当前位置:文档之家› 连续梁成桥预拱度计算过程

连续梁成桥预拱度计算过程

连续梁成桥预拱度计算过程
连续梁成桥预拱度计算过程

5.5.1 成桥预拱度计算方法

目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。

根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。

根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。

1.活载挠度计算

1) 荷载等级:公路—Ⅰ;

2) 车道系数:三车道,车道折减系数0.78;

3) 中跨活载最大挠度: d 2=0.029m;

A 曲线:1cos()290y =

-???? (090x ≤≤) B 曲线:21cos()261fc x y π??=

-???? (22.553x ≤≤) C 曲线:21cos()245fc x y π??=-????

(022.5x ≤≤) 5.5.2 施工预拱度的计算方法

不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工

控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。本单位设置的施工预拱度由下面的公式进行说明:

f si=∑f1i+f2i+f3i+f4i+f5i+f6i+f7i+f8i+f9i+f10i+f11i

fsi:施工预拱度;

∑f1i:本阶段块件生成后和以后各阶段挠度累计值

∑f2i:本次浇筑梁段及后浇梁段纵向预应力钢束张拉对该点挠度影响值

f3i:二期恒载的挠度

f4i:结构体系转换

f5i:挂篮的自重及变形

f6i:墩身压缩变形

f7i:前期收缩、徐变挠度值

f8i:温度影响

f9i:墩顶转角影响

f10i:施工荷载产生挠度

f11i:支架弹性、非弹性变形

上述各组成因素的计算方法如下:

(1) 结构自重(一期恒载)作用预拱度的设置

结构自重的计算方法是本阶段块件生成后及以后各阶段对本阶段挠度累计值,特点是先浇阶段已完成本身自重变形,不再对后浇阶段产生影响,虽然合拢段与悬浇阶段单项挠度计算方法不同,但计入方法是相同的,可用通式表达:

∑f1i=f1i+f1i+1+ (1)

(2) 预应力作用下预拱度的设置

本阶段纵向钢束及后浇阶段纵向钢束张拉对该点挠度影响值

∑f2i=f2i+f2i+1+ (2)

(3) 二期恒载作用预拱度的设置

二期恒载即桥面铺装、防撞护栏等作用在成桥结构上,将计算所得挠度值反向设置。

(4) 结构体系转换的预拱度的设置

结构体系转换时,一般采用平衡重、配重、顶推等方式,平衡重与合拢段等量置换的那部分平衡重,随着合拢段砼浇筑同步卸除,设置预拱度时应剔除其影响。

但是为了调整合拢段两端标高而设置的附加配重在合拢段砼达到规定的强度后才卸除,其作用在合拢前后的不同体系上,卸载前后对桥梁的影响不能抵消,应充分考虑。

为了改善桥墩受力及在合拢时其场地温度高于设计合拢温度时,为满足设计合拢温度要求,采取顶推方式,以改善桥墩及上部结构受力性能和应力状态。在顶推时,会使各截面产生挠度,这部分挠度变形在设置预拱度时应考虑。

(5) 挂篮的自重及变形

1)挂篮对已浇阶段产生弹性变形,但拆除挂篮后,变形即恢复,不必考虑其影响;

2)现浇阶段,由于本阶段刚度未形成,节段自重由挂篮来承担,挂篮在节段砼自重的作用下,产生挠曲变形,现浇阶段砼产生相同变形,这一变形在挂篮拆除后不可恢复。因此,必须计入这部分变形的影响。其值一般由现场压力试验确定(压力与变形曲线)

(6) 墩身的压缩变形

大跨度连续刚构桥悬臂较长,施工荷载大,如果墩高较高,墩身会产生较大压缩量,在挠度计算时应计入墩身弹性压缩的影响。

(7) 前期收缩、徐变的影响

现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》规定:“预应力混凝土受弯构件当需计算施工阶段变形时,可按结构自重和预应

力产生的初始弹性变形乘以﹝1+ф(t,t0)〕求值。”

前期徐变即施工阶段徐变,可按规范计入。

收缩按规范规定计入。

(8) 温度的影响

在连续刚构桥分段施工过程中,其几何线形的实测值中都包含温度作用的影响,尽管测量时间选择在温度较稳定的时段,如深夜或凌晨,但是,很难避免日照温差的复杂影响。一般的,大气升温时,悬臂端下挠,大气降温时,悬臂端上升。日照温差对悬臂端挠度的影响,可以通过各施工阶段温度敏感性分析得到结构随温度改变的变形曲线,根据实际温度变化进行插值计算,对结构变形进行修正,即:HTi=Hi+fti

fti: :温度的修正值

连续刚构桥施工过程中,为了进一步摸清箱梁截面温度及温度在截面上的分布规律,有必要每月选择有代表性的天气(晴、雨、阴、寒流)进行24小时连续观测,以准确掌握温度变化规律,然后根据测量结果进行温度修正。

均匀温度作用对挠度的影响、主要取决于梁体温度与设计合拢温度是否相符合,悬臂施工阶段,结构为静定体系,而合拢后为超静定体系,连续刚构桥以柔性薄壁墩适应温度纵向变化,若梁体温度与设计合拢温度不相符合,即产生温度的变形,因此,计算年温差引起的变形,应以边跨合拢时计入其影响。

(9) 墩顶转角的影响

高墩大跨连续刚构桥在悬臂施工过程中,特别是长悬臂时,荷载不可能严格对称,由此引起的墩顶水平位移、转角,对挠度影响不容忽视。

(10) 施工荷载的影响

施工荷载属临时荷载,在后续阶段卸除,因此,临时荷载引起的

墩身压缩,挂篮自重产生的挠度,温度梯度影响,偏引起的转角影响属加卸载过程,都应在立模标高中剔除其影响,但配重由于作用在不同的结构体系上,其影响不能剔除。

(11) 支架弹性、非弹变形

边跨支架在施工时应严格要求用同等边跨现浇段及施工荷载重量预压,消除地基不均匀沉降,测定支架弹性、非弹性变形,并在边跨现浇段中预留其变形。

表5.8给出的施工预拱度是根据图纸的各种参数,通过模型正装计算、施工阶段模拟的初步施工预拱度,不包括挂蓝变形值,而且随着施工进度、现场采集数据进行误差分析,修改模型设计参数,建立新模型再进行结构计算,进行动态调控。

