当前位置:文档之家› 高超声速飞行器多学科优化建模方法

高超声速飞行器多学科优化建模方法

高超声速飞行器多学科优化建模方法
高超声速飞行器多学科优化建模方法

第14卷第9期计算机集成制造系统

Vol.14No.92008年9月

Computer Integrated Manufacturing Systems

Sep.2008

文章编号:1006-5911(2008)09-1690-06

收稿日期:2007210228;修订日期:2008201214。Received 28Oct.2007;accepted 14Jan.2008.

基金项目:国家863计划资助项目(2005AA726082);航天支撑技术基金资助项目(071106);国家自然科学基金资助项目(60774087)。Found a 2

tion item :Project supported by t he National High 2Tech.R &D Program ,China (No.2005AA726082),t he Ast ronautical Supporting Technology Foundation ,China (No.071106),and t he National Natural Science Foundation ,China (No.60774087).

作者简介:龚春林(1980-),男,安徽肥西人,西北工业大学航天学院讲师,博士,主要从事飞行器多学科设计优化的研究。

E 2mail :leonwood @https://www.doczj.com/doc/5c4047787.html, 。

高超声速飞行器多学科优化建模方法

龚春林,谷良贤

(西北工业大学航天学院,陕西 西安 710072)

摘 要:为建立高超声速飞行器多学科设计优化软件系统,研究了一种面向多学科设计优化的建模方法。通过分析系统分解带来的学科设计冲突,建立了两种多学科连续性条件。据此连续性条件,结合现有飞行器设计流程,提出了一套建立多学科设计优化模型的方法,包括系统分析模型和系统优化模型。针对高超声速飞行器方案设计,研究了包含弹道/控制、气动、超燃冲压发动机、结构、热保护系统等五个学科的多学科设计优化问题。采用所研究的多学科设计优化建模方法,构造了系统级模型,并在框架软件中按照此模型集成各学科软件,建立了高超声速飞行器多学科设计优化软件系统。

关键词:飞行器;多学科设计优化;高超声速;空气动力学;建模中图分类号:TJ 760.2 文献标识码:A

Modeling method for multidisciplinary optimization of hypersonic flight vehicle

GON G Chun 2lin ,GU L iang 2x ian

(College of Astronautics ,Northwestern Polytechnical University ,Xi πan 710072,China )

Abstract :To set up Multidisciplinary Design Optimization (MDO )software system of hypersonic flight vehicle ,a kind of modeling method oriented to MDO was studied.By analyzing disciplinary design conflicts of multidisciplinary system ,two conditions to guarantee continuity of multidisciplinary system were established.According to these two conditions ,the method for constructing system analysis and optimization models of MDO was presented by combi 2ning with the existing flight vehicle design process.With this method ,a hypersonic flight vehicle MDO problem ,in 2cluding five disciplines of trajectory/control ,aerodynamics ,supersonic combustion ramjet ,structure and thermal protection system ,were discussed.Based on this MDO modeling method ,systematic model was constructed ,soft 2ware of each discipline was integrated into MDO framework ,and software which could be used in conceptual design process of hypersonic flight vehicle was developed.

K ey w ords :flight vehicle ;multidisciplinary design optimization ;hypersonic ;aerodynamics ;modeling

0 引言

与传统飞行器相比,高超声速飞行器创新的构

型设计、机体/发动机一体化、结构/TPS 一体化等特点,决定了设计学科间存在强烈的耦合作用,传统的串行设计模式难以满足总体设计需求。因此,在

高超声速飞行器发展过程中,采用多学科设计优化

(Multidisciplinary Design Optimization ,MDO )技术成为必然趋势[1]。MDO 概念从上世纪80年代提出,在高超声速飞行器领域也得到了足够的重视[2]。

早期研究大都是解决局部多学科设计问题,如

第9期龚春林等:高超声速飞行器多学科优化建模方法

气动/发动机、气动/结构、弹道/防热等,包含学科较少[325],且采用紧耦合集成模式,对学科自主性问题考虑的不够。随着高超声速各项关键技术的发展, MDO涵盖的学科更加广泛[627]。这些研究虽然重视学科自主性和软件集成技术,但由于缺乏系统级设计问题的描述方法,不能形成有效的MDO设计工具,因而在总体设计过程中的应用受到较大限制。另一方面,MDO求解技术已经过多年的发展,但仍然局限于简单的应用,无法验证其在高超声速飞行器设计中的有效性。造成这些问题的主要原因是缺乏与总体设计过程相适应的MDO建模方法。

对此,本文从分析、设计两个层次考虑多学科系统潜在的设计冲突,建立多学科连续性条件,提出一种基于学科模型的“自下而上”MDO

建模方法。以包含气动、发动机、弹道/控制、结构、热保护系统五个学科的设计问题为研究对象,描述该方法的应用,并基于此建立高超声速飞行器MDO软件系统。本文旨在研究一套适用于工程系统设计的MDO建模方法,为高超声速飞行器总体设计中MDO的应用奠定基础。

1 多学科设计冲突

首先对本文涉及的模型进行定义:

(1)分析模型 用于计算设计方案的性能,用Y =F(X,P)表示,其中Y为设计方案的性能,X为设计方案中的可变因素(设计变量),P为设计方案的不可变因素。

(2)优化模型 用于建立设计方案的评价内容和准则,包括设计变量X、目标函数J(Y,X,P)和约束条件C(Y,X,P)三个要素。其中X为待评价的设计内容,J,C为评价准则。

复杂系统的分析模型往往涉及到多个专业领域,难以从数学上建立统一的形式,只能分解成多个容易描述和求解的学科分析模型Y i=F i(X i)。分解后的学科往往均从局部性能需求出发,在学科分析模型基础上建立优化模型:

min J i=J i(X i,Y i,P i);

s.t. C i(X i,Y i,P i)≤0,

 X l i≤X i≤X u i。(1)从而系统设计问题被分解为多个局部设计问题。学科设计问题并非独立的,必须要考虑外界对其产生的影响。

如图1所示,学科的设计方案X i由独立的三部分组成:

X i=X i,lσX i,sσX i,c。(2)其中:X i,l与其他学科无关,称为局部变量;X i,s为与其他学科共有的设计参数,称为共享变量;X i,c= X1i,c,…,X i-1i,c,X i+1i,c,…,X n i,c为与其他学科性能相关的设计因素,称为耦合变量。

X j i,c=E ji(Y i j)。(3)式中:Y i j为j学科输出集合Y j中,与i学科相关的子集;E ji为j学科输出到i学科输入的映射关系。欲使分解后的多学科系统与原设计系统具有同等功能,则任意两个学科i,j应满足

X j i,c≡E ji(Y i j),(4)

X j i,s≡X i j,s。(5)称式(4)和式(5)为多学科连续性条件,它们共同决定了多学科优化不是学科优化的叠加。传统设计过程中,学科的设计行为相对对立,而总体设计没有严格建立多学科连续性条件,形成了潜在的设计冲突:①学科之间存在输入/输出耦合关系,学科独立设计导致输入/输出不相容,违反约束(4);②学科之间存在相同的设计变量和相互制约的设计目标/约束,学科独立设计可能导致违反约束(5)。

2 多学科设计优化建模方法

MDO建模包括学科建模和系统级建模两方面。其中,学科建模与传统方法类似;系统级建模的实质为,在学科模型基础上,构造多学科连续性条件(4)和(5),避免潜在的学科冲突,体现在系统分析模型和系统优化模型的构造。

2.1 系统分析模型

系统分析模型是在考虑学科耦合变量的情况下,从分析层次统一各学科,构建面向多学科的分析模型,提供设计方案整体性能评估。该模型的构建可解决第①类设计冲突问题,其过程描述如下:

1961

计算机集成制造系统第14卷

(1)建立各学科分析模型Y i=F i(X i),完整地描述学科接口参数(X i和Y i)。

(2)建立耦合模型X j i,c=E ji(Y i j)。

(3)连接各学科分析模型接口,形成设计结构矩阵(Design St ruct ure Mat rix,DSM)[8]。

(4)优化和重构DSM,使得学科次序按照某种指标达到最佳。本文以耦合计算强度最小作为评价指标,耦合计算强度的评估基于学科分析单次运行时间T i和耦合变量的规模。对于两学科耦合问题,耦合计算强度为

