当前位置:文档之家› 数学奥赛辅导

数学奥赛辅导

数学奥赛辅导
数学奥赛辅导

数学奥赛辅导 第二讲 整除

知识、方法、技能

整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题。

Ⅰ.整数的整除性

初等数论的基本研究对象是自然数集合及整数集合。 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则b

a

不一定是整数。 由此引出初等数论中第一个基本概念:整数的整除性。

定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,

并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数。

若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |。否则,b | a 。

任何a 的非1,±±a 的约数,叫做a 的真约数。 0是任何整数的倍数,1是任何整数的约数。

任一非零的整数是其本身的约数,也是其本身的倍数。 由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则

(2)若.,,2,1,,|

,|1

n i Z c

b c a b a i

n

i i i i Λ=∈∑=其中则

(3)若c a |,则.|cb ab 反之,亦成立。

(4)若||||,|b a b a ≤则。因此,若b a a b b a ±=则又,|,|。

(5)a 、b 互质,若.|,|,|c ab c b c a 则

(6)p 为质数,若,|21n a a a p ???Λ则p 必能整除n a a a ,,,21Λ中的某一个。 特别地,若p 为质数,.|,|a p a p n

(7)如在等式∑∑===m

k k

n

i i b

a 1

1

中除开某一项外,其余各项都是c 的倍数,则这一项也是c

的倍数。

(8)n 个连续整数中有且只有一个是n 的倍数。 (9)任何n 个连续整数之积一定是n 的倍数。

本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了。

定理一:设大于1的整数a 的标准分解式为n n p p p p p p a n <<

αα

质数,i α均为非负整数),则a 的约数的个数为

∏=+=n

i i a d 1

)1)(α(。

所有的约数和为:

∏=+--=n

i i

i p p a i 1111

)(ασ。 事实上,由算术基本定理的推论知∏=+=

n

i i

a d 1

)1()(α

,而各约数的和就是

∏=+++n

i i i

i pa p

1

)1(Λ展开后的各项之和,所以

∏∏

==--=+++=n

i n

i i i i p p p p a i

i

1111

1

)1()(αασΛ

例如,25200=24·32·52·7,所以

90)11)(12)(12)(14()25200(=++++=d ,

999441

717151513131212)25200(2335=--?--?--?--=σ。

Ⅱ.最大公约数和最小公倍数

定义二:设a 、b 是两个不全为0的整数。若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a 。如果

),(b a =1,则称b a 与互质或互素。

定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数。 b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a 。

最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a Λ表示n a a a ,,,21Λ的最大公约数,],,,[21n a a a Λ表示n a a a ,,,21Λ的最小公倍数。

若1),,,(21=n a a a Λ,则称n a a a a ,,,,321Λ互质,若n a a a ,,,21Λ中任何两个都互质,则称它们是两两互质的。注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立。

因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0。同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数。

显然,若b a ,的标准分解式为i n

i i n

i i

p p b p

a i i

(,1

1

∏∏====βα为质数,i i a β,为非负整数),

∏==n

i i i i p b a 1

),min(),(βα ①

∏==n

i man i i i p b a 1

),(],[βα ②

例如 3960=23·32·5·11, 756=22·33·7,

则 (3960,756)=22·32=36, [3960,756]=23·33·5·7·11=83160。

求最大公约数也可以用辗转相除法,其理论依据是:

定理二:设a 、b 、c 是三个不全为0的整数,且有整数t 使得c bt a +=,则a 、b 与b 、c 有相同的公约数,因而),(),(c b b a =,即).,(),(bt a b b a -=

因为,若a d 是、b 的任一公约数,则由b d c d c bt a b d a d 是即知和,||,|+=、c 的公约数;反之,若d 是b 、c 的任一公约数,d 也是a 、b 的公约数。

辗转相除法:设a 、b a N b >∈*

且,,由带余除法有

??

?

?

?

????

