当前位置:文档之家› 福州大学操作系统实验报告-文件系统的构建

福州大学操作系统实验报告-文件系统的构建

福州大学操作系统实验报告-文件系统的构建
福州大学操作系统实验报告-文件系统的构建

计算机操作系统实验三

【实验名称】:文件系统的构建(实验3)

【实验目的】:掌握磁盘的工作原理和操作系统进行文件管理的原理 【实验原理】:硬盘的

MBR :MBR (Main Boot Record ),按其字面上的理解

即为主引导记录区,位于整个硬盘的0磁道0柱面1扇区。在

总共512字节的主引导扇区中,MBR 只占用了其中的446个字节(偏移0000--偏移01BD ),另外的64个字节(偏移01BE--偏移01FD )交给了DPT(Disk Partition Table 硬盘分区表),最后两个字节"55,AA"(偏移01FE- 偏移01FF )是分区的结束标志。这个整体构成了硬盘的主引导扇区。大致的结构如图所示:

硬盘依据分区表中的信息把硬盘划分为最多四个分区(对于扩展分区,可进一步划分为多个逻辑分区)。U 盘采用类似的方法划分分区。每个分区或软盘上可建立独立的文件系统。下图是FAT 文件系统空间分布结构。

【实验内容】:在掌握磁盘的工作原理和操作系统进行文件管理原理的基础

上,自行设计实现在磁盘上建立文件系统的软件,该软件应该具有与Format 类似的功能,至少支持一种文件系统格式,如FAT 、NTFS 或EXT2,至少能够对一种媒体进行格式化,如软盘,U 盘或硬盘(不得在实验室的机器上进行硬盘格式

引导扇区

FA T1

FAT2

根目录区

文件数据区

化的实验)等。不能直接调用操作系统提供的格式化工具或类似SHFormatDrive ()的高层系统函数实现该软件。在Windows环境可使用biosdisk()函数完成底层盘操作,在Linux环境上可参考format的源代码。比较自己设计实现的软件与FORMAT,分析存在什么异同。

一、背景知识

使用“DOC分区”体系时,磁盘的第一个——也就是0号扇区被称为主引导记录扇区,也称为主引导记录MBR(Master Boot recorder,MBR)。

1、MBR数据结构

MBR由446个字节的引导代码、64字节的主分区(4个)表及两个字节的“55 AA”是分区的结束标志。

FAT文件系统的整体布局

2、说明

【1】保留区含有一个重要的数据结构——系统引导扇区(DBR)。FAT12、FAT16的保留区通常只有一个扇区,而FAT32的保留扇区要多一些,除0号扇区外,还有其他一些扇区,其中包括了DBR的备份扇区。

【2】 FAT区由来年各个大小相等的FAT表组成——FAT1、FAT2,FAT2紧跟在FAT1之后。

【3】 FAT12、FAT16的根目录虽然也属于数据区,但是他们并不由簇进行管理。也就是说FAT12、FAT16的根目录是没有簇号的,他们的2号簇从根目录之后开始。而FAT32的根目录通常位于2号簇。

3、典型的FAT32_DBR

【1】0x00~0x02:3个字节,跳转指令。

【2】0x03~0x0A:8个字节,文件系统标志和版本号,这里为MSDOC5.0。

【3】0x0B~0x0C:2个字节,每扇区字节数,512(0X02 00)。

【4】0x0D~0x0D:1个字节,每簇扇区数,8(0x08)。

【5】0x0E~0x0F:2个字节,保留扇区数,2050(0x0802)。

【6】0x10~0x10:1个字节,FAT表个

数,2。

【7】0x11~0x12:2个字节,根目录最多可容纳的目录项数,FAT12/16通常为512。FAT32不使用此处值,置0。

【8】0x13~0x14:2个字节,扇区总数,小于32MB时使用该处存放。超过32MB时使用偏移0x20~0x23字节处的4字节存放。笔者的SD卡容量为2GB,所以不使用该处,置0.

【9】0x15~0x15:1个字节,介质描述符,0xF8表示本地硬盘。

【10】0x16~0x17:2个字节,每个FAT表的大小扇区数(FAT12/16使用,FAT32不使用此处,置0)。

【11】0x18~0x19:2个字节,每磁道扇区数,63(0x00 3F)。

【12】0x1A~0x1B:2个字节磁头数,255(0x00 FF)。

【13】0x1C~0x1F:4个字节,分区前已使用扇区数,

【14】0x20~0x23:4个字节,文件系统大小扇区数。

【15】0x24~0x27:4个字节,每个FAT表的大小扇区数。

【16】0x28~0x29:2个字节,标记。

【17】0x2A~0x2B:2个字节,版本号。

【18】0x2C~0x2F:4个字节,根目录簇号,2。(虽然在FAT32文件系统下,根目录可以存放在数据区的任何位置,但是通常情况下还是起始于2号簇)

【19】0x30~0x31:2个字节,FSINFO(文件系统信息扇区)扇区号,1。(上图的标注即用黄色条纹的标注有误,请读者注意)该扇区为操作系统提供关于空簇总数及下一可用簇的信息。

【20】0x32~0x33:2个字节,备份引导扇区的位置,6。(上图的标注即用黄色条纹的标注有误,请读者注意)备份引导扇区总是位于文件系统的6号扇区。【21】0x34~0x3F:12个字节,未使用。

【22】0x40~0x40:1个字节,BIOS INT 13H 设备号,0x80。(这个我也不知道什么意思?)