G12=(T1+T2)×N1-2。(6)式中N1-2为两学科间耦合变量X c的维数。对于三个学科问题,将学科1和2作为一个整体,则耦合强度G123=(G12+T3)×N12-3。N12-3为1,2学科与3学科的耦合变量维数。对于更多的学科,以此类推。

2.2 系统优化模型

系统优化模型构建的目的是解决第②类冲突,在统一设计变量的前提下,协调各学科优化目标和约束条件,即对优化模型的三要素进行统一。

(1)变量统一化 优化设计变量是系统独立的可变参数。MDO问题的设计变量并非学科变量X i 的叠加,应取各学科变量的X i并集X1∪X2∪…∪X n,即消除共享变量X s。同时,X i中的耦合变量是由系统内部特性决定的,并非独立变量,需要除去此部分。最终,系统级变量可表示为

X=(X1∪…∪X n)∩X1,c∪…∪X n,c

=X1∪…∪X n∩X1,c∩…∩X n,c。(7)

(2)目标统一化 MDO建模时需要考虑各学科性能对总体性能的影响,拟定一组能反映全局性能的目标函数。由于系统性能均在学科优化目标中体现,各学科的目标函数可作为备选,但需要避免目标函数的重复。在此定义过渡目标的概念。所谓过渡目标是某个学科的设计指标,且此指标可以由其他学科的设计指标体现。如气动学科的设计目标是升阻比最大,其最终目的是最大化航程,体现在飞行弹道学科的评价指标中。

在已知各学科优化指标后,通过辨识过渡目标,得到系统优化目标集合

J=J1∪…∪J n∩J1,t∩…∩J2,t。(8)式中:J i为各学科的优化目标集合,J i,t为各学科的过渡目标。

(3)约束统一化 约束和目标函数均是系统的评价指标,某种程度上,二者可以相互转换。MDO 约束条件的建立与目标函数相同,在已知各学科的约束条件后,辨识过渡约束C i,t,得系统约束集合C=C1∪…∪C n∩C1,t∩…∩C n,t。(9) 2.3 面向多学科设计优化的建模过程

结合目前飞行器总体设计流程[829],面向MDO 的设计流程如图2所示。其中,各学科设计人员根据学科边界独立构建优化模型和分析模型。总体设计人员以学科模型为元素,采用2.1节和2.2节描述的方法综合建立系统级优化模型。

不同于传统设计,面向MDO的设计过程中,各分系统不仅需要提交设计方案和相关指标,还要提交学科模型;总体设计可以建立完整的系统级设计模型,因而设计任务并不仅是基于经验对分系统(或学科)进行协调,还可以充分利用数值优化手段解决多学科冲突问题。

图2中的MDO建模方法采用“自下而上”的原则,与现有飞行器设计组织模式一致。其中,原理性方案设计、集成求解与本文研究的MDO建模过程共同组成了面向MDO总体设计的三个主要阶段

3 高超声速飞行器MDO建模

3.1 学科模型

本文选择的高超声速飞行器设计实例参考X43[10],方案设计阶段主要考虑:弹道/控制、气动、超燃冲压发动机、热保护系统和结构五个学科的多

2961

第9期龚春林等:高超声速飞行器多学科优化建模方法

学科设计问题。在总体设计过程中,各学科的分析与优化模型如表1所示。

表1 高超声速飞行器学科模型

学科

优化模型分析模型

三要素参数描述计算方法输入接口(X)输出接口(Y)

弹道

X1

C1

J1助推段俯仰角变化规律参数

巡航速度

巡航高度

巡航段高度控制与速度控制

气动性能参数

发动机参数

平均速度V av>5Ma

射程R0>1500km

末端攻击速度V f>3Ma

最小化燃料需求量

采用纵向平面运动方程,爬

升段采用俯仰角程序控制,

巡航段采用高度控制和燃

料流量控制

质量特性

气动插值表

发动机插值表

巡航高度

巡航速度

高度控制参数

速度控制参数

攻角历程

马赫数历程

高度历程

最大过载

航程

平均速度

燃料消耗量

气动X2

C2

J2

气动外形参数

最大轮廓尺寸限制

有效容积限制

压心满足静稳定度要求

最大化巡航升阻比

采用基于牛顿内伏流理论

的工程计算方法

外形参数

马赫数范围

攻角范围

高度范围

气动插值表

发动机

X3

C3

J3内流道几何参数

燃料喷射参数(位置、速度)

巡航高度和巡航速度

满足Shock2on2Lip条件

进气道满足启动条件

燃烧室进口压力限制

燃烧室进口速度限制

最大化净推力/比冲

分别基于:平面斜激波理

论、一维欧拉方程、二维欧

拉方程进行分析,基于动量

定理计算发动机性能

外形参数

内流道几何

燃料喷射参数

巡航高度

巡航速度

发动机插值表

结构

X4

C4

J4气动外形(决定弹体轮廓)

结构几何参数(蒙皮、隔框、梁)

部位安排满足静稳定度要求

燃料质量(确定储箱尺寸)

满足结构强度要求

满足部位安排对有效容积的要求

最小化结构质量

基于Nastran实现结构分

析和优化;采用CAD模型

计算总体尺寸参数和质量

特性

外形参数

质量分布

结构几何参数

过载

气动力分布

TPS质量

TPS几何尺寸

全弹质量特性

最优结构尺寸

固有频率

热保护系统

X5

C5

J5气动外形

飞行弹道参数

热保护系统的尺寸

满足蒙皮表面温度要求

满足内部温度要求

最小化TPS的质量

基于一定的理论和经验公

式,建立气动加热率计算模

型,采用有限元方法计算

TPS质量

外形参数

马赫数历程

攻角历程

高度历程

TPS质量

TPS几何分布

3961

计算机集成制造系统第14卷

3.2 系统分析模型根据表1的学科分析模型和输入/输出接口,提取耦合变量,可建立如图3虚线框所示的MDO 系统分析模型(DSM ),对角线上为各学科模型,连线的交点为耦合参数。3.3 系统优化模型3.3.1 目标函数

如表1所示,各学科共有五个目标函数,存在以下过渡目标:

(1)最大化巡航升阻比和发动机比冲均是希望在射程一定的情况下燃料量消耗最少,与弹道学科优化目标一致。因此,目标J 2,J 3为过渡目标。

(2)最小化燃料质量、结构质量、TPS 质量可以统一为最小化巡航飞行器总质量m 02,因而这三个学科的目标函数也是过渡目标。

由此,五个学科的目标函数可归结为最小化飞行器质量:

min J (X )=m 0=m TPS +m f +m s +m p 。其中:m TPS 为热保护系统质量,m f 为燃料质量,m s 为结构质量,m p 为有效载荷质量。

3.3.2 约束条件

存在的过渡约束有:

(1)气动和结构设计均要考虑有效容积限制,二者可统一。

(2)气动的压心约束和结构的部位安排约束可统一为静稳定度约束。

由式(8)可得系统约束集合。3.3.3 设计变量

设计变量的综合需要考虑耦合变量和共享变量。其中,耦合变量如图3所示,存在的共享变量有:

(1)外形参数,为气动、发动机、结构、热保护系统四个学科共享。

(2)巡航速度和巡航高度,为弹道、发动机两个学科共享。

根据式(7)可得到系统设计变量集合,包括局部设计变量和共享设计变量两部分。

最终建立的MDO 模型如图3所示。其中,参数处理模块根据各学科的性能参数,计算系统级约束和目标函数

4 多学科设计优化软件系统

根据建立的高超声速飞行器MDO 模型(如图3),在MDO 框架软件[11]中集成各学科软件,组建

了高超声速飞行器MDO 软件系统。

此软件系统可综合完成气动外形、发动机、弹道、热保护系统、结构的多学科优化设计。图4为采用多学科可行法(MultiDisciplinary Feasible ,MDF )

4961

第9期龚春林等:高超声速飞行器多学科优化建模方法求解得到的优化迭代曲线

5 结束语

MDO 建模是衔接应用研究和理论求解方法研

究的关键,而目前限制MDO 在工程实践中应用的主要问题是缺乏适当的建模方法。本文从多学科问题潜在的学科冲突入手,将现有的飞行器设计组织形式与MDO 思想相结合,建立了一套面向MDO 的建模方法,并在高超声速飞行器方案设计阶段进行了初步应用,建立了适应于总体设计的MDO 模型。在此基础上,构建了一套MDO 软件系统。本文研究为进一步开展MDO 求解技术和工程应用奠定了模型基础,所建立的方法虽然出发点是高超声速飞行器,但同样适用于其他飞行器和复杂产品的多学科设计问题。参考文献:

[1] Committee on Review and Evaluation of t he Air Force Hyper 2

sonic Techndogy Program ,National Research Council.Review and evaluation of air force hypersonic technology program [M ].Washington ,D.C.,USA :National Academy Press ,1998.[2] BOWCU T T K G.Multidisciplinary optimization of airbreat h 2

ing hypersonic vehicles[J ].Journal of Propulsion and Power ,2001,17(6):118421192.