=+=<<+=<<+=<<+=+++----.0,,0,,0,,

0,111111212221111n n n n n n n n n n n r r q r r r r r q r r r r r q r b b r r bq a ΛΛ ③ 因为每进行一次带余除法,余数至少减1,即11+>>>>n n r r r b Λ,而b 为有限数,因此,必有一个最多不超过b 的正整数n 存在,使得0≠n r ,而01=+n r ,故由定理二得:

).,(),,(),(),(11211b a b r r r r r r r r n n n n n ======-+()Λ

例如,(3960,756)=(756,180)=(180,36)=36。具体算式如下:

由定义和上述求法不难得出最大公约数和最小公倍数的如下性质: (1)),(),(,b a m bm am N m =∈则。

(2)设b a c ,为的公约数,则.),(),(c b a c b c a =

特别地,若1),(),,(==c

b

c a b a c 则。 (3)设n a a a ,,,21Λ是任意n 个正整数,如果n n n c a c c a c c a a ===-),(,,),(,),(1332221Λ,则n n c a a a =),,,(21Λ。

因21121111|,|,|,|,|,|--------n n n n n n n n n n n n c c a c c c a c c c a c 故而,如此类推得出n c 能整除n n n c a a a 于是,,,,11Λ-是它们的一个公约数。又设n a a a c ,,,21Λ为的任一公约数,则

21|,|a c a c ,因而2|c c ,同理可推出3|c c ,如此类推最后可得n c c |。 于是n c c c ≤≤||,

故n c 是最大公约数。

(4)若c b a =),(,则一定有整数y x 和,使得c by ax =+。

特别地,?=1),(b a 存在1,=+by ax y x 使得。

这可由辗转相除法的③式逆推而得by ax r c n +==。 (5)若),(),(,1),(b c b ac b a ==则。

(6)*

∈N b a , ①)(]

,[],[*∈=N k b a k bk ak ;

②b a m ,为的任一公倍数,则m b a |],[;

③ab b a b a =],)[,(,特别地,若ab b a b a ==],[,1),(则。

①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,

=],)[,(b a b a ∏∏==+==n i n

i i i i i ab p p i i 1

1

),min(βαβα。

(7)设n a a a ,,,21Λ是任意n 个正整数。若===-],[,,],[,],[1332221n n a m m a m m a a Λm n ,则n n m a a a =],,,[21Λ。

这是一个求多个整数的最小公倍数的方法。它可用证明③类似的方法来证明。 Ⅲ.方幂问题

一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题。特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题。

能表为某整数的平方的数称为完全平方数。简称平方数,关于平方数,明显有如下一些简单的性质和结论:

(1)平方数的个位数字只可能是0,1,4,5,6,9。

(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1。

(3)奇数平方的十位数字是偶数。

(4)十位数字是奇数的平方数的个位数一定是6。

(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7。

(6)平方数的约数的个数为奇数。

(7)任何四个连续整数的乘积加1,必定是一个平方数。 进一步研究可得到有关平方和的几个结论:

定理三:奇素数p 能表示成两个正整数的平方和的充要条件是.14+=m p

定理四:设正整数p m n 2

=,其中p 不再含平方因数,n 能表示成两个整数的平方的充要条件是p 没有形如34+q 的质因数。

定理五:每个正整数都能表示成四个整数的平方和。

这几个定理的证明略。这里重点是介绍有关k 方幂的解法技巧。k 方幂中许多问题实质上是不定方程的整数解问题,比如著名的勾股数问题。

赛题精讲

例1:证明:对于任何自然数n 和k ,数1042),(3++=k k

n n k n f 都不能分解成若干

个连续的正整数之积。

(1981年全国高中联赛试题)

【证明】由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除。因

,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k

n n n n n n n n n

k n f

),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解

成三个或三个以上的连续自然数的积。

再证),(k n f 不能分解成两个连续正整数的积。

由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解。而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明。

故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积。

例2: 设p 和q 均为自然数,使得

.1319

11318131211+--+-=Λq p 证明:p 可被1979整除。 (第21届IMO 试题)

【证明】

)1318

1

4121(2)1319131211(+++-+++=ΛΛq p =)659

1211()1319131211(+++-++++ΛΛ =)990

19891()131816611()131916601(

++++++Λ =1979×)990

9891

1318661113196601(

?++?+?Λ

两端同乘以1319!得1319!*).(1979N m m q

p

∈?=?