【23】0x41~0x41:1个字节,未用。

【24】0x42~0x42:1个字节,扩展引导标志。0x29。

【25】0x43~0x46:1个字节,卷序列号。通常为一个随机值。

【26】0x47~0x51:11个字节,卷标(ASCII码),如果建立文件系统的时候指定了卷标,会保存在此。笔者当时没有指定卷表,上图中的YCY是后来指定的。【27】0x52~0x59:8个字节,文件系统格式的ASCII码,FAT32。

【28】 0x5A~0x1FD:410个字节,未使用。该部分没有明确的用途。

本实验关键点:

FAT1起始扇区 = DBR的扇区号 + 保留扇区号

根目录起始扇区 = 保留扇区数 + 一个FAT的扇区数 × FAT表个数 + (起始始簇号-2) x 每簇的扇区数

Fat32查找目录区簇号,在fat表中从根目录查起,直到其表项标记结束。使用到的工具:winhex(自行网上下载),a.c,b.c,c.c(将下面源码复制进相应文件里即可,linux下运行没问题,windows会报错)

二、实验方案(如图):

获取FAT32引导记录更改记录

写入引导记

清空分配表

三、预计实验结果:

将u盘格式化成fat32文件系统,8G容量。

四、关键代码:

a.c文件

读取FAT32 DBR 保存到tmp.txt

#include

#include

#include

#include

int main()

{

int fd;

char mbr[512];

FILE *fp;

char tmp[20];

printf("input:\n");

scanf("%s",tmp);

fd=open(tmp,O_RDWR);//打开驱动器

read(fd,mbr,sizeof(mbr));

close(fd);

fp = fopen("tmp.txt","w");

fwrite(mbr,sizeof(mbr),1,fp);

fclose(fp);

}

b.c文件

#include

#include

#include

#include

#include

#include

//DBR结构

typedef struct FAT32_DBR

{

char BS_jmpBoot[3]; //跳转指令

char BS_OEMName[8]; //操作系统的名称和版本号

char BPB_BytesPerSec[2];//每扇区字节数

char BPB_SecPerClus[1]; //每簇扇区数

char BPB_RsvdSecCnt[2]; //保留扇区数目

char BPB_NumFATs[1]; //此卷中FAT表数

char BPB_RootEntCnt[2]; //FAT32为0

char BPB_TotSec16[2]; //FAT32为0

char BPB_Media[1]; //存储介质

char BPB_FATSz16[2]; //FAT32为0

char BPB_SecPerTrk[2]; //磁道扇区数

char BPB_NumHeads[2]; //磁头数

char BPB_HiddSec[4]; //FAT区前隐扇区数

char BPB_TotSec32[4]; //该卷总扇区数

char BPB_FATSz32[4]; //一个FAT表扇区数

char BPB_ExtFlags[2]; //FAT32特有

char BPB_FSVer[2]; //FAT32特有

char BPB_RootClus[4]; //根目录簇号

char FSInfo[2]; //保留扇区FSINFO扇区数

char BPB_BkBootSec[2]; //通常为6

char BPB_Reserved[12]; //扩展用

char BS_DrvNum[1]; //

char BS_Reserved1[1]; //

char BS_BootSig[1]; //

char BS_V olID[4]; //

char BS_FilSysType[11]; //

char BS_FilSysType1[8]; //"FAT32 "

char left[422];//剩余空间

}fat32;

int main(){

fat32 mymbr;

int fd,i;

FILE *fp;

char tmp[20];

char ini=0x00;

char end2=0xff;

printf("input:\n");

scanf("%s",tmp);

fp = fopen("tmp.txt","r");//从文件读取DBR

fread(&mymbr,sizeof(fat32),1,fp);

fd=open(tmp,O_RDWR);//打开驱动器

if(fd<0){

printf("error!\n");

exit(1);}

write(fd,&mymbr,sizeof(mymbr));//写入DBR printf("SUCCESS!\n");

close(fd);

fclose(fp);

return 0;

}

c.c文件

#include

#include

#include

#include

#include

#include

int main(){

int fd,i;

char tmp[20];

char ini=0x00;

int fat1,fat2,dir;

fat1 = 1049600;

fat2 = 8913408;

dir = 16777216;

fat1+=12;

fat2+=12;

printf("input:\n");

scanf("%s",tmp);

fd=open(tmp,O_RDWR);//打开驱动器

if(fd<0){

printf("error!\n");

exit(1);}

lseek(fd,fat1,SEEK_SET);//跳到fat1位置

for(i=0;i<100000;i++)//清空分配表

write(fd,&ini,1);

lseek(fd,fat2,SEEK_SET);//跳到fat2位置

for(i=0;i<100000;i++)//清空分配表

write(fd,&ini,1);

lseek(fd,dir,SEEK_SET);//跳到dir位置

for(i=0;i<10000;i++)//清空目录表

write(fd,&ini,1);

printf("SUCCESS!\n");

close(fd);

return 0;

}

五、傻瓜式操作步骤及实验代码分析

1,将上面代码存到a.c,b.c,c.c 3个文件中,放到linux同一目录下就好了

2,在windows下将实验U盘格式化成fat32文件系统(右击格式化就好了)

3,在linux下插入U盘运行a.c程序,输入u盘物理地址(一般是/dev/sdb或者/dev/sdb1不懂的话可以通过fdisk -l指令查看,那个个字母是小写L)