[3] MOLV IK G A ,BOWL ES J V ,HU YN H L C.A hypersonic

waverider research vehicle wit h hydrocarbon scramjet propul 2sion :design and analysis[C]//Proceedings of the 5th International Aerospace Planes and Hypersonics Conference.Reston ,Va.,USA :AIAA ,1993.

[4] O ′N EILL M K L ,L EWIS M J.Design tradeoff s on scramjet

engine integrated hypersonic waverider vehicles[J ].Journal of Aircraft ,1993,30(6):9432952.

[5] COWAR T K K ,OLDS J R.Integrating aeroheating and TPS

into conceptual RLV design [R ].New Y ork ,N.Y,USA :AIAA ,1999.

[6] ENDER T R ,MCCL U RE E K ,MAVRIS D N.Development

of an integrated parametric environment for conceptual hyper 2sonic missile sizing [R ].New

Y ork ,N.Y.,

USA :

AIAA ,2002.

[7] BA KER M L ,MUNSON M J ,HOPPUS G W.Integrated hy 2

personic aeromechanics tool (IHA T ),build 4[R ].New Y ork ,N.Y.,USA :A IAA ,2004.

[8] L U Shiguang ,CAO Bozhen ,YAN G Baokui ,et al.Cruise mis 2

sile system design [M ].Beijing :Astronautics Press ,1993(in Chinese ).[路史光,曹柏桢,杨宝奎,等.飞航导弹总体设计[M ].北京:宇航出版社,1993.]

[9] HAMMOND W E.Design met hodologies for space transporta 2

tion systems [M].New Y ork ,N.Y.,USA :AIAA ,1991.[10] EN GEL UND W C ,HOLLAND S D ,J R COC KRELL C E ,

et al.Propulsion system airframe integration issues and aero 2dynamic database development for t he hyper 2X flight research vehicle[R ].Hampton ,Va.,USA :NASA 2Langley Technical Report Server ,1999.

[11] GON G Chunlin ,GU Liangxian ,YUAN Jianping.An system

decomposition based multidisciplinary integrated design

process and tool [J ].Computer Integrated Manufacturing Systems ,2006,12(3):3342338(in Chinese ).[龚春林,谷良

贤,袁建平.基于系统分解的多学科集成设计过程与工具[J ].计算机集成制造系统,2006,12(3):3342338.]

5

961

X-51及高超声速飞行器简介

美国X-51A飞行器及总体设计及其关键技术简介 Xxx 摘要:从计划的背景、飞行器的构造、热防护材料研发测试以及实际飞行试验等方面对X-51A 的发展计划作了较为详细的介绍,并据此对美国发展高超声速飞行技术的研究流程和理念有个一定的了解与认识。 关键词:X-51A 高超声速导弹热防护系统结构材料飞行器 引言:美国自二十世纪九十年代启动“全球敏捷打击”计划以来,一直处于低速发展过程中,该计划近期开始迅速升级,从改造“三叉戟”导弹开始,美国正推出一系列先进攻击武器概念,包括飞机、无人机和导弹。其中,X-51高超声速巡航导弹是美国武器库目前速度最快的全球打击武器,可以在一小时内攻击地球上任一目标。 1项目概况 巡航导弹在美国武器系统中具有特殊的地位,在未来信息化战争中,巡航导弹不要要成为首选的打击武器,也是美军实行远程军事打击的必备武器。 美国于20世纪90年代启动的“全球敏捷打击”计划自推出以来一直处于低速发展过程中,直至近年该计划开始迅速发展。美国从改造三叉戟导弹开始,陆续推出一系列的先进攻击武器概念,包括新一代的飞机、无人机和导弹。 X-51A计划是由美国空军研究试验室(AFRL)、国防高级研究计划局(DARPA)、NASA、波音公司和普惠公司联合实施的旨在验证高超声速飞行能力的计划。终极目标是发展一种马赫数达到5~7的可以在1 h内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。X-51A于2010年2月中旬进行了首次高超声速飞行试验。 X-51A的首飞创造了又一个人类历史记录———超燃冲压发动机推进的历时最长的高超声速飞行,刷新了X2 43创造的12 s的记录。X2 51A首飞的成功意味着, 超燃冲压发动机将提供一种全新的快速全球打击能力。据称,该高超声速导弹将能够在60 min内实施全球打击。美国国防部/NASA的X2 51A项目则是这一新型武器系统方案的关键部分。X2 51A 的飞行试验对于空间进入、侦察、打击、全球到达以及商业运输等都有重要意义。 2 X-51A计划的背景 美国空军认为,高超声速推进技术是美国亟须发展的关键领域之一,为了达到这一目的,必须走“阶梯式发展”的道路。1979年首次发射的先进战略空射导弹(ASLAM)是早期的高超声速导弹,它使用高速冲压发动机实现了马赫数为5. 5的飞行,虽然达到了高超声速,但由于冲压发动机的燃烧是在亚声速状态下进行,效率非常低。解决这一问题的方法是使用超燃冲压动机,于是X-51A计划应运而生。 20世纪90年代中期,国家空天飞机(NASP,NationalAerospace Plane)计划终止后,美国空军转而投资HyTech(Hypersonic Technology)计划以延续其对高超声速技术的研究。2004年1月, AFRL选择波音公司与普惠公司共同制造SED-WR的验证机,由波音公司制造机身,普惠公司

高超声速飞行器鲁棒控制系统的设计

高超声速飞行器鲁棒控制系统的设计 Christopher I. Marrison and Robert F. Stengel Princeton University, Princeton, New Jersey 08544 本文设计了高超声速飞行器纵向平面鲁棒控制系统。飞行器纵向平面的非线性数学模型包含了28个不确定参数。利用遗传算法搜索每个控制器的系数设计空间;利用蒙特卡洛算法检验每个搜索点处的稳定性和鲁棒性。补偿器的鲁棒性用概率函数来表示,该函数表示在参数可能变动范围内,闭环系统的稳定性等性能指标落入允许范围的概率。设计了一性能指标函数,使其最小,从而产生可能控制器系数空间。这种设计方法综合考虑了不同的设计目标,辨识了鲁棒性指标下的系数的不确定性。这种方法有效利用了计算工具,广泛考虑了工程知识,设计出了能够应用于实际的控制系统。 本文中用到的符号: a ——声速,ft/s D C ——阻力系数 L C ——升力系数 ()M C q ——俯仰角速率引起的俯仰力矩系数 ()M C α——攻角引起的俯仰力矩系数 ()M C E δ——舵偏引起的俯仰力矩系数 T C ——发动机推力系数 c ——参考长度,80ft D ——阻力,lbf h ——高度,ft yy I ——俯仰转动惯量,6710?slug-ft 2 L ——升力,lbf M ——马赫数 yy M ——绕俯仰轴的转动力矩,lbf-ft m ——质量,9375slugs q ——俯仰速率,rad/s E R ——地球半径,20 903 500 ft r ——距地心距离,ft S ——参考面积,3603ft 2 T ——推力,lbf V ——速度,ft/s α——攻角,rad