此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979 | p 。

【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立。

牛顿二项式定理和n b a b a b a b a n

n

n

n

(|)(,|)(-+--为偶数), n b a b a n

n

(|)(-+为奇数)在整除问题中经常用到。

例3 :对于整数n 与k ,定义,),(1

1

2∑=-=

n

r k r

k n F 求证:)1,(n F 可整除).,(k n F

(1996加拿大数学竞赛试题)

【证明】当m n 2=时,,)12()1,2(21

∑=+==

m

r m m r m F

∑∑+=-=-+

=

m

m r k m

r k r

r

k m F 21

1

21

1

2),2(

],

)12([)12(121

121

1

211

2-=-=-=--++=-++=∑∑∑k m

r k m

r k m

r k r m r r m r

由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面,

=

),2(k m F ,)2(])2([1212121

1

1

2----=-++-+∑k k k m r k m m r m r

上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除。因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除。

类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除。 故

)

,(k n F 能被)1,(n F 整除。

例4 :求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)7

77)(b a b a --+能被77整除。 (第25届IMO 试题)

【解】7

77)(b a b a --+=)](5)(3)[(72

2

3

3

5

5

b a b a b a ab b a ab +++++

=.))((72

22ab b a b a ab +++

根据题设要求(1)(2)知,|,)(|72

2

2

6

ab b a ++即.|72

2

3

ab b a ++

令,73

2

2

=++ab b a 即,343)(2

=-+ab b a 即19=+b a ,则.343192

-=ab 故可

令1,18==b a 即合要求。

(第15届美国普特南数学竞赛试题)

【评述】数学归纳法在整除问题中也有广泛应用。

例5:是否存在1000000个连续整数,使得每一个都含有重复的素因子,即都能被某个素数的平方所整除?

【解】存在。用数学归纳法证明它的加强命题:对任何正整数,m 存在m 个连续的整数,使得每一个都含有重复的素因子。

当m =1时,显然成立。这只需取一个素数的平方。

假设当m =k 时命题成立,即有k 个连续整数k n n n +++,,2,1Λ,它们分别含有重复的素因子k p p p ,,,21Λ,任取一个与k p p p ,,,21Λ都不同的素数1+k p (显然存在),当

21,2,1+=k p t Λ时,)1(22221+++k n p p tp k Λ这21+k p 个数中任两个数的差是形如)11(2122221-≤≤+k k p a p p ap Λ的数,不能被21+k p 整除,故这21+k p 个数除以21+k p 后,余数两两不同。但除以21+k p 后的余数只有0,1,…,21+k p -1这2

1+k p 个,从而恰有一个数)1(2100+≤≤k p t t ,

使)1(222210+++k n p p p t k Λ能被2

1+k p 整除。这时,()1+k 个连续整数: ,1222210++n p p p t k Λ++n p p p t k 222210Λ2,…,++n p p p t k 2

22210Λk ,++n p p p t k 2

22210Λ(k +1)

分别能被2

122221,,+k k p p p p Λ整除,即1+=k m 时命题成立。故题对一切正整数m 均成

立。

例6:求证:

.)

,)(,)(,(),,(],][,][,[],,[2

2a c c b b a c b a a c c b b a c b a = (第1届美国数学奥林匹克竞赛试题)

【证明】设,,,1

1

1

∏∏∏======

n

i i n i i n

i i

i p c i p b i p

a γβ

α

其中

i p 为质数,i i i γβα,,为非负整数,则

∏==

n

i i

i i i p

c b a 1

),,max(,],,[γβα

∏==n

i i i i p b a 1

),max(,],[Λβα

∏=∏

=n

i i i i i p c b a 1

),,min(,),,(γβα ∏==

n

i i

i i p

b a 1

),min(,),(Λβα

因此只需证明

2max(),m ax (),m ax (),m ax (),,i i i i i i i i i αγγββαγβα--- =2min(),m in(),m in(),m in(),,i i i i i i i i i αγγββαγβα--- 上式关于i i i γβα,,对称,则不妨设i i i γβα≥≥,于是上式变为:

.22i i i i i i i i γγβγαβαα---=---此式显然成立,故得证。

例7:设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,

b

a b a b a c p

p +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =(1985新加坡数学竞赛

试题)

【证明】由已知得),(,

N s t cs b a b a ct b a p

p ∈=++=+,两式相乘得,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+=Λ于是

,12211-----++-=p p p p p pa t pac t c cs Λ故.|1-p pa c

(1)现用反证法来证明1),(=a c 。若,1),(>=k a c 令q 是k 的一个质因子,则有

.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1

矛盾,故1),(=a c 。

(2)因为,1),(,|1

=-a c pa

c p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c =

例8:设∑=+=

n

k n k k

S 1

75

)(,求最大公约数).,(3n n S S d =(第26届IMO 预选题)