2、预制预应力T梁预拱度计算及控制

预制预应力T梁预拱度计算及控制 摘要:本文结合***高速公路***桥25m预制T梁的工程实践,介绍了T梁预拱度设置的必要性及设置注意事项,提供了依据结构力学挠曲变形原理及预应力混凝土弹性计算理论计算梁体挠度的方法。 关键词:预制T梁预拱度设置挠度计算 0、桥梁简介 ****桥分左右两幅,左幅桥长483.2m,右幅桥长478.2m。全桥左幅共5联:3*25+4*25+4*30+3*35+3*25,右幅共5联:4*25+4*25+3*30+3*35+3*25,上部结构左幅第1联、左幅第2联、左幅第4联、右幅第1联、右幅第2联采用预应力砼(后张)先简支后连续T梁:其余采用预应力砼(后张)T梁桥面连续结构;全桥共有T梁203片,其中122片25m、41片35m、40片30m。T梁预应力束为钢绞线,锚具为VOM锚。 1、预拱度设置 1.1设置原因 预制T梁设计时,为使梁体具有足够的强度、刚度来承受恒载和活载所产生的弯矩,往往布置预应力筋,通过预应力筋张拉对梁体产生的负弯矩来抵消恒载和活载产生的正弯矩。为了控制梁体张拉时产生的过大的向上反拱,则需通过对预制梁台座(底模)设置一个向下的合适的拱度来抵消反拱,所设的拱度即为“预拱度”。 1.2注意事项 预拱度设置的合理与否十分重要,如设置不合理,将直接影响梁的外观及后续工作的质量。如预拱度设置过大,为保证桥面铺装设计标高,则需增加桥跨中段铺装层的厚度,这样就增加了桥面铺装混凝土的重量,既降低了梁的承载储备又造成了浪费;如预拱度设置过小,受桥面铺装设计标高控制,桥跨中段铺装层厚度将达不到设计厚度,这样就影响了桥面的耐久性及梁体的使用寿命。 预拱度的设置不仅梁底要设,梁顶也要设。如梁顶不设置预拱度,而只有梁底设置,梁片浇注完成后将会出现梁顶平、梁底凹的现象。预应力张拉后,由于预应力筋的作用,向上的拱度抵消了梁底的凹拱,却产生了梁顶的凸拱,预拱度的设置也就失去了意义。故,预拱度设置时,不仅要考虑梁底,也要考虑梁底。 2、梁体挠度计算 根据结构力学挠曲变形原理及预应力混凝土梁弹性计算理论,25m后张预应力预制T梁上拱度

成桥预拱度计算方法

5.5.1 成桥预拱度计算方法 目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。 根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。

1.活载挠度计算 1) 荷载等级:公路—Ⅰ; 2) 车道系数:三车道,车道折减系数0.78; 3) 中跨活载最大挠度: d 2=0.029m; +A 曲线:21cos()290x y π?= -???? (090x ≤≤) B 曲线:21cos()261fc x y π??= -???? (22.553x ≤≤) C 曲线:21cos()245fc x y π??=-???? (022.5x ≤≤) 5.5.2 施工预拱度的计算方法 不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁 谢宝来 【摘要】本文为用新规范进行桥梁结构设计的一个算例,其重点讨论了预应力混凝土构件纵向受力性能的计算方法和计算过程,以及对新规范的一些理解,其中包括汽车冲击系数、上下缘正负温差、翼缘有效宽度、极限承载能力(塑性)和应力(弹性)计算等,同时也说明了一些构造方面的要求。 【关键词】规范预应力混凝土冲击系数有效宽度 一、设计概况 该桥为京津高速公路跨越永定新河的一座特大桥,单幅桥宽16.5米,特大桥是因为长度超过了1000米,以永定新河的交角为45度,跨越河流时采用三联3x55米,用PZ造桥机施工的预应力混凝土连续箱梁,此处平曲线半径为5000米,当然小半径也可以采用此施工工艺。第一阶段施工为简支单悬臂,施工长度为55米简支加11米(悬臂为跨径的五分之一,此处弯矩最小,为施工缝的最加位置)悬臂,平移模板,第二阶段施工长度为44米加11米悬臂,最后施工剩下的44米。主要预应力钢束均为单向张拉,最大单向张拉长度为66米。按预应力砼A 类构件设计。 二、设计参数 (一)桥宽:16.5m(1+0.75+3x3.75+3+0.5); (二)跨径:3x55m; (三)梁高:3.0m; (四)荷载标准:公路-I级;计算车道数:3;横向折减系数:0.78; (五)二期荷载:100mm厚沥青混凝土;80mmC40防水混凝土;两侧栏杆20kN/m。 (六)采用的主要规范: 《公路桥涵设计通用规范》(JTG-D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG-D62-2004); (七)选用材料: ①混凝土C50:f cd =22.4MPa,f td =1.83MPa,E c =3.45x104MPa;

拱桥预拱度的计算与设置

附录B 拱桥预拱度的计算与设置 B.0.1 施工预拱度的计算 预拱度的大小应按无支架和有支架两种情况,并分别考虑下列因素进行估算。 1 无支架施工的拱桥 1)主拱圈及拱上建筑自重产生的拱顶弹性下沉δu1 3)混凝土主拱圈由混凝土收缩和徐变产生的拱顶下沉δu3 整体施工的主拱圈,可按温度降低15℃所产生的下沉值计算,分段施工的主拱圈,可按温度降低5—15℃所产生的下沉值计算,即在本条第(B.0.1—3)公式内,整体施工的主拱圈取(t l—t2)=—15℃,分段施工的主拱圈取(t l—t2)=—5~—15℃。 4)墩、台水平位移产生的拱顶下沉δu4