高超声速飞行器结构材料与热防护系统

本文2010201222收到,作者分别系中国航天科工集团三院310所助工、高级工程师 高超声速飞行器结构材料与热防护系统 郭朝邦 李文杰 图1 挂载在B 252H 机翼的X 251A 摘 要 随着人类对高超声速飞行器的不断探索,结构材料和热防护系统已成为高超技术发展的瓶颈。首先介绍了X 251A 和X 243A 的项目概况、结构材料和热防护系统,然后分别从高超声速试飞器超高温热防护材料、大面积热防护材料和热防护系统等几方面对X 251A 和X 243A 试飞器进行了分析,最后提出了结构材料和热防护系统发展的关键技术。 关键词 X 251A X 243A 结构材料 热防护 系统 飞行器 高超 引 言 随着高超声速飞行器飞行速度的不断提高,服役环境越来越恶劣,飞行器的热防护问题成为限制飞行器发展的瓶颈。而高超声速结构材料和热防护系统的研究与开发是高超声速飞行器热防护的基础,因此,各国都大力开展了高超声速飞行器热防护材料与结构的相关研究。尤其是以美国为代表的X 251A 和X 243A 高超声速飞行器在结构材料和热防护方面的研究比较突出,本文对这两种试飞器的结构材料和热防护技术分别进行详细介绍。1 X 251A 高超声速飞行器1.1 项目概况 X 251A 计划是由美国空军研究试验室(AFRL )、国防高级研究计划局(DARP A )、NAS A 、波音公司 和普惠公司联合实施的旨在验证高超声速飞行能力 的计划。终极目标是发展一种马赫数达到5~7的可以在1h 内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。试验方式是使 用B 252H 轰炸机挂载X 251A 飞行,达到预定的飞 行条件,释放X 251A 进行飞行试验。图1是挂载在B 252H 机翼下的X 251A 。美国空军在2003年开始研 制试飞器,2004年12月完成初始设计评估,2005年1月开始详细设计,2005年9月27日被正式赋予X 251A 的代号,2007年5月该项目通过关键设计评审。2009年12月9日在加利福尼亚州爱德华兹空军基地进行了首次系留挂载飞行试验,X 251A 挂载在B 252H 重型轰炸机的机翼下向北起飞后爬升至15.24km 高空,随后该机携载X 251A 做了较柔和的机动动作。按计划,X 251A 将于2010年2月中旬进行了首次高超声速飞行试验。1.2 结构材料与热防护系统1.2.1 总体结构 X 251A 整个飞行器长7.62m ,质量1780kg,

高超声速飞行器动力技术介绍及部分国家发展现状

一、高超声速飞行器技术发展路径及动力技术介绍 1.1 高超声速飞行器技术发展路径 高超声速飞行器区别与其他飞行器最大的特点是高度一体化,使得飞行器机身与推进系统密不可分,从某种意义上来说是无法划分出一个所谓的“发动机”进行研制的,这样的“发动机”也只有在与机身合二为一才能发挥其真实的性能,也才能真正的运行起来。因此,高超声速飞行器首先是“自顶而下”地分解研究对象和研究阶段,随着技术的发展再逐步地整合各部分的研究,逐级、逐步形成一个完整的飞行器研究对象。从总体方案设计的完整的飞行器作为研究对象可划分为四个层次的研究:气动/推进一体化研究、全流动通道推进系统研究、超然冲压模型发动机研究、超然冲压发动机部件研究,将高超声速飞行器自顶而下分解后就,再从分解出来的底层部件逐步发展“自下而上”到顶层飞行器。同时“自顶而下”的技术分解和“自下而上”的技术集成这两条路线又是有交互的,在试验研究的任何阶段发现问题,都应当反馈到飞行器总体的设计,重新定义部件、子系统的研究对象。 图1.1 1.2 高超声速飞行器动力技术介绍 气动/推进一体化研究 全流动通道推进系统研究 超然冲压模型发动机研究 超然冲压发动机部件研究

高超声速飞行器的核心关键技术包括超燃冲压发动机技术、高超声速飞行器组合推进系统技术、高超声速飞行器机身推进一体化设计技术、高超声速飞行器热防护技术、高超声速飞行器导航制导与控制技术、高超声速飞行器风洞实验技术。下面的篇幅分别对超燃冲压发动机和组合推进系统技术做简要介绍: (1)超然冲压发动机概念介绍 超燃冲压发动机是高超声速飞行器推进技术的核心技术,超然冲压发动机与亚燃冲压发动机同属于吸气式喷气发动机,由进气道、燃烧室和尾喷管构成,没有压气机和涡轮等旋转部件,高速迎面气流经进气道减速增压,直接进入燃烧室和燃料混合燃烧,产生高温燃气经尾喷管加速后排出,从而产生推力。 超燃冲压发动机通常可以分为双模态冲压发动机和双燃烧室冲压发动机。双模态冲压发动机是指发动机根据不同的来流速度,其燃烧室分别工作于亚声速燃烧状态、超声速燃烧状态、超声速燃烧/亚声速燃烧/超声速燃烧状态。双燃烧室冲压发动机是指同一发动机同时具有亚燃冲压和超燃冲压双循环的超燃冲压发动机,采用双循环的主要目的是用亚燃冲压发动机点燃超然冲压发动机来解决煤油燃料的点火和稳定燃烧问题。 (2)超声速燃烧概念 在一定的压缩和膨胀效率的条件下,进入发动机的空气有一最佳压缩量,使得发动机的效率最高。燃料的热值和过程的效率越高,其

A280-飞机总体设计-matlab-SRR-DT12-新型高超声速飞行器

飞机总体设计 新一代高超声速无人机——“赤隼” 第一阶段SRR总结报告 学院名称:航空科学与工程学院 专业名称:飞行器设计与工程 组号:DT12 组长:殷海鹏 2013 年 4月 1日

目录 一、任务陈述 (4) 二、市场需求 (4) 三、相关竞争实施方案 (5) 1. 天基信息系统 (5) 2. 空基侦查系统 (5) 四、运行理念 (6) 1. 潜在运用对象 (6) 2. 载荷能力 (6) 3. 典型任务剖面 (6) (1)任务剖面1(侦查过程中发现重要作战目标) (6) (2)任务剖面2(侦查过程中未发现重要作战目标) (6) 五、系统设计需求 (6) 1. 设计要求 (6) (1)X-43A (7) (2)X-51A (7) (3)HTV-2 (7) (4)HTV-3X (8) 六、新技术与新概念 (8) 1. 激光雷达 (8) 2. 气动布局 (8) 3.热防护 (8) 七、初始参数 (9) 方案一 (9) 方案二 (10) 八、人员分工 (10) 九、本阶段总结及下阶段任务计划 (11) 十、参考资料 (12)

图表目录 图1 天基信息系统 (5) 图2 空基侦察系统 (5) 图 3 X-43A (7) 图 4 X-51A (7) 图 5 HTV-2 (7) 图 6 方案一概念草图 (9) 图7 方案二概念草图 (10) 表 1 方案一初始参数 (9) 表 2 方案二初始参数 (10) 表 3 小组人员分工表 (10)

一、任务陈述 在新世纪的战争中,高超声速飞行器的优势主要体现在以下三个方面:首先是可以迅速打击数千或上万公里外的各类军事目标,大大地拓展了战场的空间。其次,突防能力更加强大,防空系统的拦截概率因反应时间太短而大幅度下降,具有较高的突防成功率。第三,超高速的飞行可以使得雷达难以探测,是一种新型的隐身方案。在新的战争形态中,信息战变得越发重要,侦查机是获取信息的重要来源,同时针对重要目标,在侦查同时具有一定攻击能力会使侦查起到意想不到的效果。从目前中国的空军机种来看,急需一款高超声速无人侦查机,此机最好还能有一定的攻击力,在侦查到重要目标时给予高效打击,对增强我国国防力量有重要作用。 二、市场需求 臭鼬工厂曾预测飞行器的下一场革命将来自于‘速度’,其速度优势会让各国现役防空导弹统统变成废铜烂铁。高超声速飞行器具有广阔的应用前景和巨大的军事价值。纵观21世纪的战场需求,高超声速飞行器已是不可缺少的攻击型和防御型兵器,世界各国都在加速这方面的研究工作,美国当前Ma为8-10的飞行器正在试验,而在2025年计划装备Ma为12-15的飞行器。澳、俄、法、德、日等很多国家对于高超声速飞行器的相关技术、功能、应用价值展开了积极的探讨与研究,并制定了一系列技术发展计划。从市场规模的角度来看,此类飞行器各国都有投入,但由于技术原因,规模较小而成功率偏低,在这种情况下,能率先设计生产出超高声速无人机的国家必能在错综复杂的国际环境下争取到先机,对于现在的世界态势和中国的防御性国防策略来说,我国对超高声速无人机有着极其重要的需求,比如马航失事后,如果能出动10Ma的侦察机进行快速侦查,必可得到最新最真实的情报,在新的战争理念中,被发现就是被消灭,侦察机与其他飞机相比必将会有着更高的军事地位。