【解】能过具体计算可猜想

.)2

)1((

2)21(24

4+=+++=n n n S n Λ 此式不难用数学归纳法获证。 为求),(3n n S S d =,对n 分奇偶来讨论。 (1)当k n 2=时,

).)16(812,)12(2()]2

)16(6[2,]2)12(2[

2(44444

4+?+=++=k k k k k k k k d

由于12+k

和16+k 互质,所以).81,)12((24

4

+=k k d 而当13+=t k 时

13,)12(81)12(4

4

+≠+=+t k t k 时,4)12(+k 与81互质。故此时有

???

????≥++==+==??=?=.)0(4666,812;26,8812812812444444

t t t n n k t n n n k d 时或当时当 (2)当当12+=k n 时).)23)(12(3[2,)]1)(12[(2(4

4

++++=k k k k d

1,1223+++k k k 与因与质,所以).3,)1(()12(2444++=k k k 而当23+=t k 时,

23),1(31+≠+=+k k t k 时,1+k 与34互质。故此时有

?????++==++==?=?+=.

)36162)12(2;

56,162323)12(24

44

444时或当时当t t n n k t n n n k d 例9:m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球。求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是

.1),(=n m (第26届IMO 预选题)

【证明】设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个。这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒

子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等。

用反证法证明必要性。若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m 。

例10:求所有这样的自然数n ,使得n

222118++是一个自然数的平方。

(1980年第6届全俄数学竞赛试题)

【证明】(1)当8≤n 时,)122

(22211811

8

++?++=--n n

n

N ,因(…)为奇数,所

以要使N 为平方数,n 必为偶数。逐一验证8,6,4,2=n 知,N 都不是平方数。

(2)当9=n 时,1122228

9118?=++=N 不是平方数。 (3)当10≥n 时,)29(28

8

-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不

妨假设8

2

9-+n =2)12(+k ,则).2()1(2

10

+?-=-k k n 由于1-k 和2+k 是一奇一偶,左边

为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求。

(推荐)高中数学奥赛辅导

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ?? ?≥-==-). 2(),1(11 n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2 )(2 11++++==-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++= n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{ n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

高中数学值得推荐的辅导书 看完都上清华北大

高中数学值得推荐的辅导书看完都上清华北大 很多同学进入高中后都会想要几本好的教辅书,下面是小编推荐的高中数学最好的辅导书,希望能对大家有所帮助。 ? ?高考数学最好的辅导书 1.《高中数学精编?代数》《高中数学精编解析 几何、立体几何》郑日锋浙江教育出版社这套书上世纪八十年代就已经风靡一时了,堪称经典。之前一直是四本,后来改成了两本,内容上也有更新,目前还是四校学生争先恐后刷掉的第一套书,可见其在高中教辅之中的地位。可作为同步教辅。2.《多功能题典?高中数学》(第三版)况亦军华东师范大学 出版社该书主编况亦军为上海中学数学教研组组长,各章编写者大多为华东师范大学第二附属中学的老师,可以保证该书品质。该书非常厚(1000页),每个题目后配有详细解析,非常适合有一定基础之后再进行阅读,否则只看解析不动笔做容易造成眼高手低的状况。3.《高中五星级题库?数学(课改版)》《高中五星级题库难题解析数学(课改版)》(红皮)沈子兴上海科技教育出版社还有一套蓝皮的五星级题库不推荐给各位,因为那本书是全国教材的编写顺序,而红皮的是上海教材的编写顺序。该书为华师大二附中学生用于提高的教辅,部分五星题目达到高中联赛难度。4.《华东师大版一课一练》华东师 范大学出版社该书为部分中学同步教辅,号称改革开放以来最具影响力的300本书之一,经常遇到学生问到该书上的问题,如果学校要求做就做,不 要求做的话建议刷《精编》。5.《龙门专题高中数学》(12本专题+1思想方法)付荣强龙门书局高中教辅精五门之一(精编,五星级题库,龙门专题),这是 高中常规体系教辅材料里面少有的分专题呈现的教辅,专题之间穿插很多,综合性强,不适合作为同步教辅,当然学习能力非常强的学生可用该书自学。