6)对于无支架施工的拱桥,本款内1)~4)项可估算为 ,当墩台可能有位移时取较大值,当无水平位移时取较小值。 2 满布式拱架施工的拱桥 满布式拱架受载后,主拱圈拱顶产生的弹性及非弹性下沉,本条第1款的1)—4)项仍然适用。满布式 拱架本身的下沉可按下列项目估算:

2)非弹性变形δs2 非弹性变形各类缝隙压密量可按下列估计:顺木纹相接,每条接缝变形取2mm;横木纹相接时取3mm;顺木纹与横木纹材料相接取2.5mm;木料与金属或木料与圬工相接取2mm。对于扣件式钢管拱架,扣件拉柱滑动或相对转动可引剧(架非弹睦变形,按经验估算断。 3)砂筒的非弹性压缩量δs3 可按经验估算:一般200kN压力砂筒取4mm,400kN压力砂筒取6mm,筒内未预先压实时取10mm。 4)支架基础在受载后的非弹性下沉δs4 支架基础非弹性下沉可按下列值估算:枕梁在砂类土上取5~10mm,枕梁在粘土上取10-20mm,打入 砂土的桩取5mm,打入粘土的桩取10mm。 拱顶处的预拱度,根据上述各种下沉量,按可能产生的各项数值相加后得到,施工时应根据以上计算值并结合实践经验进行调整。一般情况下,有支架施工的拱桥,当无可靠资料时,预拱度可按 l/600—l/800估算。 B.0.2 预拱度的设置 预拱度应根据上述各项因素产生的挠度曲线反向设置;可根据以往的实践经验按下述方法之一设置:1 按抛物线设置

浅析现浇预应力连续箱梁支架预拱度计算及施工控制

浅析现浇预应力连续箱梁支架预拱度计算及施工控制 摘要:本文结合某项目现浇连续预应力箱梁(30+35+30m)的工程实践,通过对 满堂支架受力体系各项因素产生的挠度及浇筑成型施加预应力后产生向上的挠度 分析,依据结构力学挠度变形原理、预应力混凝土弹性原理理论计算,通过对支 架预拱度的设置来控制支架顶高程设置预拱度,控制桥梁纵向高度。 引言:一座预应力连续箱梁桥梁,除了要对主梁进行强度计算,以确定结构 具有足够的强度安全储备外,还在计算梁的变形,以确保结构具有足够的刚度 (通常指竖向挠度)。公路桥梁规范中规定对于预应力钢筋混凝土梁式桥,以上 部结构跨中最大竖向挠度,不应超过l/600(l为计算路径)。在满堂支架搭设时,顶面高控制时考虑后类因素产生的竖向挠度的影响,设置预拱度值,使成型后连 续箱梁纵断面线型与设计竖曲线接近一致。 关键词:连续预应力箱梁预拱度挠度 1、项目连续预应力箱梁简介 本项目桥梁采用1联(30+35+30米)连续箱梁结构,桥墩为固定支座,桥台 两端为滑动2支座,箱梁宽10.5米,高2.0米,高度11米。施工过程采用碗口 式满堂支架现浇筑混凝土,支架高度9米,纵横向间距0.9米、0.6米,步距1.2米,后施加纵向预应力的施工工艺进行施工,预应力束为低松弛钢绞线,锚具为VOM锚。 2、支架预拱度设置 预拱度设置根据规范要求确定挠度影响因素,准确方式计算,最终确定满堂 支架预拱度。 3跨连续梁桥箱梁满堂支架在确定施工拱度值时,按以下因素计算预拱度。 满堂支架搭设时,第一跨、第三跨按二次抛物线设置6.2mm预拱值,第二跨预拱值为未设置 预拱值。 5、结束语 本项目超静定结构在支座处多余约束的次内力矩近似按三等跨进行计算,未考虑平面弯 曲弯角对预应力摩阻力影响小,通过对本项目的过程数据收集,各影响因素理论计算与实测 对比分析,实测数据与理论计算数据相近似,在施工阶段可作为类似项目的支架预拱度依据。 参考文献: [1]路桥施工计算手册 [2]《桥梁工程》(桥梁工程专业用上册)(第二版)——范立础 [3]《结构设计原理计算示例》——叶见曙 作者简介: 张静,1989.10.11,助理工程师 赵彬,1975.11.13,助理工程师