PID高超声速飞行器姿态控制中的应用展望

Oct.2010航天控制 v。1.28,N。.5AerospaceContr。1 。93?分数阶肼A∥在高超声速飞行器 姿态控制中的应用展望 齐乃明秦昌茂宋志国 哈尔滨工业大学,哈尔滨150001 摘要高超声速飞行器的发展是一个必然的趋势,但是其具有强耦合、严重非 线性、大范围气动环境变化的特点,这对飞行器的姿态控制系统提出了更高的要 求。本文简述了现代控制及智能控制在姿态控制器中的应用,回顾了传统PID 及其改进控制技术,针对新的被控对象特点,介绍了分数阶P,1矿及其发展。由 于分数阶PPIY"具有比传统PID更好的鲁棒性和控制性能,展望分数阶川1矿 控制在高超声速飞行器姿态控制中得到更广泛的应用。 关键词高超声速飞行器;姿态控制;传统PID;分数阶P,1矿 中图分类号:V448.2文献标识码:A 文章编号:1006.3242(2010)05-0093-06 ProspectofFractional-OrderPIADpController forHypersonicMissileAttitudeControl QINaimingQINChangmaoSONGZhiguo HarbinInstituteofTechnology,Harbin150001,China AbstractThe developmentofhypersonicmissileisaninevitabletrend.Therequirementofattitudecontrols弘temforaerocrafiishigherbecausethecharacteristicsofastrongcoupling,seriousnonlinearandlarge—scaleenvironmentalparametersarechangedinaerodynamic.Inthispaper,themoderncontrolandintelli—gent controlthatappliedtoattitudecontrolarebriefed,andclassicalPIDcontroltechnologyanditsim—provementarereviewed.thefractionalorderPI、D“controlleranddevelopmentforfknell3objectfeaturesarealsointroduced.Asaresult,fractionalorderPI、D“controlisbetterthanclassicalPIDcontrolinrobustnessandcontrolperformance.Therefore,fkfractionalorderP11D“controlwillbe埘池矽usedinhypersonicmissileattitudecontr01. KeywordsHypersonicmissile;Attitudecontrol;ClassicalPIDcontrol;FractionalorderP11D9controller 高超声速飞行器以美国的超一x计划飞行器及通用航空飞行器(CAV)[13为代表,计划实施对全球的快速打击,俄罗斯、日本等国也在积极研制高超声速飞行器,而我国尚处于起步阶段。 高超声速飞行器的飞行速度和高度变化大,可全空域机动飞行但其大范围气动环境的变化引起系统参数变化范围大,各通道间耦合影响也变大,使其成为具有强耦合、严重非线性并带有不确 收稿日期:2009-07-26 作者简介:齐乃明(1962一),男,哈尔滨人,教授,博士生导师,主要研究方向为航天器飞行动力学控制与仿真;秦昌茂(1985一),男,江西人,博士,主要研究方向为高超声速飞行器制导与控制;宋志国(1987一),男,黑龙江人,硕士, 主要研究方向为高超声速飞行器制导与控制。

多学科设计优化简要介绍

多学科设计优化简要介绍 多学科设计优化 (Multidisciplinary Design Optimization,简称 MDO)是一种通过充分探索和利用工程系统中相互作用的协同机制来设计复杂系统和子系统的方法论。其主要思想是在复杂系统设计的整个过程中利用分布式计算机网络技术来集成各个学科 (子系统 )的知识,应用有效的设计优化策略,组织和管理设计过程。其目的是通过充分利用各个学科(子系统 )之间的相互作用所产生的协同效应,获得系统的整体最优解,通过实现并行设计,来缩短设计周期,从而使研制出的产品更具有竞争力。因此,MDO宗旨与现代制造技术中的并行工程思想不谋而合,它实际上是用优化原理为产品的全寿命周期设计提供一个理论基础和实施方法。 MDO研究内容包括三大方面:1,面向设计的各门学科分析方法和软件的集成;2,探索有效的 MDO算法,实现多学科 (子系统 )并行设计,获得系统整体最优解;3,MDO分布式计算机网络环境。 多学科设计优化问题 ,在数学形式上可简单地表达为: 寻找:x 最小化:f=f(x,y) 约束:hi(x,y)=0 (i=1 ,2 ,… ,m) gj(x,y)≤ 0 (j=1 ,2 ,… ,n) 其中:f 为目标函数;x为设计变量;y是状态变量;hi(x,y)是等式约束;gj(x,y)是不等式约束。状态变量 y,约束 hi 和 gj以及目标函数的计算涉及多门学科。对于非分层系统,状态变量 y,目标函数 f,约束hi 和 gj 的计算,需多次迭代才能完成;对于分层系统,可按一定的顺序进行计算。这一计算步骤称为系统分析。只有当一设计变量 x通过系统分 随着科学技术日新月异的发展,我们的武器装备,尤其是战斗机的水平日益提高,装备复杂程度已远超乎平常人的想象,装备设计不单要用到

高超声速飞行器发展现状

高超声速飞行器 一、国内外高超声速飞行器研制现状 高超声速飞行器技术是21世纪航空航天技术的新制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟进入太空的新方式。高超声速飞行器技术的突破,将对国际战略格局、军事力量对比、科学技术和经济社会发展以及综合国力提升等产生重大和深远的影响。因此,世界主要国家一直把高超声速飞行器研制作为科技发展的最前沿阵地,从人力、物力、财力等各方面给予大力支持。自20世纪50年代末开始探索超声速燃烧冲压发动机技术以来,经过几十年的探索,美国、俄罗斯、法国、德国、日本、印度和澳大利亚等国在20世纪90年代初陆续取得了技术上的重大突破,并相继进行了地面试验和飞行试验。这表明高超声速技术从进行概念和原理探索的基础研究阶段,进入了以某种高超声速飞行器为应用背景的先期技术开发阶段。各国技术开发的主要应用目标近期为高超声速巡航导弹,中期为高超声速飞机,远期为吸气式推进的跨大气层飞行器、空天飞机。高超声速飞行器技术是21世纪航空航天技术的制高点,也是重要的军民两用技术。虽然目前仍存在不少技术难题,而且耗费巨大,但从世界各研制国目前的发展势头来看,以超燃冲压发动机为动力的高超声速巡航导弹有可能在2010年前后问世。预计到2025年,以超燃冲压发动机为动力的高超声速飞机和空天飞机也有可能投入使用,并将在军事、政治和经济等领域产生重大影响。 1 美国 1.1 Hyper2X计划 经过较长时间的研究和实践,美国在高超声速飞行器的设计研制方面积累了丰富的经验。作为试验性高超声速飞行研究计划,Hyper2X计划是对以往所做工作的一次检验。Hyper2X计划是美国国家航空航天局(NASA)近年来重点开展的高超声速技术研究计划,主要目的是研究并验证可用于高超声速飞机和可重复使用的天地往返系统的超燃冲压发动机技术,并验证高超声速飞行器的设计方法和试验手段。1997年1月,NASA与兰利研究中心、德莱顿飞行研究中心签订合同,Hyper2X计划正式启动。Hyper2X计划的试验飞行器代号为X243,根据演示验证的任务不同分为X243A、X243B、X243C和X243D,共4个型号。 1.1.1 X243A X243A技术由位于弗吉尼亚州汉普顿的NASA兰利研究中心和位于加利福尼亚州爱德华的NASA德莱顿飞行研究中心负责开发。其中机身和发动机由位于田纳西州塔拉荷马的ATKGASL公司(原微型飞行器公司)制造,位于加利福尼亚州亨亭顿的波音公司鬼怪工厂负责部分系统工程、热防护、操纵、导航和控制设计以及飞行控制软件、内部布局和结构设计。X243A的助推器是经过改装的飞马座运载火箭的第一级,该系统由位于亚利桑那州昌德勒的轨道科学公司提供X243A机身长3.66m,高660mm,翼展1.53m,质量1360kg,由采用液氢燃料的双模态超燃冲压发动机推进。1997年3月,NASA选定ATKGASL公司为飞行研究任务装配X243A无人驾驶研究飞行器。1997年12月,轨道科学公司对飞马座运载火箭成功进行了关键的设计审查。1998年,1台超燃冲压发动机作为第一部硬件交付NASA,随后这台发动机在兰利研究中心的2.44m八支点高温风洞中进行了一系列测试。1999年10月,第一架X243A交付德莱顿飞行研究中心。2000年,X243A在ATKGASL公司的