会自动生成一个tmp.txt,复制到windows(这个就是标准的fat32文件系统dbr内容,可以通过winhex打开)

4,windows打开winhex软件,打开tmp.txt文件后得到上图。

5,根据上面dbr的说明和图计算后可得到如下数据。

保留扇区数为Ox0802(高地址在前)=2050(十进制)

每个fat表扇区数Ox3bff=15359(十进制)

FAT1起始扇区= DBR的扇区号+ 保留扇区号=0+2050=2050

FAT2起始扇区= FAT1起始扇区+每个fat表扇区数

根目录起始扇区= 保留扇区数+ 一个FAT的扇区数×FAT表个数

得到以上数据后,将每个值乘以512(每个扇区的字节数),即可得到对应起始字节数。

这些信息在代码3.c中有用到(注意每个u盘的这些信息都不一样)。

本人U盘的值如下:

fat1 = 1049600;//fat1起始字节

fat2 = 8913408;//fat2起始字节

dir = 16777216;//dir起始字节

6,现在先将刚才的U盘随便塞点东西进去,以便格式化完后看效果

如果你没将u盘改成其他文件系统(就是没重新格式化成非fat32系统),省略步骤7

7,回到linux下,插入u盘,运行b.c文件,输入/dev/sdb(和刚才一样),他会自动将tmp.txt 的内容重新写到u盘第一个扇区。

8,将c.c文件中fat1,fat2,dir设置成你自己dbr的(刚才教过怎么算了)

9,运行c.c程序,输入/dev/sdb就格式成功了。

六、调试过程

七、实验结果:

更改了DBR,格式成8G优盘:

八、实验结果分析:

本实验只简单的对U盘格式化,没进行坏道检查等操作。实验先读取到FAT32的DBR,然后更改内容,或者原样写入U盘,清空分区,FAT1,FAT2,有遇到没有找到备份的FAT2情况。

实验实践了操作系统的理论知识,对文件系统的构建有了具体的认识。

操作系统实验报告一

重庆大学 学生实验报告 实验课程名称操作系统原理 开课实验室DS1501 学院软件学院年级2013专业班软件工程2 班学生姓名胡其友学号20131802 开课时间2015至2016学年第一学期 总成绩 教师签名洪明坚 软件学院制

《操作系统原理》实验报告 开课实验室:年月日学院软件学院年级、专业、班2013级软件工 程2班 姓名胡其友成绩 课程名称操作系统原理 实验项目 名称 指导教师洪明坚 教师 评语教师签名:洪明坚年月日 1.实验目的: ?进入实验环境 –双击expenv/setvars.bat ?检出(checkout)EPOS的源代码 –svn checkout https://www.doczj.com/doc/537370550.html,/svn/epos ?编译及运行 –cd epos/app –make run ?清除所有的临时文件 –make clean ?调试 –make debug ?在“Bochs Enhanced Debugger”中,输入“quit”退出调试 –调试指令,请看附录A 2.实验内容: ?编写系统调用“time_t time(time_t *loc)” –功能描述 ?返回从格林尼治时间1970年1月1日午夜起所经过的秒数。如果指针loc 非NULL,则返回值也被填到loc所指向的内存位置 –数据类型time_t其实就是long ?typedef long time_t; 3.实验步骤: ?Kernel space –K1、在machdep.c中,编写系统调用的实现函数“time_t sys_time()”,计算用户秒数。需要用到 ?变量g_startup_time,它记录了EPOS启动时,距离格林尼治时间1970年1午夜的秒数 ?变量g_timer_ticks

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

操作系统实验报告-实验二

操作系统实验报告——实验二:C编程环境 实验目的 1.熟悉Linux下C程序设计的环境; 2.对系统调用有初步了解。 实验内容 1.Linux下C语言程序的开发过程 a、在用户主目录下用vi编辑C语言源程序(源程序已附后),如:$vi hello.c。 b、用gcc编译C语言源程序:$gcc ./hello.c -o example 这里gcc是Linux下的C语言程序编译器(GNU C Compiler),./hello.c表示待编译的源文件是当前工作目录下的hello.c,-o example表示编译后产生的目标代码文件名为example。 c、若编译不正确,则进入vi修改源程序,否则,运行目标代码:$./example 。注意: 这只是gcc最基本的用法,其他常用选项有:-c , -S , -O , -O2, -g 等。 2.编辑、调试下面c语言程序,说明该程序的功能。 #include #include int main() { int n,a[200],carry,temp,i,j,digit = 1; printf("Please input n:"); scanf("%d",&n); a[0] = 1; for( i = 2; i <= n; ++i) { for( j = 1, carry = 0; j <= digit; ++j) { temp = a[j-1] * i + carry; a[j-1] = temp % 10; carry = temp / 10; } while(carry) { a[++digit-1] = carry % 10; carry /= 10; } } printf("Result is:\n%d ! = ",n); for( i = digit; i >=1; --i) { printf("%d",a[i-1]); }

操作系统lab2实验报告

HUNAN UNIVERSITY 操作系统实验报告

目录 一、内容 (3) 二、目的 (3) 三、实验设计思想和练习题 (3) 练习0:填写已有实验 (3) 练习1:实现 first-fit 连续物理内存分配算法(需要编程) (3) 练习2:实现寻找虚拟地址对应的页表项(需要编程) (8) 练习3:释放某虚地址所在的页并取消对应二级页表项的映射(需要编程) (11) 运行结果 (13) 四、实验体会 (13)