连续刚构桥梁跨中成桥预拱度估算公式

连续刚构桥梁跨中成桥预拱度估算公式 发表时间:2017-09-20T11:13:15.243Z 来源:《防护工程》2017年第11期作者:陈杰杨培金刘明 [导读] 为使连续刚构桥梁最终线形达到设计线形,施工立模标高要增加施工预拱度f1与成桥预拱度f2,如图1所示。 威海水利工程集团有限公司山东省威海市 264200 摘要:计算连续钢构桥梁中成桥预拱度是非常困难的。因此为求解连续刚构桥梁跨中成桥预拱度设置值,将影响其运营期间跨中挠度值增大的多种主要因素给定合理量值并考虑相互耦合作用,建立多种不同跨径组合的在役刚构桥梁有限元模型,对其进行分析求解。利用最小二乘法进行多项式拟合,最终推导出适用于主跨跨径200m以内的连续刚构桥梁跨中成桥预拱度估算公式,并与规范解、经验解、实测值进行对比,证明了该估算公式的适用性。 关键词:桥梁工程;连续刚构桥;成桥预拱度;拟合;估算公式 引言 为使连续刚构桥梁最终线形达到设计线形,施工立模标高要增加施工预拱度f1与成桥预拱度f2,如图1所示。其中f1由模型计算所得,而f2的取值是根据桥梁后期运营过程中跨中下挠经验值来确定的,没有统一的标准。我国《公路钢筋混凝土及预应力混凝土桥涵设计规范》中引入挠度增长系数ηθ,Ms来计算结构长期挠度,反映结构由于收缩徐变及混凝土弹性模量降低而造成的挠度的增加,但其计算值与桥梁实际下挠值相差很大,起不到使结构最终线形平顺的作用为此本文建立大量的连续刚构模型,对影响跨中后期下挠的参数进行适当调整,求得结构运营3年后的跨中挠度,对大量离散数据进行拟合,得出适用于主跨小于200m的连续刚构桥梁成桥预拱度估算公式,可为后续连续刚构桥梁成桥预拱度f2计算提供参考。 1确定影响因素的参数量值 连续刚构属于超静定桥梁结构,运营后期跨中下挠是多种因素耦合作用下的结果,且混凝土收缩徐变是最主要的影响因素。混凝土收缩徐变、主梁刚度变化、纵向预应力的有效性、活载、施工质量及运营管理等是跨中下挠的影响因素。在建立有限元模型的过程中,为真实模拟结构运营后期的状态,需调整各主要影响因素的参数,确保挠度计算值更贴近实际情况。 1.1混凝土收缩徐变时间参数 混凝土的收缩徐变持续6个月后结构变形可达到最终徐变变形的70%~80%,之后变形增长逐渐缓慢。根据这一特点以及桥梁设计时通常考虑1000~1500d的收缩徐变计算时间,将结构运营3年后的挠度值作为成桥预拱度估算公式的计算目标值,即按估算公式计算值设置的成桥预拱度,可在桥梁运营3年后其跨中桥面标高基本达到设计高程,且之后变化不大,可满足桥面平稳行车的要求。 1.2结构刚度参数 受弯构件的刚度为EI,即混凝土弹性模量与截面抗弯惯性矩的乘积。混凝土弹性模量在浇筑前期略低于设计值,之后逐渐达到设计强度;由于结构运营期间裂缝不断开展,刚度变为EIc,故需对结构刚度进行折减。根据混凝土疲劳刚度衰减试验规律的结果,取运营3年后主梁混凝土刚度折减10%作为估算量。 1.3纵向预应力参数 根据实测资料发现预应力损失的理论计算值均低于实测值,即预应力损失预估不足。在施工张拉完成后钢束有效预应力为张拉控制应力的80%左右,加载二期恒载后钢束有效预应力为张拉控制应力的70%左右;加之预应力损失与钢束材料、桥梁运营期间的养护措施、病害类型等多因素有关,取运营3年后纵向有效预应力折减为张拉控制应力的30%作为估算量。 2有限元求解 根据影响因素的参数量值修改模型中的相应参数,为求解各因素对挠度的影响程度以及多因素耦合对挠度的影响程度,分别计算结构

预制预应力T梁预拱度计算及控制

精心整理 预制预应力T 梁预拱度计算及控制 中铁十五局集团第二工程有限公司刘少修 摘要:本文结合福建龙浦高速公路十里排枢纽主线桥25m 预制T 梁的工程实践,介绍了T 梁预拱度设置的必要性及设置注意事项,提供了依据结构力学挠曲变形原理及预应力混凝土弹性计算理论计算梁体挠度的方法。 关键词:预制T 梁预拱度设置挠度计算 0、十里排枢纽主线桥简介 十里排枢纽主线桥分左右两幅,左幅桥长483.2m ,右幅桥长478.2m 。全桥左幅共5联: 3*25+4*25+4*30+3*35+3*25,右幅共5联:2联、左幅第4联、右幅第1联、右幅第2T 梁桥面连续结构;全桥共有T 梁203片,其中122片25m 为VOM 锚。 1、预拱度设置 1.1设置原因 预制T 。 1.2设置注意事项 如预拱度设置过 受桥面铺装设计标高控制,桥跨中段铺装层厚度将达不到设 现梁顶平、梁底凹的现象。预应力张拉后,由于预应力筋的作用,向上的拱度抵消了梁底的凹拱,却产生了梁顶的凸拱,预拱度的设置也就失去了意义。故,预拱度设置时,不仅要考虑梁底,也要考虑梁底。 2、梁体挠度计算 根据结构力学挠曲变形原理及预应力混凝土梁弹性计算理论,25m 后张预应力预制T 梁上拱度有两部分组成:一是由梁体自身产生的挠度;二是由预应力产生的挠度。具体计算时可分三种情况: ①、中性轴在预应力束中间时,计算挠度用下式: EI L e N EI L e N f 48/58/22211??+??-=(1)

②、中性轴在预应力束之上时,计算挠度用下式: EI L e N EI L e N f 48/58/22212??+??=(2) ③、预应力束近似直线时,计算挠度用下式: EI L e N f 8/213??=(3) 2.1十里排枢纽主线桥25mT 梁相关参数(计算) 十里排枢纽主线桥25mT 梁钢束布置图及相应的断面图如下所示: 2.1.1中性1y =7 3.08cm 2y =101.92cm 2.1.2截面惯性矩计算 截面惯性矩计算采用公式:])()([c 3 1I 313132d y c B By y -?--+=(6) 将梁体参数及1y 、2y 代入公式(3)可得: 截面惯性矩4 47386.0cm 1086.3m I =?= 2.1.3混凝土弹性模量

连续梁成桥预拱度计算过程

5.5.1 成桥预拱度计算方法目前,由于对混凝土徐变的计算,不论是老 化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在 3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中 孔跨中成桥预拱度)。 根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预 拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算, 边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc 确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L 处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零, 满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。.

1.活载挠度计算 1) 荷载等级:公路—Ⅰ; 2) 车道系数:三车道,车道折减系数0.78; 3) 中跨活载最大挠度:d=0.029m; 22.中跨最大预拱度的确定 Ld=0.09+0.0145=0.1045m; ??fc2 100023.余弦曲线 成桥预拱度线形示意图 各曲线函数表达如下: ?x2fa??曲线:() A)y?cos(1?90??x0??290???xfc2??B曲线: () )?1y?cos(53?22.5?x??612???x2fc??C曲线:() )cos(?y1?22.5??x0?? 245??5.5.2 施工预拱度的计算方法 不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难所以必须对桥梁进行施工或成桥线形与设计要求不符,以顺利合拢, 控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。本单位设置的施工预拱度由下面的公式进行说明: f=∑f+f+f+f+f+f+f+f+f+f+f11i si6i1i9i2i7i3i10i4i5i8i fsi:施工预拱度; ∑f:本阶段块件生成后和以后各阶段挠度累计值1i∑f:本次浇筑梁段及后浇梁段纵向预应力钢束张拉对该点挠度2i影响值 f:二期恒载的挠度3i f:结构体系转换4i f:挂篮的自重及变形5i f:

预拱度与挠度关系及计算

3.5挠度、预拱度的计算 一、变形(挠度)计算的目的与要求 桥梁上部结构在荷载作用下将产生挠曲变形,使桥面成凹形或凸形,多孔桥梁甚至呈波浪形。因此设计钢筋混凝土受弯构件时,应使其具有足够的刚度,以免产生过大的变形,影响结构的正常使用。 过大的变形将影响车辆高速平稳的运行,并将导致桥面铺装的迅速破坏; 车辆行驶时引起的颠簸和冲击,会伴随有较大的噪音和对桥梁结构加载的不利影响; 构件变形过大,也会给人们带来不安全感。 变形验算是指钢筋混凝土桥梁以汽车荷载(不计冲击力)计算的上部结构最大竖向挠度,不应超过规定的允许值。《公桥规》对最大竖向挠度的限值规定如下表: 钢筋混凝土梁桥允许挠度值 注:1.此处L为计算跨径,L1为悬臂长度; 2.荷载在一个桥跨范围内移动产生正负不同的挠度时,计算挠度应为其正负挠度的最大绝对值之和。 二、刚度和挠度计算 桥梁的挠度,根据产生原因可分成永久作用(结构自重力、桥面铺装、预应力、混凝土徐变和收缩作用等)产生的和可变作用(汽车、人群)产生的两种。 永久作用产生的挠度是恒久存在的且与持续的时间有关,可分为短期挠度和长期挠度。可变作用产生的挠度是临时出现的,在最不利的作用位置下,挠度达到最大值,随着可变作用位置的移动,挠度逐渐减小,一旦可变作用离开桥梁,挠度随即消失。 永久作用产生的挠度并不表征结构的刚度特性,通常可以通过施工时预设的反向挠度(即预拱度)来加以抵消,使竣工后的桥梁达到理想的设计线形。 可变作用产生的挠度,使梁产生反复变形,变形的幅度越大,可能发生的冲击和振动作用也越强烈,对行车的影响也越大。因此,在桥梁设计中,需要通过验算可变作用产生的挠度以体现结构的刚度特性。 钢筋混凝土和预应力混凝土受弯构件,在正常使用极限状态下的挠度,可根据给定的构件刚度用结构力学的方法来计算。对于均布荷载作用下的简支梁,跨中最大挠度值为:

预拱度设置方法

lep 实习生 精华0 积分16 帖子25 水位52 技术分0 状态离线 预拱度怎么设置 是不是把各种内力产生的位移加起来就可以了?#1 sfj1977实习生 精华0 积分19 帖子30 水位62 技术分0 状态离线 恒载+活载挠度的 这是规范中的做法。 感觉有时再增加一点没有坏处, 避免混凝土收缩徐变等长期效应计算不准确带来的误差。 梁略微拱起一点比较美观, 但下挠一点就会让人不舒服。 #2 11103实习生确实如此,在一般的公路和城市道路上可以,但在高速公路上是不行的,有明显颠簸现象。

#3 lmx 助理工程师 精华 0 积分 20 帖子 33 水位 67 技术分 0 状态 离线 那具体该怎么增加呢?#4 ywmj63311826 助理工程师 精华 0 积分 21 帖子 32 水位 70 技术分 0 状态 离线 连续梁的施工控制中的预拱度(或称为抛高值)有两种解释。其一,就是现在普遍用的:预拱度变形影响度)终极),由收缩徐变产生得挠度,这是由设计单位确定得;预抛高指得是从建桥开始到竣工,梁体挠度得总和。然是对施工每个阶段的立摸前端点来说的了。下,使大桥主梁线形平顺,符合设计要求,成桥线形宁高勿低,一般与控制目标最大误差不超过

#5 hgq1188 助理工程师 精华 0 积分 21 帖子 34 水位 70 技术分 0 状态 离线 我也有同样得疑惑,想请教楼上本阶段施工和以后各阶段挠度如何求?是不是一般软件计算过后的成桥阶段的在恒载作用下的挠度?也就是说你所说的第一种情况的预抛高这样计算: 某一梁段预抛高=成桥阶段此梁段在恒载(一期收缩徐变在此梁段挠度施工到此阶段)引起的挠度1/2 另外你所说的第二种情况是不是就是把上面说所徐变的时间改为他不变?也请大家解释,谢谢!#6 superwheat 助理工程师 精华 0 积分 25 帖子 40 水位 82 技术分 0 状态 离线 箱梁浇筑时各节段立模标高由几部分组成:Hi=H0+fi+fiy+fl+fx 式中:标高;梁段纵向预应力束张拉后对该点挠度影响值;度影响值;车静活载等对该点挠度影响值。大值,以两桥墩支点为零点,其余各点按二次抛物线分配。#7

现浇箱梁底模标高预拱度计算方法(带附件计算)

潮音大桥现浇箱梁底模标高预拱度计算方法首先,现浇箱梁施工前,选取第Ⅰ节段长52m段梁体重量主要集中的底板宽范围支架进行预压,根据此段梁体预压结果计算出支架及地基整体的塑性变形和弹性变形,以此调整其它段梁底模板标高。 1、沉降分析:预压期间现场做好沉降观测记录,根据沉降观测记录进行沉降分析,非弹性变形h非=卸载后沉降量h卸,h非为支架杆件及地基基底在荷载作用下的非弹性变形;弹性变形h弹=加载稳定后沉降量h累-卸载后沉降量h卸,h弹为支架节点间、支架杆件及地基基底的弹性变形,是设置预留沉降量的依据,以确定施工预拱度的设置。 2、施工预拱度的设置: (1)卸落支架后,箱梁本身重量二期恒载及活载所产生的竖向扰度δ1的预留值,按设计图纸(图号BS11034)布置。 (2)支架在荷载作用下的弹性变形δ2的预留值(施工支架预拱度),以预压期间沉降观测数据确定,根据桥涵施工手册下册P12,施工支架预拱度设置在跨径中心间,梁两端(支座处)为0,按二次抛物线布置。 其曲线方程按у=4f拱χ(L-χ)/L2

