于具有高频谱利用率,并且能够有效解决宽带无线通信中的码间干扰问题,已经被广泛接收为未来无线宽带通信的关键技术。LTE采用的以OFDMA为多址接入方式而构建的蜂窝移动通信网络中,可以做到频率复用因子为1,即整个系统覆盖范围内的所有小区使用相同的频带为本小区内的用户提供服务。在OFDM系统中,各子信道之间的正交性有严格的要求。虽然由于载波频率和相位的偏移等因素会造成子信道间的干扰,但是可以在物理层通过采用先进的无线信号处理算法使这种干扰降到最低。因此,LTE系统中的小区内干扰很小, 而影响系统性能的主要干扰来自小区间干扰。 LTE的干扰协调技术 为了解决LTE由于采用OFDMA而导致的小区边缘用户干扰严重的问题,各大公司纷纷提出了OFDMA的干扰协调/避免技术。LTE的系统的干扰协调技术的核心思想在于采用频率复用技术,它使得相邻小区之间的干扰信号源的距离尽可能远,从而抑制相邻小区的干扰,达到改善传输质量、提高吞吐量的效果。

史上最全开关电源传导与辐射超标整改方案

史上最全开关电源传导与辐射超标整改方案 目前,电子产品电磁兼容问题越来越受到人们的重视,尤其是世界上发达国家,已经形成了一套完整的电磁兼容体系,同时我国也正在建立电磁兼容体系,因此,实现产品的电磁兼容是进入国际市场的通行证。对于开关电源来说,由于开关管、整流管工作在大电流、高电压的条件下,对外界会产生很强的电磁干扰,因此开关电源的传导发射和电磁辐射发射相对其它产品来说更加难以实现电磁兼容,但如果我们对开关电源产生电磁干扰的原理了解清楚后,就不难找到合适的对策,将传导发射电平和辐射发射电平降到合适的水平,实现电磁兼容性设计。 开关电源电磁干扰的产生机理及其传播途径 率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。现在按噪声干扰源来分别说明: 1、二极管的反向恢复时间引起的干扰 交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。由电流波形可知,电流中含有高次谐波。大量电流谐波分量流入电网,造成对电网的谐波污染。另外,由于电流是脉冲波,使电源输入功率因数降低。 高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。 2、开关管工作时产生的谐波干扰 功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。 3、交流输入回路产生的干扰 无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。

相关主题
文本预览
相关文档 最新文档