高超声速飞行器技术研究中心

高超声速飞行器技术研究中心 来源:国防科技大学更新时间:2010-6-28 8:56:26 点击:11502次高超声速飞行器技术研究中心成立于2009年10月,中心下设高超声速飞行器总体技术研究室、高超声速推进技术研究室、燃气引射技术研究室、燃烧流动与传热研究室四个研究室。中心共有研究人员33名,具有高级专业技术职务的教师19名,具有博士学位的教师31名。高超声速推进技术团队2008年成为国家教育部“长江学者和创新团队发展计划”的创新团队。 近年来,依托“航空宇航推进理论与工程”国家重点学科和“飞行器设计”国家重点(培育)学科,结合流体力学、固体力学、材料学等相关学科,在保持火箭发动机研究特色与优势的基础上,在高超声速飞行器总体设计、超燃冲压发动机、地面模拟试验、超声速流动燃烧机理等方面研究取得了重大进展。2009年获得国家技术发明二等奖1项。 在国家、教育部以及军队相关计划的支持下,中心已建成占地120亩、建筑面积11000平方米的高超声速飞行器技术试验基地,拥有系列化的超燃冲压发动机直连式试验台和自由射流试验系统,配备了激光光谱燃烧流动诊断PLIF系统、Malven激光测粒仪、PDA粒子动态分析仪、高速纹影仪、PIV、CVI/CVD等先进观测设备和多机并行计算集群系统,为高超声速飞行器关键技术攻关和基础研究奠定了坚实基础。 中心承担了本科、硕士、博士学员的多门课程教学和基础研究条件建设任务。新建了基础研究试验大楼,建成了多个基础研究实验平台,并配备了先进试验仪器和测量设备。这些基础研究试验平台完全向学员开放,对于学员进行高水平论文研究、实验能力的培养以及综合素质的提高提供了有力的支撑和保障。 中心的主要研究方向有: ●飞行器总体技术 本研究方向重点开展高超声速飞行器总体一体化设计、飞行器布局优化设计及应用等方面的研究。 ●高超声速推进技术 本研究方向主要开展超燃冲压发动机、发动机地面试验与飞行试验技术、高超声速飞行器机体/推进系统一体化设计、超声速燃烧与流动机理等方面的研究。 ●燃气引射技术 本研究方向主要开展航空航天发动机高空模拟试验系统等方面的研究。 ●发动机燃烧、流动与传热机理研究

北航飞行器多学科设计优化复习题

飞行器多学科设计优化复习题 1.优化设计问题的三要素是什么?给出一个优化设计问题的例子,分别说明三个要素的具体内容。 三要素分别是设计变量,约束条件和目标函数。 以结构优化设计为例,设计变量可能是蒙皮厚度,前后翼梁缘条厚度,前后翼梁腹板厚度等结构参数;约束条件是机翼强度要求、刚度要求等目标函数是最小化结构重量。 2.飞行器设计一般分哪几个阶段?飞行器多学科优化设计有什么意义? 飞行器设计分三个阶段:概念设计、初步设计、详细设计。 飞行器MDO的意义为: (1)MDO符合系统工程的思想。能有效提高飞行器的设计质量 (2)MDO为飞行器设计提供了一种并行设计模式。 (3)MDO的设计模式与飞行器设计组织体制一致,能够实现更高程度的自动化。 (4)MDO的模块化结构使飞行器设计过程具有很强的灵活性。 3.在飞行器设计过程中,多学科设计优化方法与传统设计方法之间有哪些相同和不同点。 传统的飞行器设计优化中,采取的是一种串行的设计模式,往往首先进行性能设计优化,然后进行结构、操纵和控制系统设计优化,最后进行工艺装备设计。在传统的方法中,各个学科任务成了实现系统设计的最基本单元,影响飞机性能的气动、推进、结构和控制等学科被人为地割裂开来,各学科之间相互耦合所产生的协同效应并未被充分考虑进去,这可能导致失去系统的整体最优解,串行的模式也使得设计时间周期和成本大大增加。 而多学科优化设计技术是一种并行设计模式,它以各子系统、学科的优化设计为基础,在飞行器各个阶段力求各学科的平衡,充分考虑哥们学科之间的相互影响和耦合作用,应用有效的设计/优化策略和分布式计算机网络系统,来组织和管理整个系统的设计过程,通过充分利用各个学科之间的相互作用所产生的协同效应,以获得系统的整体最优解。 相同点在于都有对于子学科的分解,但是MDO更注重子学科间的协同。 4.给出MDO的三种定义,根据你的理解,MDO该如何定义? Definition1:MDO是一种通过充分探索和利用系统中相互作用的协同机制来设计复杂系统和子系统的方法论。 Definition2:MDO是指在复杂工程系统的设计过程中,必须对学科(子系统)之间的相互作用进行分析,并且充分利用这些相互作用进行系统优化合成的方法。 Definition3:多学科设计优化就是进行复杂系统的设计过程中,结合系统的多学科本质,充分利用各种多学科设计与多学科分析工具,最终达到基于多学科优化的方法论。 My Definition:当设计中每个因素都影响另外的所有因素时,确定该改变哪个因素以及改变到什么程度的一种设计方法。 5.多学科设计优化中,什么是学科分析?什么是系统分析? 学科分析:也成为子系统分析或子空间分析,以某一学科设计变量,其他学科对该学科的耦合状态变量和系统的参数为输入,根据某一学科满足的物理规律确定其物理特性的过程 系统分析:对整个系统,给定一组设计变量X,通过求解系统的状态方程得到系统状态变量的过程。 6.什么是多学科设计优化的状态变量?学科状态变量和耦合状态变量之间有什么区别?

高超声速飞行器若干问题研究进展_陈予恕

国家自然科学基金重点项目(编号:10632040) 本文2009-03-10收到,陈予恕、郭虎伦分别系哈尔滨工业大学院士、博士生,钟顺系天津大学航空航天研究院博士生 高超声速飞行器若干问题研究进展 陈予恕 郭虎伦 钟 顺 摘 要 介绍了国外高超声速飞行器的发展现状,并 总结了未来一段时期高超声速飞行器的发展方向和趋势。分析了高超声速飞行器的外形选择及其气动问题,发动机的选取与机体一体化问题和气动加热及防热问题。最后提出了未来高超声速飞行技术发展的几个方向。 关键词 高超声速飞行器 气动弹性 机体一体 化 气动加热 防热 引 言 高超声速飞行器是指飞行马赫数大于5.0的远程巡航飞行器,它综合了航空航天领域众多学科的新技术,代表了未来航空航天领域的研究发展方向,被认为是继隐身技术之后的又一重点技术领域。 按采用的动力装置不同,高超声速飞行器可分为火箭推进高超声速飞行器(Rocke-t Po w eredH yper -sonic Vehicle ,RP HV )和吸气式高超声速飞行器(A ir -B reath i n g H yperson ic V ehic l e ,AB HV )两类。早期的高超声速飞行器,如X-15和X-20,均以火箭发动机为动力,属于RPHV 。由于其性能不佳,后 续研究几乎没有开展。随着对超燃冲压发动机研究的深入,AB HV 成为各航空航天大国的发展重点。AB HV 包括吸气式运载器(A ir -Breath i n g Launch V e -h icle ,ABLV )和高超声速巡航飞行器(H yperson ic C r u ise V ehic le ,HCV )。ABLV 又称为空天飞机(A erospace Plane ),主要执行入轨任务,可分为单级入轨和多级入轨系统。H CV 主要指在大气层内飞行、执行巡航任务的飞行器,可用作高超声速飞机、战略攻击机和巡航导弹,均采用超燃冲压发动机作为动力系统。 高超声速飞行器具有以下优点[1] : 1)高超声速飞行可有效缩短对目标的反应时间,因此突防概率高; 2)射程相同时飞行时间短,目标位置变化小,故飞行器的抗干扰能力强,命中目标的概率高; 3)飞行器在高超声速飞行时动能大,若设计与亚声速飞行器相当破坏力的战斗部,高超声速飞行器战斗部的质量可以减轻,从而减小了飞行器的设计载荷; 4)射程远,如国外正在研究的高超声速导弹射程都在几百千米甚至几千千米以上。 1 高超声速飞行器国外发展现状 基于高超声速飞行器的上述优点,美、俄、法、德、日、印度等国都在进行这方面的研究,并制订了许多研制高超声速飞行器的计划[1-3] ,有些已经 做了大量的试验。 美国高超声速飞行器的研制在20世纪曾有过两次高潮:第一次是在20世纪60年代,当时研制了飞行器速度超过M a =6的X-15,但是由于使用 和经费上的困难以及技术上的难度,取消了该计划。而后对高超声速技术的研究一直处于小规模的水平。1986年,美国提出了国家空天飞机计划(NASP),当时人们称之为/高超声速技术复苏0,然而在1994年,由于在执行过程中遇到了技术、经费和管理上的一系列困难,对该计划进行了调整,但它却引发了一系列与高超声速飞行相关的研究计划。美国的高超声速技术研究重点围绕高超声速飞行器试验(H yper -X)计划、高超声速技术(H y Tech)计划和高超声速飞行(H yF l y )计划等技术验证计划