(3)支架及支架基底在荷载作用下非弹性变形δ3的预留值,以预压期间沉降观测数据确定。对于已加载预压实验的节段梁,就不再预留非弹性变形δ3,只需对未加载预压的节段梁预留非弹性变形δ3。 3、沉降观测成果 第Ⅰ节段支架于2004年5月26日开始加载预压, 5月31日下午加载完成,预压期间支架设置沉降观测点具体数据见下表:

4、弹性变形δ2及非弹性变形δ3的实验值 根据以上沉降观测表数据所示。 (1)弹性变形δ2的实验值 ①2#墩支座处断面弹性变形左=0,中=0,右=-1,该断面弹性变形平均值0mm;

桥梁博士预拱度设置及计算

用桥博计算书模板提取预拱度 分享 首次分享者:千雪寻已被分享21次评论(0)复制链接分享转载举报 一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。 1、对全预应力和A类构件,计算挠度时,按照规范6.5.2条,全截面的抗 弯刚度Bo应取0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项 位移,全界面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。 2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数, 即可得到正确的单项挠度效应。组合位移的值,用户可以采用报表来完成。 3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。钢筋硷构件在 使用阶段是允许开裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。

二、如何设置预拱度? 1、规范条文: 2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期荷载效应下的长期挠度和预加力产生的长期反拱值。通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。同时,挠度值还必须满足规范6.5.3条的要求:

3、几个系数的取值 4、桥博报表解析 荷载短期效应组合长期竖向挠度(mm) {1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[D S(iN,3,iS).V],iS=sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3> 永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人 群最小剪力的位移 预加应力产生的长期挠度(mm) {1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3> 消除结构自重后的挠度 {(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)} 汽车最小剪力下的位移+人群最小剪力的位移 总结: 《桥规》 D62的 6.5.5条:受弯构件的预拱度可按下列规定设置: 1 钢筋混凝土受弯构件 1)当由荷载短期效应组合并考虑荷载长期效应影响产生的长期挠度不超过计算跨径的1/1600时,可不设预拱度; 2)当不符合上述规定时应设预拱度,且其值应按结构自重和1/2可变荷载频遇值计算的长期挠度值之和采用。 假设为C50,挠度长期增长系数ηθ=1.425。桥博位移的计算是按照不开裂换算截面刚度计算的,未做折减处理,刚度折减系数取为0.95, 1.425/0.95*1000=1500。sgjd=1-n(共n个施工阶段) 预拱度 ={1500*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+0.5*(0.7*([DU(iN,55).V])+[DU(iN ,67).V])} 结构自重计算的挠度=ZSUM<[DS(iN,2,iS).V],iS=sgjd> 汽车荷载频遇值计算的的挠度=0.7*[DU(iN,55).V] 人群荷载频遇值计算的的挠度=[DU(iN,67).V] 2 预应力混凝土受弯构件

预应力混凝土连续梁施工预拱度误差控制

预应力混凝土连续刚构桥是在预应力混凝土连续梁和T 型刚构基础上发展起来的墩梁固结的一种新型连续结构,连续刚构桥悬臂施工节段多、工期较长,其纵面高程受多种因素影响,容易出现较大的悬臂标高误差,甚至出现两相对悬臂端标高相对误差太大,使合拢困难的情况。若为保证线形而采取措施强迫合拢,必将在结构中产生不利的附加内力,影响结构受力安全,所以,必须对其标高进行严格控制,确保成桥线形与内力状态符合要求。在此类桥的线形施工控制时,梁段立模标高的合理确定,是关系到主梁的线形是否平顺,是否符合设计的一个重要问题,其计算公式如下:立模标高=设计标高+施工预拱度+成桥预拱度+挂篮变形。 施工预拱度可以通过结构仿真计算得到桥梁各施工阶段及二期恒载作用下的累计变形值,并将其反向施加到梁段的立模标高上,从而使施工完成后的桥梁基本上达到结构理想状态的理论线形①。尽管每个阶段都严格控制施工时的结构几何尺寸、容重、收缩和徐变、弹性模量、预加力等等可以人为控制的因素,但是仍不可避免地会出现实际结构状态与理想结构状态的偏差,随着桥梁跨径和结构复杂性的增大,这种误差已经到了影响结构的几何线形的程度①,并可能导致桥梁合拢困难,成桥线形与设计要求不符等问题,给桥梁施工安全、外形、可靠性、行车条件和经济性等方面带来不同程度的影响。因此需要在实际施工中对施工预拱度进行一定的调整。 某高速公路大桥为分离式预应力混凝土连续刚构桥。其跨径组成为62m+3×115m+62m ,桥墩最高为85m ,属于高墩大跨径预应力混凝土连续刚构桥,最大施工块段号为15#块,16#块为合拢段,为了确保大桥成桥后结构内力、线形符合设计要求,对此大桥施工过程进行了全程施工监控。桥型布置图如图1: 图1 桥型布置图 注: 1.本图尺寸以厘米计。 2#墩 图1 桥型布置图 理论值的计算采用桥梁博士软件建立全桥模型,将桥梁结构离散为164个梁单元,103个主墩单元,单元的划分充分考虑了悬臂施工时各梁段的长度等情况。结构计算参数的取值尽量采用了现场实际试验测得的数值。施工荷载的模拟以施工单位实际试验测得的数据为准。

预拱度的计算

挠度、预拱度的计算 一、变形(挠度)计算的目的与要求 桥梁上部结构在荷载作用下将产生挠曲变形,使桥面成凹形或凸形,多孔桥梁甚至呈波浪形。因此设计钢筋混凝土受弯构件时,应使其具有足够的刚度,以免产生过大的变形,影响结构的正常使用。 过大的变形将影响车辆高速平稳的运行,并将导致桥面铺装的迅速破坏; 车辆行驶时引起的颠簸和冲击,会伴随有较大的噪音和对桥梁结构加载的不利影响; 构件变形过大,也会给人们带来不安全感。 变形验算是指钢筋混凝土桥梁以汽车荷载(不计冲击力)计算的上部结构最大竖向挠度,不应超过规定的允许值。《公桥规》对最大竖向挠度的限值规定如下表: 钢筋混凝土梁桥允许的挠度值