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

如何学习数学竞赛

你知道数学竞赛怎么学 点击:248次,时间:2016-11-12 14:08:55 搞竞赛要找好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。 1、学习进度方面 要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。 2、入门书单 首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。 1)《新编中学数学解题方法全书》,即基础衔接书。 2)《奥数教程》 经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》。) 3、提高书单 1)《奥赛小丛书》 专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。 2)《奥赛经典》 内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。几何还可以,但定理可以只记最基本的,拓展的可以不记。组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。 3)《命题人讲座》 适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。 其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。数论方面当然不能不提两位先生,一位是潘承彪教授,一位是余红兵教授,潘老师的《初等数论》是我们读书时的必读教材,也是大学里的教材,不仅仅局限于竞赛范畴;余老师关于数论的小册子《数学竞赛中的数论问题》,非常经典! 另外华罗庚的《数论导引》则非常优秀,适合看完《初等数论》后再深化学习。此外非常值得推荐的是《哈代数论》,值得永世珍藏。 4)《数学竞赛研究教程(套装上下册)》 本书是参加数学竞赛的教练员和选手的必备用书。国内数学竞赛研究方面的权威参考书。 5)关于几何 《初等数学复习及研究平面几何》、《初等数学复习及研究立体几何》。有助于深化系统自己的几何基础。 6)关于组合 推荐单樽老师的《组合几何》《趣味图论》,以上均为上面提到过的数学奥赛辅导丛书的书,那一个系列基本上都非常出色,适合永世珍藏。

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

高中数学奥赛辅导讲课稿

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ???≥-==-).2(),1(11n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2)(211++++= =-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 )1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++=n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

超级资源(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富: 它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨: 从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨: 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨: 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨: 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨: 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注: 一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

高中数学教辅资料推荐

江苏考生必看!哪些教辅适合江苏高考数学 高中孩子的时间紧,精力有限,市面上教辅繁多,所以选择一两本合适的教辅就非常重要了,能让孩子把有限的时间花在“刀刃”上,那如何来选择适合江苏考生的数学资料呢?主要考虑如下五个方面: 1、要有针对性:现在市面上的教辅主要分为4个版本:人教版(最多),苏教版(江 苏),北师大版(陕西),未说明版(通用),我们选择时候一定要看清楚是苏教版, 少数的通用版本也可以选择。 2、书不在多,在于适用和实用,不要盲目贪多,精选一到两本,一般一本基础的概念解 析教辅作为初学,一本拔高练习题集作为复习就够了。 3、出版时间和版次,一般选择在两年内出版,江苏高考每年都有变化和新题,教辅资料 一定要注意更新迭代,不然跟不上时代,其中重版的次数越多,说明越完善。 4、对书的质量的判断侧重例题和习题,不侧重答案讲解。应选择带重点题型例题讲解 的辅导书,其他带有详细答案的,不一定就是好的辅导书。 5、切忌盲目选择,不要被书的名目所迷惑。也不要被书店的店员推荐所误导,因为那 个店员可能就是某出版社的促销员。 讲完以上的方法,具体哪些辅导书值得我们选择呢?下面就给大家梳理下市面上常见教辅: 1、《重难点手册》 说明:总结重难点为题比较到位,比较针对性,但不适合初学者,用于复习时候补 漏拔高。 2、《江苏数学5年经典》 说明:优点是大部分都是江苏题型,比较有针对性,和小题狂做都属于恩波教育,南京本地的出版商,其中的一位主编是金陵中学的资深教师。属于题集形式,适合 用来复习。恩波教育的其他书籍如:《小题狂做》,《大题精做》,《优化38+2》等等 都是很好的江苏本地选择,就不一一介绍了。