国外吸气式高超声速飞行器发展现状

情报交流 本文2008 09 29收到,作者分别系中国航天科工集团第三研究院三一〇所工程师、助工、助工 国外吸气式高超声速飞行器发展现状 陈英硕 叶 蕾 苏鑫鑫 摘 要 以美国H yT ech 、H yF ly 、 X 51A 、猎鹰(FALCON )计划为重点,介绍了世界上几个主要的吸气式高超声速技术计划和飞行器研究情况,并对当前国外吸气式高超声速飞行器的发展现状进行了简要分析。 关键词 吸气式 高超声速 H yF ly X 51A FA LCON 引 言 高超声速飞行器是指在大气层内飞行速度达到M a =5以上的飞行器。自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术,它的航程更远、结构质量更轻、性能更优越。 实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相继进行了地面试验和飞行试验。高超声速技术实际上已经从概念和原理探索阶段进入了以高超声速巡航导 弹、高超声速飞机和空天飞机等为应用背景的先期技术开发阶段。 1 美国在高超声速技术领域独占鳌头 从1985年至1994年的10年间,美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。通过试验设备的大规模改造和一系列试验,仅美国NASA 兰利研究中心就进行了包括乘波体和超燃发动机试验在内的近3200次试验。通过这些试验掌握了M a <8的超燃发动机设计技术,并建立了数据库,从而为实际飞行器打下了牢固的技术基础。实际上,30多年来,兰利研究中心一直在进行这方面的研究,曾经在2.44m 高温风洞中研制和试验过22个发动机。在此基础上,美国于1996年开始,针对高超声速导弹、高超声速飞机和空天飞机的研制工作调整高超声速技术的研究目标,在发展和应用高超声速技术方面采取了更为稳妥的循序渐进策略,提出了更为现实的全方位的高超声速武器和先进航天器研制计划。NASA 和美国空军在2000年 12月达成协议,将联合进行高超声速技术的发展和验证。2001年,NASA 和美国国防部联合提出了国家航空航天倡议(NA I),重申了美国高超声速飞行器的发展战略:近期发展高超声速巡航导弹;中期重点发展全球到达的高超声速飞机;远期发展廉价、快速、可重复使用的航天运载器。 2001年6月到2004年11月,NAS A H yper X 计划的X 43A 进行了3次飞行试验,除第一次以失败告终外,第二次飞行试验实现了7倍声速飞行,第三次在大约33.5km 高度飞行时以M a =9.8(11270k m /h)的惊人速度载入世界飞行速度记录。X 43A 的成功飞行试验,验证了高超声速飞行器的设计概念、设计方法和地面试验结果。但2006年年初NASA 表示,将把航空领域的研究重点从之前的飞行演示验证重新转向基础研究和设计工具开发,同时,NASA 对其组织结构进行调整,将高超声速研究纳入基础航空部分。X 43高超声速研究小组的项目重点将进行基础性的技术研究而不是飞行试验。 下面就简要介绍一下美国开 25 飞航导弹 2008年第12期

高超声速飞行器乘波体构型及其设计

高超声速飞行器乘波体构型及其设计 摘要:高超声速飞行器由于具有高空高速、巡航距离远以及突防能力强的特点而备受追捧,而乘波体构型正能满足这些要求。在欧拉方程的基础上,国际上提出了多种基于楔形流动和锥形流动的乘波体构造方法。此外,也提出了考虑如粘性效应等其他因素的优化方法。这些方法都将乘波体飞行器不断向工程应用推进。 关键词:乘波体附体激波自由流线追踪流线 1 引言 高超声速飞行器由于具有速度快、高度高、巡航距离远以及突防能力强的特点,近年来逐渐受到追捧。而相应的,为实现以上特点,对于其机体必须采用一种高升阻比和强机动性的气动外形。目前比较适合的气动外形有旋成体、翼身融合体、升力体和乘波体等[1]。 旋成体在Ma<1时升阻比较高,结构简单,但高马赫数飞行时机动性较差,比较适用于各种型号的导弹;翼身融合体机身机翼相融合,亦在Ma<1时升阻比较高,气动阻力小,内部容积大,但外形复杂,适用于超声速战斗机、战略轰炸机等;升力体没有机翼结构,Ma>1时升阻比都比较高,大迎角下和高超声速时有较好气动特性,内部体积利用率高,但外形复杂,比较适用于航天飞机和空天飞机等[2]。 而乘波体则是指一种外形是流线型,其所有的前缘都具有浮体激波的超声速或高超声速的飞行器。它的设计与常规的由外形决定流场再去求解的方法相反,而是先有流场,然后再推导出外形[3]。乘波体构型在高马赫数下具有更高升阻比,特别是对于Ma>5的高超声速飞行器。它具有以下四个显著的优点: (1)乘波体外形的最大优点是低阻、高升力、高升阻比,其上表面没有流场干扰,没有流线偏转,激波限制在外形的前缘,使得在可压区中下表面上的高压同向上倾斜的外形一起组合,获得整个外形上的推力分量。 (2)乘波体外形在偏离设计条件下,仍能保持有利的气动性能。 (3)乘波体外形更适合使用喷气发动机或冲压发动机。 (4)乘波体外形因为是用已知的可以得到精确解的流场设计而成,所以更易于进 行优化设计以寻求最优构型。目前,考虑粘性的最优乘波体的研究也已取得了较大进展[4]。 因此,乘波体布局的飞行器有着十分广阔的应用前景。既可用作高超音速吸气发动机、气动构形一体化飞行器、单级入轨飞行器,双级入轨飞行器的第一级, 也可用作能够穿越大气层的可重复使用的高超音速飞行器。乘波飞行器还可作为高超音速导弹,在大气层内作低空高速飞行,用于低空突防。此外,乘波飞行器可作为高超音速侦察机或略巡航飞机。在民用面,乘波飞行器可设计成一种洲际高超音速客机,主要飞行段的巡航速度可达M5、M 6,甚至更高,4h可绕地球一圈[5]。 2 乘波体构型的生成 2.1 源于楔形流动的Λ型乘波体构型 1959年,Nonweiler[6]提出了由已知得流场构造三维高超音速飞行器的观点。Nonweiler 选择平面斜激波后的流场来生成有∧型横截面和三角翼平面的构型。Λ乘波构型的生成过程如下[7]: (1)假定有一角度为δ的尖劈,置于超声速马赫数M ,攻角α=0的气流中,产生的流场就是源流场:激波前为自由流,激波为平面激波,激波角为β,激波后的流场有精