为悬臂长度; 注:1.此处L为计算跨径,L 1 2.荷载在一个桥跨范围内移动产生正负不同的挠度时,计算挠度应为其正负挠度的最大绝对值之和。 二、刚度和挠度计算 桥梁的挠度,根据产生原因可分成永久作用(结构自重力、桥面铺装、预应力、混凝土徐变和收缩作用等)产生的和可变作用(汽车、人群)产生的两种。 永久作用产生的挠度是恒久存在的且与持续的时间有关,可分为短期挠度和长期挠度。可变作用产生的挠度是临时出现的,在最不利的作用位置下,挠度达到最大值,随着可变作用位置的移动,挠度逐渐减小,一旦可变作用离开桥梁,挠度随即消失。 永久作用产生的挠度并不表征结构的刚度特性,通常可以通过施工时预设的反向挠度(即预拱度)来加以抵消,使竣工后的桥梁达到理想的设计线形。 可变作用产生的挠度,使梁产生反复变形,变形的幅度越大,可能发

生的冲击和振动作用也越强烈,对行车的影响也越大。因此,在桥梁设计中,需要通过验算可变作用产生的挠度以体现结构的刚度特性。 钢筋混凝土和预应力混凝土受弯构件,在正常使用极限状态下的挠度,可根据给定的构件刚度用结构力学的方法来计算。对于均布荷载作用下的简支梁,跨中最大挠度值为: 422 4553844848ql Ml Ml f EI EI b =?=?=? (1)钢筋混凝土构件 220 ()[1()]cr cr s s cr B B M M B M M B =+- 0cr tk M f W γ=; 002/S W γ= (2)预应力混凝土构件 1) 全预应力混凝土和 A 类预应力混凝土构件 000.95 B EI = 2) 允许开裂的B 类预应力混凝土构件 在开裂弯矩cr M 作用下: 000.95B EI = 在(s cr M M -)作用下:cr cr B EI = 开裂弯矩: 0()cr pc tk M f W σγ=+ 受弯构件在使用阶段的挠度应考虑荷载长期效应的影响(长期挠度),即按荷载短期效应计算的挠度值,乘以挠度长期增长系数0η,可按下列

预拱度

预拱度的设置 一、基本原理 1、预拱度的设置只针对桥面系,考虑的是行车时线路的平顺性。 2、预拱度的设置只考虑恒载与活载,不考虑温度及支座沉降。其中, 恒载:结构自重、预应力、二期恒载、收缩徐变(对混凝土梁)。由于收缩徐变跟时间有关,预拱度分成桥及成桥3年后两种,一般以成桥3年后 为准。 活载:按静活载考虑。 3、针对简支结构 预拱度值= —(恒载挠度+0.5*静活载最大挠度) 即保证不行车时结构上拱0.5*静活载最大挠度,行车最大时结构下挠0.5*静活载最大挠度。 4、针对连续结构 预拱度值有两种设法,不同之处在于对活载的处理,目前没有统一。 预拱度值1 = —[恒载挠度+0.5*静活载(最大挠度+最小挠度)] 预拱度值2 = —[恒载挠度+0.5*静活载最大挠度] 方法1理由如下:火车过桥时,结构各点位移可上可下,直接取下值会使得预拱度过大,取两者平均值切合实际。由于简支结构最小挠度为0,该方法针对简支结构也能说通。 方法2理由如下:火车过桥时,某处发生最小挠度时表明火车还没有到达该处,此时的挠度对火车走行没有影响,而火车到达该处时一般挠度达到最大值,因此该值才具备实际意义。 实际上火车是由一节节车厢组成,而不是一个移动的集中荷载,因此两种做法不好判别,目前公司说做的连续结构均按第一种办法。 二、施工方案对预拱度的影响 针对常规的混凝土结构和钢结构,计算程序及预拱度设置均遵循小变形假定,均即结构形状的微小改变不影响结构受力及位移,程序各阶段处理结构内力及变位时均按直线计算,但是结构的总变形是各阶段的累计(计入位移及转角)。 预拱度= - [最后恒载挠度(成桥3年)+1/2静活载挠度] 立模标高= 线路标高+预拱度