一、内容 本次实验包含三个部分。首先了解如何发现系统中的物理内存;然后了解如何建立对物理内存的初步管理,即了解连续物理内存管理;最后了解页表相关的操作,即如何建立页表来实现虚拟内存到物理内存之间的映射,对段页式内存管理机制有一个比较全面的了解。 二、目的 1.理解基于段页式内存地址的转换机制; 2.理解页表的建立和使用方法; 3.理解物理内存的管理方法。 三、实验设计思想和练习题 练习0:填写已有实验 使用eclipse中的diff/merge工具将实验1的代码填入本实验中代码中有“LAB1”的注释相应部分。 练习1:实现 first-fit 连续物理内存分配算法(需要编程) 在实现first fit 内存分配算法的回收函数时,要考虑地址连续的空闲块之间的合并操作。提示:在建立空闲页块链表时,需要按照空闲页块起始地址来排序,形成一个有序的链表。可能会修改default_pmm.c 中的default_init,default_init_memmap,default_alloc_pages, default_free_pages等相关函数。请仔细查看和理解default_pmm.c中的注释。 请在实验报告中简要说明你的设计实现过程。请回答如下问题: 你的first fit算法是否有进一步的改进空间。 解答: 分析思路: (1)数据结构: A.每个物理页利用一个Page结构体表示,查看kern/mm/memlayout.h包括:

操作系统实验报告4

《操作系统》实验报告 实验序号: 4 实验项目名称:进程控制

Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜ 修改后: #include #include int main(VOID) { STARTUPINFO si; PROCESS_INFORMA TION pi; ZeroMemory(&si,sizeof(si)); si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, "c:\\WINDOWS\\system32\\mspaint.exe", NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) { fprintf(stderr,"Creat Process Failed"); return -1; } WaitForSingleObject(pi.hProcess,INFINITE); printf("child Complete"); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); } 在“命令提示符”窗口运行CL命令产生可执行程序4-1.exe:C:\ >CL 4-1.cpp

实验任务:写出程序的运行结果。 4.正在运行的进程 (2)、编程二下面给出了一个使用进程和操作系统版本信息应用程序(文件名为4-5.cpp)。它利用进程信息查询的API函数GetProcessVersion()与GetVersionEx()的共同作用。确定运行进程的操作系统版本号。阅读该程序并完成实验任务。 #include #include

操作系统实验报告心得体会

操作系统实验报告心得体会 每一次课程设计度让我学到了在平时课堂不可能学到的东西。所以我对每一次课程设计的机会都非常珍惜。不一定我的课程设计能够完成得有多么完美,但是我总是很投入的去研究去学习。所以在这两周的课设中,熬了2个通宵,生物钟也严重错乱了。但是每完成一个任务我都兴奋不已。一开始任务是任务,到后面任务就成了自己的作品了。总体而言我的课设算是达到了老师的基本要求。总结一下有以下体会。 1、网络真的很强大,用在学习上将是一个非常高效的助手。几乎所有的资料都能够在网上找到。从linux虚拟机的安装,到linux的各种基本命令操作,再到gtk的图形函数,最后到文件系统的详细解析。这些都能在网上找到。也因为这样,整个课程设计下来,我浏览的相关网页已经超过了100个(不完全统计)。当然网上的东西很乱很杂,自己要能够学会筛选。 不能决定对或错的,有个很简单的方法就是去尝试。就拿第二个实验来说,编译内核有很多项小操作,这些小操作错了一项就可能会导致编译的失败,而这又是非常要花时间的,我用的虚拟机,编译一次接近3小时。所以要非常的谨慎,尽量少出差错,节省时间。多找个几个参照资料,相互比较,

慢慢研究,最后才能事半功倍。 2、同学间的讨论,这是很重要的。老师毕竟比较忙。对于课程设计最大的讨论伴侣应该是同学了。能和学长学姐讨论当然再好不过了,没有这个机会的话,和自己班上同学讨论也是能够受益匪浅的。大家都在研究同样的问题,讨论起来,更能够把思路理清楚,相互帮助,可以大大提高效率。 3、敢于攻坚,越是难的问题,越是要有挑战的心理。这样就能够达到废寝忘食的境界。当然这也是不提倡熬夜的,毕竟有了精力才能够打持久战。但是做课设一定要有状态,能够在吃饭,睡觉,上厕所都想着要解决的问题,这样你不成功都难。 4、最好在做课设的过程中能够有记录的习惯,这样在写实验报告时能够比较完整的回忆起中间遇到的各种问题。比如当时我遇到我以前从未遇到的段错误的问题,让我都不知道从何下手。在经过大量的资料查阅之后,我对段错误有了一定的了解,并且能够用相应的办法来解决。 在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的 1)访问系统数据区,尤其是往系统保护的内存地址写数据,最常见就是给一个指针以0地址 2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域

上海大学操作系统(二)实验报告(全)

评分: SHANGHAI UNIVERSITY 操作系统实验报告 学院计算机工程与科学 专业计算机科学与技术 学号 学生姓名

《计算机操作系统》实验一报告 实验一题目:操作系统的进程调度 姓名:张佳慧学号 :12122544 实验日期: 2015.1 实验环境: Microsoft Visual Studio 实验目的: 进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。实验内容: 1、设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2、调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分析比较。 3、系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程。 操作过程: 1、本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。进程控制块结构如下: 进程控制块结构如下: PCB 进程标识数 链指针 优先数/轮转时间片数 占用 CPU 时间片数 进程所需时间片数 进程状态 进程控制块链结构如下:

其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。2、算法与框图 (1) 优先数法。进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减 1,说明它已运行了一个时间片,优先数也减 3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加 1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。 (3) 程序框图

操作系统实验报告

操作系统教程 实 验 指 导 书 姓名: 学号: 班级:软124班 指导老师:郭玉华 2014年12月10日

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序: E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 有可能是因为DOS下路径的问题 (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 因为程序是个死循环程序 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环: 屏蔽j循环: _______________________________________________________________________________调整循环变量i的循环次数:

操作系统实验报告

操作系统实验报告 实验名称: 系统的引导 所在班级: 指导老师: 老师 实验日期: 2014年3 月29 日

一、实验目的 ◆熟悉hit-oslab实验环境; ◆建立对操作系统引导过程的深入认识; ◆掌握操作系统的基本开发过程; ◆能对操作系统代码进行简单的控制,揭开操作系统的神秘面纱。 二、实验容 1. 阅读《Linux核完全注释》的第6章引导启动程序,对计算机和Linux 0.11的引导过程进行初步的了解。 2. 按照下面的要求改写0.11的引导程序bootsect.s。 3. 有兴趣同学可以做做进入保护模式前的设置程序setup.s。 4. 修改build.c,以便可以使用make BootImage命令 5. 改写bootsect.s主要完成如下功能: bootsect.s能在屏幕上打印一段提示信息XXX is booting...,其中XXX是你给自己的操作系统起的名字,例如LZJos、Sunix等。 6. 改写setup.s主要完成如下功能: bootsect.s能完成setup.s的载入,并跳转到setup.s开始地址执行。而setup.s 向屏幕输出一行"Now we are in SETUP"。setup.s能获取至少一个基本的硬件参数(如存参数、显卡参数、硬盘参数等),将其存放在存的特定地址,并输出到屏幕上。setup.s不再加载Linux核,保持上述信息显示在屏幕上即可。 三、实验环境

本实验使用的系统是windows系统或者是Linux系统,需要的材料是osexp。 四、实验步骤 1. 修改bootsect.s中的提示信息及相关代码; 到osexp\Linux-0.11\boot目录下会看到图1所示的三个文件夹,使用UtraEdit 打开该文件。将文档中的98行的mov cx,#24修改为mov cx,#80。同时修改文档中的第246行为图2所示的情形。 图1图2 图3 2. 在目录linux-0.11\boot下,分别用命令as86 -0 -a -o bootsect.obootsect.s和 ld86 -0 -s -obootsectbootsect.o编译和bootsect.s,生成bootsect文件; 在\osexp目录下点击MinGW32.bat依此输入下面的命令: cd linux-0.11 cd boot as86 -0 -a -o bootsect.obootsect.s ld86 -0 -s -o bootsectbootsect.o

《 Windows7 操作系统》实验报告

实验(一) Windows 7基本操作 一、实验目的 1.掌握文件和文件夹基本操作。 2.掌握“资源管理器”和“计算机”基本操作。 二、实验要求 1.请将操作结果用Alt+Print Screen组合键截图粘贴在题目之后。 2.实验完成后,请将实验报告保存并提交。 三、实验内容 1.文件或文件夹的管理(提示:此题自行操作一遍即可,无需抓图)★期末机试必考题★ (1) 在D:盘根目录上创建一个名为“上机实验”的文件夹,在“上机实验”文件夹中创建1个名为“操作系统上机实验”的空白文件夹和2个分别名为“2.xlsx”和“3.pptx”的空白文件,在“操作系统上机实验”文件夹中创建一个名为“1.docx”的空白文件。 (2) 将“1.docx”改名为“介绍信.docx”;将“上机实验”改名为“作业”。 (3) 在“作业”文件夹中分别尝试选择一个文件、同时选择两个文件、一次同时选择所有文件和文件夹。 (4) 将“介绍信.docx”复制到C:盘根目录。 (5) 将D:盘根目录中的“作业”文件夹移动到C:盘根目录。 (6) 将“作业”文件夹中的“2.xlsx”文件删除放入“回收站”。 (7) 还原被删除的“2.xlsx”文件到原位置。 2.搜索文件或文件夹,要求如下: 查找C盘上所有以大写字母“A”开头,文件大小在10KB以上的文本文件。(提示:搜索时,可以使用“?”和“*”。“?”表示任意一个字符,“*”表示任意多个字符。)

3. 在桌面上为C:盘根目录下的“作业”文件夹创建一个桌面快捷方式。★期末机试必考题★ 3.“计算机”或“资源管理器”的使用 (1) 在“资源管理器”窗口,设置以详细信息方式显示C:\WINDOWS中所有文件和文件夹,使所有图标按类型排列显示,并不显示文件扩展名。(提示:三步操作全部做完后,将窗口中显示的最终设置结果抓一张图片即可) (2) 将C:盘根目录中“介绍信.docx”的文件属性设置为“只读”和“隐藏”,并设置在窗口中显示“隐藏属性”的文件或文件夹。(提示:请将“文件夹”对话框中选项设置效果与C:盘根目录中该文件图标呈现的半透明显示效果截取在一整张桌面图片中即可) 4.回收站的设置 设置删除文件后,不将其移入回收站中,而是直接彻底删除功能。