高超声速空天飞行器研究现状汇总

高超声速空天飞行器研究现状 摘要 高超声速飞行器一般是指飞行马赫数大于5且能够在大气层和跨大气层中实现远程飞行的飞行器。这种飞行器在高度和速度上都具有相当大的优势,在军民领域具有巨大的应用潜力。高超声速飞行器是21世纪航空航天技术新的制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟人类进入太空的新方式。本文首先阐述了高超声速空天飞行器的概念,强调了其主要的军事用途。其次,分析了空天飞行器的主要气动布局形式和特点。最后,对国外航空航天大国的空天飞行器相关发展情况进行了综述,包括美国、俄罗斯、澳大利亚和法国等国家。 1. 引言 未来的高超声速飞行器能够在2个小时之内到达地球任何地方,能够像普通的飞机一样水平起飞水平降落,并以廉价的成本完成天地往返的运输任务,从而可在空间控制和空间作战中发挥重要的作用,而这些要求的实现从根本上都取决于高超声速飞行器技术的发展。高超声速飞行器所具有的全球实时侦查、快速部署和远程精确打击能力,将改变未来战争的作战样式,对国家安全产生战略性的影响。高超声速飞行器还具有显著的军民两用性,能为民用运输和航天运载等领域提供全新的途径,进而对社会进步及国民经济产生带动作用。 2. 空天飞行器 随着现代科学技术的进步和未来战场的不断拓展,世界各国正在逐步把航空和航天飞行器朝着有机结合成一体的方向推进。空天飞行器是指既能够进入太空飞行,又能较长时间在大气层内飞行的一种飞行器。空天飞机是在航空和航天技术相结合方面的初步尝试,可实现航天运载系统的部分重复使用、提高操作效率和大幅度降低航天运输费用的目的,同时更具有广阔的军事运用前景。虽然目前单级入轨或多级入轨的空天飞机还处于探索研究阶段,但它可望成为世纪最先进、最经济有效的航天运载工具,代表了今后数十年内航天运载技术的发展方向,并且将成为未来控制空间、争夺制天权的关键武器装备之一。 空天飞行器的飞行过程可分成三段:一是发射上升段,二是轨道飞行段,三是再入返回段。对于发射上升段,从目前和未来相当长一段时间的技术水平来看,比较可行的方式还是依靠液体火箭或固体火箭。空天飞行器只是作为火箭的“乘

超高声速飞行器

超高声速飞行器 摘要:高超声速飞行器一般是指飞行速度超过5倍音速的飞机、导弹、炮弹之类的有翼或无翼飞行器,具有较高的突防成功率和侦查效能,能大大扩展战场空间。高超声速飞行器潜在的巨大军事和经济价值使得当前世界各军事大国纷纷投巨资到该领域,成为21世纪世界航空航天事业发展的一个主要方向。近年来,各军事大国在推进技术、结构材料、空气动力和飞行控制等关键技术研究方面积累了丰富经验,对高超声速飞行器未来的发展奠定了基础。 关键字:超高声速、飞行器、推进技术。 一、飞行器的发展历程 人类向往飞行的理想几乎伴随这整个人类的历史。最初,人们受到鸟类的启发而使用人造翅膀,但是发现这并不现实。人类的身体对于人造翅膀而言过于的沉重。并且在探索的早期人类并不了解鸟类飞行的空气动力学原理。 经过一系列的探索,到了18世纪后期,人类发明了热气球。1783年热气球首次载人升空。随后出现了飞艇。相比于热气球,带有推进装置、载重更大的飞艇更具实用性。 飞艇的出现并未宣告飞行器的发展并未就此停歇。人类还是研制机动性更好的飞行器。1903年,由莱特兄弟制造的人类第一架飞机——飞行者1号,并成功升空。莱特兄弟总共制造了三架“飞行者”号飞机。“飞行者”三号是其中最成功的一架,其飞行成绩为38分钟

飞行38.6km。“飞行者”三号飞机的成功宣布飞机终于具有了实用性。至此人类迎来的飞机时代。 自飞行者之后活塞式螺旋桨飞机得到了极大的发展,飞行时速不断地提高。但是螺旋桨式飞机存在着速度上限。当螺旋桨尖端线速度接近声速时,空气会被极具压缩,而这部分压缩空气来不及散开,在桨端形成一个巨大的阻力,称为激波阻力。此时桨端的空气将粘滞在桨叶表面,使螺旋桨的效率降低。这便是螺旋桨飞机不能飞得更快的原因。 为了克服螺旋桨飞机的这一速度上限,人们研制了喷气发动机。喷气发动机构造不同于活塞式螺旋桨,因此飞机可以飞得更快。随着发动机性能的提升以及飞行器气动外形的升级,飞机的速度已经能达到2马赫。性能与早期的飞机相比,现在的飞机已经将其远远的抛在了身后。 随着新的技术、新材料的不断应用,人造飞行器的性能还在不断的提升。 二、高超声速飞行器技术难点 在高超声速飞行器的研制过程中遇到许多困难,主要是飞行器的动力系统以及热防护等方面。这些方面直接关系到飞行器的性能和安全。 1、动力系统 1)喷气式发动机 战斗机动力装置的设计,总是追求更高的推重比;大型飞机自重

国外高超声速飞行器的发展及关键技术

国外高超声速飞行器的发展及关键技术 高超声速一般是指流动或飞行的速度超过5倍声速,即马赫数(Ma)大于或等于5。自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术。吸气式高超声速飞行器飞行时不需要像火箭那样自身携带氧化剂,可以直接从大气中吸取氧气,因而它的航程更远、结构重量更轻、性能更优越。实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相续进行了地面试验和飞行试验。高超声速技术已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机、跨大气层飞行器和空天飞机为应用背景的先期技术开发阶段。 一、国外高超声速飞行器的发展 1.美国 美国自20世纪50年代开始研究吸气式高超声速技术。20世纪80年代中期,美国实施了采用吸气式推进、单级入轨(马赫数25)的国家空天飞机计划(NASP),由于在技术、经费和管理方面遇到了一系列的困难,NASP计划于1995年停止。尽管如此,NASP计划仍然大大推动了美国高超声速技术的发展,仅美国航空航天局(NASA)兰利研究中心就进行了包括乘波外形一体化和超燃冲压发动机试验在内的近3200次试验。通过这些试验,美国已经基本上掌握了马赫数小于8的超燃冲压发动机设计技术,并建立了大规模的数据库,从而为实际飞行器的工程设计打下了牢固的技术基础。从1996年开始,美国对高超声速飞行器技术的发展进行了调整,确立了分阶段逐步发展的思路,降低了近期的发展目标。 目前,美国正在全方位发展高超声速飞行器技术,主要目标是研制马赫数小于8的高超声速巡航导弹(包括海军的高速打击导弹、空军的高超声速巡航导弹和国防高级研究计划局的“可负担得起的快速反应导弹”),同时实施以高超声速飞机为应用背景的高超声速飞行试验计划(Hyper一X)。此外,美国还正在开展高超声速轰炸机和单级入轨的吸气式航天运载器的研究。 2.俄罗斯 俄罗斯在高超声速技术领域仍处于世界领先地位。俄罗斯有多家机构长期致力于高超声速技术基础理论研究,在亚/超燃冲压发动机、C/H燃料、耐高温材料、CFD技术及一体化设计技术等方面取得了重大突破,并且已经进入了高超声速技术飞行验证阶段,1991~1998年,俄罗斯曾进行过5次轴对称超燃冲压发动机的验证性飞行试验,最大飞行速度达到6.5马赫,由于轴对称亚/超燃冲压发动机在工程应用上会带来较多问题,为了研究更接近于实际的飞行器布局,俄罗斯研制了先进的“彩虹”(RADUGA)高超声速试验飞行器(即D一2飞行器),其设计飞行速度为2.5~6马赫,飞行高度为15~30km。此外,俄罗斯还正在研制IGLA高超声速试验飞行器,飞行速度为6~14马赫,全长7.9m,翼展3.6m。氢燃料超燃冲压发动机由3个模块组成,总长1.9m,质量为200kg。IGLA飞行器已做了大量的地面试验和风洞吹风试验,但尚未进行飞行试验。 3.法国 自20世纪60年代以来,法国从未间断过高超声速技术研究。1992年,在国防部等单位领导下,法国制定了国家高超声速研究与技术(PREPHA)计划。PREPHA计划历时6年,最后研制了Chamois超燃冲压发动机,并在6马赫的速度下进行了反复试验。此外,法国还研制了另一种超燃冲压发动机,并于1999年成功地进行速度为7.5马赫的地面试验。目前,法国正在实施的高超声速技术发展计划主要有两个,即高超声速技术综合演示与超燃冲压发动机计划和Promethee空射型高超声速巡航导弹计划。前者是法国宇航公司与俄罗斯合作的研究计划,目的是研制一个高超声速技术综合演示器(Edith)和1台速度可达12马

相关主题
文本预览
相关文档 最新文档