预拱度经验值

简支梁起拱度经验值: 10m:一般为8-10mm;13m:一般为10-15mm;16m:一般为10-15mm; 20m:一般为15-20mm;25m:一般为20-25mm;30m:一般为20-30mm;也有设置反拱度为36mm。 简支梁起拱度一般为梁长的1/1000;钢桁架一般为梁长的3-4/1000 简支梁预应力上拱度计算:x=2*(Mpe*L*L)/(8*0.95*EC*In) Mpe——永存应力的弯矩;L——垮径; EC——混泥土弹性模量;In——截面抗弯惯性距。 起拱度没有达到预算的原因: 正常来说,张拉完成后,底板当然应该是平的, ,有可能是以下几种原因: 1.预应力张拉值不够,未达到设计值. 2.设计计算不够准确,张拉力本身偏小. 3.箱梁浇注过程中,自身出的问题.如:梁配筋位置偏差,砼浇注厚度偏差,直接影响了张 拉后起拱度. 4.预应力筋波纹管定位不准确,位置的变化也是影响起拱最关键的一个环节. 后张法预应力箱梁预拱度控制: 由中铁大桥局股份有限公司承建的广深沿江高速公路机场特大桥上部结构采用先简支后连续的预应力混凝土组合箱梁,每半幅桥由两片边梁和三片中梁组成。施工要求箱梁成桥阶段桥面基本水平,无论起拱度值偏小或偏大均会导致桥面纵桥向形成波浪线形,影响行车的舒适;同时要求同一孔的5片箱梁的预拱度基本一致,否则会导致箱梁架设后存在桥面错台,影响横桥向桥面的平整度。箱梁预拱度设置是预制箱梁施工过程中重点控制项目,现在结合现场实际施工对预拱度设置及其控制做简单的陈述与分析。 1 反拱度值计算 预制箱梁反拱度值主要根据以下方面计算:1)梁体结构自重;2)预应力钢筋总张拉力;3)混凝土设计强度、弹模及其使用环境温度(影响混凝土收缩徐变);4)桥面二期恒载值;5)反拱度计算龄期(混凝土收缩徐变时间)。设计图纸中计算的30m预制组合箱梁跨中最大反拱度值为:边梁20mm,中梁15mm。 2 反拱度值设置原则 反拱度值设置原则为:其值大小以水泥混凝土铺装前梁的上拱度(向上)不大于2cm,同时满足成桥后的预拱度(即边梁20mm,中梁15mm)要求控制。 根据桥梁施工计算手册以及以往施工经验,反拱度设置按二次抛物线(二次抛物线方程可以根据两粱端和跨中梁底坐标求得)设置能满足施工精度要求。 3 反拱度设置 施工过程反拱度设置一般通过制梁台座调整底模标高来控制,制梁台座设计时考虑留有154cm高的操作空间(即底模距地面高度)。反拱度值采用二次抛物线设置,每60cm 设置一控制截面。现仅取30m预制组合箱梁中梁对预拱度设置流程作简单介绍:1)根据设计图纸提供的预拱度值求出预拱度方程y=200×2/3;则每控制截面的底模控制标高计算如表1所示: 2)根据上面计算标高埋设底模预埋件; 3)浇筑台座混凝土,混凝土顶面标高不宜高于预埋件顶面标高; 4)安装底模,并利用水准仪进行调整至上表计算值,然后加固。 4 影响实际施工起拱值的因素 本项目预制简支箱梁预应力束设置在底腹板上,混凝土上拱值主要是由于底腹板混凝土在预应力钢筋和混凝土自身收缩徐变的作用下收缩而产生,而且上拱值的大小与底腹板混凝土压缩量成正比。

桥博预拱度

桥博预拱度计算 连续刚构预拱度分为施工预拱度和成桥预拱度,设置施工预拱度主要为了消除施工过程中各种荷载对成桥线形的影响,设置成桥预拱度主要为了消除后期运营过程中后期收缩、徐变、后期预应力损失及汽车荷载对桥面线形的影响。 采用挂篮悬臂浇筑的连续刚构桥在设置施工预拱度时应考虑下表所列因素的影响: 表连续刚构桥施工预拱度的主要影响因素 采用挂篮悬臂浇筑连续刚构桥,其成桥预拱度应考虑下表所列因素的影响: 注:“+”表示向上设置预拱度,“-”表示向下设置预拱度。 我监控单位设置的预拱度为:成桥预拱度+施工预拱度。

1.1 成桥预拱度计算 目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L :中孔跨径),边孔最大挠度一般发生在3/4L 处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠,中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L 处设置fc/4预拱度(fc :中孔跨中成桥预拱度)。 连续刚构桥成桥预拱度计算方法:中跨预拱度在设计预拱度的基础上,再按L/1000 (L 为中跨跨径,d 2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L 处。其余各点按余弦曲线分配。在中孔跨中fc 确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L 处成桥预拱度取中孔跨中成桥预拱度fc 的1/4,边孔其余各点按余弦曲线分配。最终成桥预拱度等于收缩徐变预拱度加上1/2活载值。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。 (1) 活载挠度计算 中跨活载最大挠度:d 2=0.032m ; (2) 中跨最大预拱度的确定 1000 L fc =0.17m ; (3) 余弦曲线

预拱度相关问题

预拱度相关问题 一、预拱度的概念及确定因素 预拱度:为抵消梁、拱、桁架等结构在荷载作用下产生的挠度,而在施工或制造时所预留的与位移方向相反的校正量。 确定因素:①脚手架承受施工荷载后引起的弹性变形;②超静定结构由于混凝土收缩及徐变而引起的挠度;③由于杆件接头的挤压和卸落设备的压缩而产生的塑性变形;④脚手架基础在受载后的塑弹性沉降;⑤梁、板、拱的底模板的预拱度设置。 二、拱桥预拱度的设置与计算 2.1预拱度的设置 当结构自重和汽车荷载(不计冲击力)产生的最大竖向挠度,不超过计算跨径的1/1600 时,可不设预拱度,超过就要设预拱度。预拱度的设置值为按结构自重和 1/2 可变荷载频遇值计算的长期挠度值之和采用。 上部结构和支架的各变形值之和,即为应设置的预拱度。支架受载后将产生弹性和非弹性变形,桥梁上部结构在自重作用下会产生挠度,为了保证桥梁竣后尺寸的准确性,在施工时支架须设置一定数量的预拱度。 钢桥预共度是通过改变螺栓间距实现的,混凝土桥是靠桥梁线形控制的,调整立模标高。预共度值一般是恒载+1/2静活载挠度。 预拱度应根据上述各项因素产生的挠度曲线反向设置;可根据以往的实践经验按下述方法之一设置: 1 按抛物线设置。 2 按推力影响线的比例设置。 3 对于不对称拱桥或坡拱桥,按拱的弹性挠度反向比例设置。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后

期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。 中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。 2.2 施工预拱度的计算 预拱度的大小应按无支架和有支架两种情况,并分别考虑下列因素进行估算。 1 无支架施工的拱桥 1) 主拱圈及拱上建筑自重产生的拱顶弹性下沉δ u1 式中 l——主拱圈计算跨径; f——主拱圈计算矢高; E——主拱圈材料受压弹性模量; Hg——主拱圈及拱上建筑自重产生的水平推力; σ——主拱圈及拱上建筑自重产生的水平压应力; φm——拱顶与拱脚连线与跨径的夹角; A——主拱圈(平均)截面面积 2)主拱圈温度变化产生的拱顶弹性变形δ u2 式中α——主拱圈材料线膨胀系数; t1——年平均温度; t2——封拱时的温度。 当t1﹥t2时,拱顶上挠,反之,拱顶下沉。

相关主题
文本预览
相关文档 最新文档