江苏省金湖县实验中学高中数学 奥赛辅导 构造一次方程组的技巧

- 1 - 一、利用同类项的定义构造: 例1:已知m n m n b a --31999 1和1079999+-m n a b 是同类项,则.________22=+n m 二、利用二元一次方程的定义构造: 例2:若243724953=+--++n m n m y x 是二元一次方程,则n m 的值等于________. 三、利用方程组的解的定义构造: 例3:若???==12y x 是方程组???=+=-5 213by ax y ax 的解,求b a 、的值. 四、利用相反数的性质构造: 例4:已知a 的相反数是12+b ,b 的相反数是13+a ,则.________22=+b a 五、利用非负数性质构造: 例5:如果实数y x ,满足()022=++-y x x ,那么.________=y x 六、利用多项式恒等性质构造: 例6:已知多项式682322 2-+--+y x y xy x 可以分解为()()n y x m y x +-++22的形式,那么.________1 123=++n m 七、利用一次方程的解的特征构造: 例7:已知关于x 的方程()()()15133+=++-x x b x a 有无穷多个解,那么.________________,==b a 八、取特殊值构造: 例8:设b ax x x ++-2 32除以()()12+-x x 所得的余式为12+x ,那么.________________,==b a 九、弱化某些未知数构造: 例9:若,073, 0452=-+=++z y x z y x 则.________=-+z y x 十、利用新运算的定义构造: 例10:对于实数y x ,定义一种新运算*:,c by ax y x ++=*其中c b a 、、为常数,等式右边是通常的加法与乘法运算. 已知:,2874, 1553=*=*那么.________11=*

初中数学竞赛辅导资料

第一篇 一元一次方程的讨论 第一部分 基本方法 1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的解也叫做根。 例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。 2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =a b ; 当a =0且b ≠0时,无解; 当a =0且b =0时,有无数多解。(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解; 当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。 综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析 例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?

例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数? 例3己知方程a(x-2)=b(x+1)-2a无解。问a和b应满足什么关系? 例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解? 第三部分典题精练

1. 根据方程的解的定义,写出下列方程的解: ① (x +1)=0, ②x 2 =9, ③|x |=9, ④|x |=-3, ⑤3x +1=3x -1, ⑥x +2=2+x 2. 关于x 的方程ax =x +2无解,那么a __________ 3. 在方程a (a -3)x =a 中, 当a 取值为____时,有唯一的解; 当a ___时无解; 当a _____时,有无数多解; 当a ____时,解是负数。 4. k 取什么整数值时,下列等式中的x 是整数? ① x = k 4 ②x =16-k ③x =k k 32+ ④x =123+-k k 5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数? 6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数? 7. 己知方程 2 2 1463+= +-a x 的根是正数,那么a 、b 应满足什么关系?

数学奥赛辅导组合计数

数学奥赛辅导 组合计数 知识、方法、技能 组合计数就是计算集合的元素个数。它是组合数学的重要组成部分. 在具体问题中给出的集合各式各样,都具有实际意义,而且集体中的元素是由某些条件所确定的,要判定一个元素是否属于某集合A ,已非易事,要确定A 的元素个数就更难了.这正是研究计算问题的原因。 解决组合计算问题虽然不需要高深理论知识,却需要重要的计算原理与思想方法. Ⅰ.几种特殊的排列、组合 1.圆排列 定义1:从几个元素中任取r 个不同元素仅按元素之间的相对位置而不分首尾排成一个 圆圈,这种排列称为n 个不同元素的r ——圆排列。r ——圆排列数记为r n K . 定理1:.r P K r n r n 证:对n 个不同元素取r 个的任一圆排列,均有r 种不同的方式展开成r 个不同的直线 排列,且不同的圆排列展开的直线排列也彼此不同,故有r ·r n K =P r n ,得正. 2.重复排列 定义2:从n 个不同元素中允许重复的任取r 个元素排成一列,称为n 个不同元素的r ——可重复排列. 定理2:n 个不同元素的r ——可重排列数为n r . 证:在按顺序选取的r 个元素中,每个元素都有n 种不同的选法,故由乘法原理有,其排列数为n r . 3.不全相异元素的全排列 定义3:设n 个元素可分为k 组,每一组中的元素是相同的,不同组间的元素是不同的,其中第i 组的元素个数为n i (i =1, 2, …, k ), n 1+n 2+…+n k =n . 则这n 个元素的全排列称为不全相异元素的全排列. 定理3:n 个元素的不全相异元素的全排列个数为 .! !!!. 21k n n n n 证:先把每组中的元素看做是不相同的,则n 个不同元素的全排列数为n!,然后分别将每个组的元素还其本来面目看成是相同的,则在这n!个全排列中,每个排列都重复出现了n 1!