操作系统实验报告

操作系统实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

许昌学院 《操作系统》实验报告书学号: 姓名:闫金科 班级:14物联网工程 成绩: 2016年02月

实验一Linux的安装与配置 一、实验目的 1.熟悉Linux系统的基本概念,比如Linux发行版、宏内核、微内核等。 2.掌握Linux系统的安装和配置过程,初步掌握Linux系统的启动和退出方 法。 3.熟悉Linux系统的文件系统结构,了解Linux常用文件夹的作用。 二、实验内容 1.从网络上下载VMware软件和两个不同Linux发行版镜像文件。 2.安装VMware虚拟机软件。 3.在VMware中利用第一个镜像文件完成第一个Linux的安装,期间完成网络 信息、用户信息、文件系统和硬盘分区等配置。 4.在VMware中利用第二个镜像文件完成第二个Linux的安装,并通过LILO或 者GRUB解决两个操作系统选择启动的问题。 5.启动Linux系统,打开文件浏览器查看Linux系统的文件结构,并列举出 Linux常用目录的作用。 三、实验过程及结果 1、启动VMware,点击新建Linux虚拟机,如图所示: 2、点击下一步,选择经典型,点击下一步在选择客户机页面选择 Linux,版本选择RedHatEnterpriseLinux5,如图所示: 3、点击下一步创建虚拟机名称以及所要安装的位置,如图所示: 4、点击下一步,磁盘容量填一个合适大小,此处选择默认值大小 10GB,如图所示: 5、点击完成,点击编辑虚拟机设置,选择硬件选项中的CD-ROM (IDE...)选项,在右侧连接中选择“使用ISO镜像(I)”选项,点 击“浏览”,找到Linux的镜像文件,如图所示:

计算机操作系统 实验报告

操作系统实验报告 学院:计算机与通信工程学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 成绩: 2014年 1 月 1 日

实验一线程的状态和转换(5分) 1 实验目的和要求 目的:熟悉线程的状态及其转换,理解线程状态转换与线程调度的关系。 要求: (1)跟踪调试EOS线程在各种状态间的转换过程,分析EOS中线程状态及其转换的相关源代码; (2)修改EOS的源代码,为线程增加挂起状态。 2 完成的实验内容 2.1 EOS线程状态转换过程的跟踪与源代码分析 (分析EOS中线程状态及其转换的核心源代码,说明EOS定义的线程状态以及状态转换的实现方法;给出在本部分实验过程中完成的主要工作,包括调试、跟踪与思考等) 1.EOS 准备了一个控制台命令“loop ”,这个命令的命令函数是 ke/sysproc.c 文件中的ConsoleCmdLoop 函数(第797行,在此函数中使用 LoopThreadFunction 函数(第755 行)创建了一个优先级为 8 的线程(后面简称为“loop 线程”),该线程会在控制台中不停的(死循环)输出该线程的ID和执行计数,执行计数会不停的增长以表示该线程在不停的运行。loop命令执行的效果可以参见下图: 2. 线程由阻塞状态进入就绪状态 (1)在虚拟机窗口中按下一次空格键。 (2)此时EOS会在PspUnwaitThread函数中的断点处中断。在“调试”菜单中选择“快速监视”,在快速监视对话框的表达式编辑框中输入表达式“*Thread”,然后点击“重新计算”按钮,即可查看线程控制块(TCB)中的信息。其中State域的值为3(Waiting),双向链表项StateListEntry的Next和Prev指针的值都不为0,说明这个线程还处于阻塞状态,并在某个同步对象的等待队列中;StartAddr域的值为IopConsoleDispatchThread,说明这个线程就是控制台派遣线程。 (3)关闭快速监视对话框,激活“调用堆栈”窗口。根据当前的调用堆栈,可以看到是由键盘中断服务程序(KdbIsr)进入的。当按下空格键后,就会发生键盘中断,从而触发键盘中断服务程序。在该服务程序的最后中会唤醒控制台派遣线程,将键盘事件派遣到活动的控制台。 (4)在“调用堆栈”窗口中双击PspWakeThread函数对应的堆栈项。可以看到在此函数中连续调用了PspUnwaitThread函数和PspReadyThread函数,从而使处于阻塞状态的控制台派遣线程进入就绪状态。 (5)在“调用堆栈”窗口中双击PspUnwaitThread函数对应的堆栈项,先来看看此函数是如何改变线程状态的。按F10单步调试直到此函数的最后,然后再从快速监视对

操作系统实验报告

操作系统教程实验报告 专业班级 学号 姓名 指导教师

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows “命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序:E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环:

操作系统实验报告

操作系统实验报告 银行家算法 班级:计算机()班 姓名:李君益 学号:(号) 提交日期: 指导老师: 林穗 一、设计题目 加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。 二、设计要求

内容: 编制银行家算法通用程序,并检测思考题中所给状态的安全性。 要求: (1)下列状态是否安全?(三个进程共享个同类资源) 进程已分配资源数最大需求数 (状态) (状态) (2)考虑下列系统状态 分配矩阵最大需求矩阵可用资源矩阵 问系统是否安全?若安全就给出所有的安全序列。若进程请求(),可否立即分配? 三、设计分析 一.关于操作系统的死锁 .死锁的产生 计算机系统中有许多独占资源,他们在任一时刻只能被一个进程使用,如磁带机,绘图仪等独占型外围设备,或进程表,临界区等软件资源。两个进程同时向一台打印机输出将导致一片混乱,两个进程同时进入临界区将导致数据库错误乃至程序崩溃。正因为这些原因,所有操作系统都具有授权一个进程独立访问某一辞源的能力。一个进程需要使用独占型资源必须通过以下的次序: ●申请资源 ●使用资源 ●归还资源 若申请施资源不可用,则申请进程进入等待状态。对于不同的独占资源,进程等待的方式是有差别的,如申请打印机资源、临界区资源时,申请失败将一位这阻塞申请进程;而申请打开文件文件资源时,申请失败将返回一个错误码,由申请进程等待一段时间之后重试。只得指出的是,不同的操作系统对于同一种资源采取的等待方式也是有差异的。 在许多应用中,一个进程需要独占访问多个资源,而操作系统允许多个进程并发执行共享系统资源时,此时可能会出现进程永远被阻塞的现象。这种现象称为“死锁”。 2.死锁的定义 一组进程处于死锁状态是指:如果在一个进程集合中的每个进程都在等待只能由该集合中的其他一个进程才能引发的时间,则称一组进程或系统此时发生了死锁。 .死锁的防止 .死锁产生的条件: ●互斥条件

linux操作系统实验报告.

LINUX操作系统实验报告 姓名 班级学号 指导教师 2011 年05月16 日 实验一在LINUX下获取帮助、Shell实用功能 实验目的: 1、掌握字符界面下关机及重启的命令。 2、掌握LINUX下获取帮助信息的命令:man、help。 3、掌握LINUX中Shell的实用功能,命令行自动补全,命令历史记录,命令的排列、替

换与别名,管道及输入输出重定向。 实验内容: 1、使用shutdown命令设定在30分钟之后关闭计算机。 2、使用命令“cat /etc/cron.daliy”设置为别名named,然后再取消别名。 3、使用echo命令和输出重定向创建文本文件/root/nn,内容是hello,然后再使用追加重定向输入内容为word。 4、使用管道方式分页显示/var目录下的内容。 5、使用cat显示文件/etc/passwd和/etc/shadow,只有正确显示第一个文件时才显示第二个文件。 实验步骤及结果: 1.用shutdown命令安全关闭系统,先开机在图形界面中右击鼠标选中新建终端选项中输入 命令Shutdown -h 30 2、使用命令alias将/etc/cron.daliy文件设置为别名named,左边是要设置的名称右边是要更改的文件。查看目录下的内容,只要在终端输入命令即可。取消更改的名称用命令unalias 命令:在命令后输入要取消的名称,再输入名称。 3.输入命令将文件内容HELLO重定向创建文本文件/root/nn,然后用然后再使用追加重定向输入内容为word。步骤与输入内容HELLO一样,然后用命令显示文件的全部内容。 4.使用命令ls /etc显示/etc目录下的内容,命令是分页显示。“|”是管道符号,它可以将多个命令输出信息当作某个命令的输入。

操作系统实验报告.

学生学号0121210680225 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称操作系统 开课学院计算机科学与技术学院 指导老师姓名刘军 学生姓名李安福 学生专业班级软件sy1201 2014 — 2015 学年第一学期

《操作系统》实验教学大纲 课程编号: 课程名称:操作系统/Operating System 实验总学时数:12学时 适应专业:计算机科学与技术、软件工程 承担实验室:计算机科学与技术学院实验中心 一、实验教学的目的和任务 通过实验掌握Linux系统下常用键盘命令、系统调用、SHELL编程、后台批处理和C程序开发调试手段等基本用法。 二、实验项目及学时分配 序号实验项目名称实验学时实验类型开出要求 01 Linux键盘命令和vi 2 设计必开 02 Linux下C编程 2 设计必开 03 SHELL编程和后台批处理 2 设计必开 04 Linux系统调用(time) 2 设计必开 05 Linux进程控制(fork) 4 设计必开 三、每项实验的内容和要求: 1、Linux键盘命令和vi 要求:掌握Linux系统键盘命令的使用方法。 内容:见教材p4, p9, p40, p49-53, p89, p100 2、Linux下的C编程 要求:掌握vi编辑器的使用方法;掌握Linux下C程序的源程序编辑方法;编译、连接和运行方法。 内容:设计、编辑、编译、连接以及运行一个C程序,其中包含键盘输入和屏幕输出语句。 3、SHELL编程和后台批处理 要求:掌握Linux系统的SHELL编程方法和后台批处理方法。 内容:(1) 将编译、连接以及运行上述C程序各步骤用SHELL程序批处理完成,前台运行。 (2) 将上面SHELLL程序后台运行。观察原C程序运行时输入输出情况。 (3) 修改调试上面SHELL程序和C程序,使得在后台批处理方式下,原键 盘输入内容可以键盘命令行位置参数方式交互式输入替代原键盘输入内容, 然后输出到屏幕。 4、Linux系统调用使用方法。

操作系统原理实验报告(终版)

操作系统原理实验报告(终版)

————————————————————————————————作者:————————————————————————————————日期:

[键入文字] XX学校 实验报告 课程名称: 学院: 专业班: 姓名: 学号: 指导教师: 2011 年3 月

目录 实验1 进程管理 (3) 一、实验目的 (3) 二、实验内容 (3) 三、实验要求 (3) 四、程序说明和程序流程图 (4) 五、程序代码 (5) 六、程序运行结果及分析 (7) 七.指导教师评议 (8) 实验2 进程通信 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验要求 (9) 四、程序说明和程序流程图 (9) 五、程序代码 (11) 七.指导教师评议 (14) 实验3 存储管理 (15) 一、实验目的 (15) 二、实验内容 (15) 三、实验要求 (15) 四、程序说明和程序流程图 (16) 六、程序运行结果及分析 (23)

七.指导教师评议 (23) 实验4 文件系统 (24) 一、实验目的 (24) 二、实验内容 (24) 三、实验要求 (24) 四、程序说明和程序流程图 (24) 五、程序代码 (26) 六、程序运行结果及分析 (26) 七.指导教师评议 (27)

实验1 进程管理 一、实验目的 1. 弄清进程和程序的区别,加深对进程概念的理解。 2. 了解并发进程的执行过程,进一步认识并发执行的实质。 3. 掌握解决进程互斥使用资源的方法。 二、实验内容 1. 管道通信 使用系统调用pipe( )建立一个管道,然后使用系统调用fork( )创建2个子进程p1和p2。这2个子进程分别向管道中写入字符串:“Child process p1 is sending message!”和“Child process p2 is sending message!”,而父进程则从管道中读出来自两个子进程的信息,并显示在屏幕上。 2. 软中断通信 使用系统调用fork( )创建2个子进程p1和p2,在父进程中使用系统调用signal( )捕捉来自键盘上的软中断信号SIGINT(即按Ctrl-C),当捕捉到软中断信号SIGINT后,父进程使用系统调用kill( )分别向2个子进程发出软中断信号SIGUSR1和SIGUSR2,子进程捕捉到信号后分别输出信息“Child process p1 is killed by parent!”和“Child process p2 is killed by parent!”后终止。而父进程等待2个子进程终止后,输出信息“Parent process is killed!”后终止。 三、实验要求 1. 根据实验内容编写C程序。 2. 上机调试程序。 3. 记录并分析程序运行结果。

安徽工业大学操作系统实验报告

《操作系统教程》实验报告书 专业班级计11X 学号XXX 姓名XXX 指导教师郭玉华 安徽工业大学计算机

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32Consol Application(控制 (2)台应用程序)。 (3)掌握WINDOWS API的使用方法。 (4)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32Consol Application 步骤1:登录进入Windows,启动VC++6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++Source File”,然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序: E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果(如果运行不成功,则可能的原因是什么?): 运行成功,截图: (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果(如果运行不成功,则可能的原因是什么?): process ID:3716,EXE file:3.exe,%d in Kernel mode:60 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环:

操作系统实验报告1

操作系统 实验报告 班号:1303107 学号:1130310726 姓名:蔡鹏

1.请简述head.s 的工作原理。 head.s实在32位保护模式下运行的。我认为这段程序主要包括两个部分:1.初始化设置。2.任务执行与切换。 初始设置主要包括了:1.设置GDT表2.设置系统定时芯片3. 设置IDT表(0x08时钟中断和0x80系统调用中断)4.切换到任务0执行 任务切换和执行包括了:1.任务0和任务1 , 2.时钟中断, 3.系统中断 两个任务的在LDT中代码段和数据段描述符的内容都设置为:基地址0x0000;段限长值为0x03ff,实际段长度为4MB。因此在线性地址空间中这个?内核?的代码和数据段与任务的代码和数据段都从线性地址0开始并且由于没有采用分页机制,所以他们都直接对应物理地址0开始处。 为了每隔10毫秒切换运行的任务,head.s程序中把定时器芯片8253的通道0设置成每隔10毫秒就向中断控制芯片8259A发送一个时钟中断请求信号。PC机的ROM BIOS开机时已经在8259A中把时钟中断请求信号设置成中断向量8,因此我们需要在中断8的处理过程中执行任务切换操作。任务切换的实现是查看current变量中的当前运行的任务号,如果为0,就利用任务1的TSS选择符作为操作数执行远跳转指令,从而切换到任务1中,否则反之。

每个任务在执行时,会首先把一个字符的ASCII码放入寄存器AL中,然后调用系统中断调用int 0x80,而该系统调用处理过程则会调用一个简单的字符写屏子程序,把寄存器AL中的字符显示在屏幕上,同时把字符显示的屏幕的下一个位置记录下来,作为下一次显示字符用。在显示过一个字符后,任务代码会使用循环语句延迟一段时间,然后又跳转到任务代码开始处继续循环执行,直到运行了10毫秒而发生了定时中断,从而代码会切换到另一个任务执行。对于任务A,寄存器AL中始终存放字符‘A’,而任务B运行时AL中始终存放字符‘B’。因此程序运行时我们将看到一连串的‘A’和一连串的‘B’间隔的连续不断的显示在屏幕上。若出现了一个‘C’,是由于PC机偶然产生了一个不是时钟中断和系统调用中断的其他中断。因为我们已经在程序中给所有其他中断安装了一个默认中断处理程序。当出现一个其他中断时,系统就会运行这个中断处理程序,于是就会在屏幕上显示一个‘C’,然后退出中断。 4.请记录head.s 的内存分布状况,写明每个数据段,代码段,栈段 的起始与终止的内存地址。

相关主题
文本预览
相关文档 最新文档