金湖县实验中学高中数学奥赛辅导整式的恒等变形

内容:(1)运用运算性质法则。(2)灵活运用乘公式。(3)配方法。 (4)应用因式分解。(5)代换法。 一.(运用性质和法则) 1. 设x , y , z 都是整数,且11整除7x+2y-5z , 求证:11整除3x-7y+12z . 2. 已知d cx x ax y +++=356,当x = 0 时,y = - 3 ;当x = -5 时,y = 9 , 求当x = 5时 y 的值。 二.(灵活运用乘法公式) 3. 计算:()()()()1121212123242+++++ 4. 设a , b , c 为有理数,且0,0333=++=++c b a c b a . 求证:对于任何正奇数n ,都有0=++n n n c b a 5. 当1,0222=++=++c b a c b a 时,试求下列各式的值: (1)ab ca bc ++ ;(2)444c b a ++ 6. 试求x x x x x x +++++392781243被1-x 除的余数。 三.(配方法) 7. 证明:当a , b 取任意有理数时,多项式116222++-+b a b a 的值总是正数。 8. 若() ()22223214c b a c b a ++=++,求a : b : c . 9. 已知a , b , c , d 为正数,且abcd d c b a 44444=+++, 求证: a = b = c = d . 11. 解方程:0441212322222=+-++-y y y x y x x 12.若a , b , c , d 是整数,且2222,d c n b a m +=+=, 求证:mn 可表示成两个整数的平方和。 13.已知2,122=+=+b a b a ,求77b a +的值。 四.(应用因式分解) 14.在三角形ABC 中,22216c b a -- 0106=++bc ab (a , b , c 是三角形的三边), 求证:b c a 2=+ 15.已知c a bc a b c b ac b a 222222++=++,试求()()()a c c b b a ---的值。 五.(代换法) 16.已知a , b , c 适合,d c b a +=+ 3333d c b a +=+。

初中数学竞赛辅导讲座19讲(全套)

第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。

高中数学竞赛怎么学

数学竞赛怎么学 搞竞赛要找好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。 学习进度方面 要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。 入门书单 首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。 1)《新编中学数学解题方法全书》,即基础衔接书。 2)《奥数教程》 经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》。) 提高书单 1)《奥赛小丛书》 专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。

金湖县实验中学高中数学奥赛辅导数论初步—数的整除性

整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)| (a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N ②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N

数学奥赛辅导 第一讲 奇数、偶数、质数、合数

数学奥赛辅导第一讲 奇数、偶数、质数、合数 知识、方法、技能 Ⅰ.整数的奇偶性 将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m(m∈Z),任一奇数可表为2m+1或2m -1的形式.奇、偶数具有如下性质: (1)奇数±奇数=偶数;偶数±偶数=偶数; 奇数±偶数=奇数;偶数×偶数=偶数; 奇数×偶数=偶数;奇数×奇数=奇数; (2)奇数的平方都可表为8m+1形式,偶数的平方都可表为8m 或8m+4的形式(m∈Z). (3)任何一个正整数n,都可以写成l 的形式,其中m为非 n m2 负整数,l为奇数. 这些性质既简单又明显,然而它却能解决数学竞赛中一些难题. Ⅱ.质数与合数、算术基本定理 大于1的整数按它具有因数的情况又可分为质数与合数两类. 一个大于1的整数,如果除了1和它自身以外没有其他正因子,则称此数为质数或素数,否则,称为合数. 显然,1既不是质数也不是合数;2是最小的且是惟一的偶质数.

定理:(正整数的惟一分解定理,又叫算术基本定理)任何大于1的整数A 都可以分解成质数的乘积,若不计这些质数的次序,则这种质因子分解表示式是惟一的,进而A 可以写成标准分解式: n a n a a p p p A 2121?= (*). 其中i n p p p p ,21<<< 为质数,i α为非负整数,i =1,2,…,n . 【略证】由于A 为一有限正整数,显然A 经过有限次分解可分解成若干个质数的乘积,把相同的质因子归类整理可得如(*)的形式(严格论证可由归纳法证明).余下只需证惟一性. 设另有j m n q q q q q q q A m ,,212121<<),用i i p β除等式n n n a n a a p p p p p p βββ 21122121?=两端得: .11111111n i i n i i n i i n i p p p p p p p ββββεβαα +-+--?= 此式显然不成立(因左端是i p 的倍数,而右端不是).故i i βα=对一切i =1,2,…,n 均成立.惟一性得证. 推论:(合数的因子个数计算公式)若n n p p p A ααα 2121=为标准分解式,则A 的所有因子(包括1和A 本身)的个数等于). 1()1)(1(21+++n ααα

相关主题
文本预览
相关文档 最新文档