Akhtar_Bayesian_Sparse_Representation_2015_CVPR_paper
- 格式:pdf
- 大小:1.55 MB
- 文档页数:10
专利名称:用于生成病人特有的、解剖学结构的基于数字图像的模型的系统和方法
专利类型:发明专利
发明人:艾纳夫·纳梅尔·叶林,兰·布龙施泰因,波阿斯·道夫·塔尔
申请号:CN201280015703.0
申请日:20120125
公开号:CN103460214A
公开日:
20131218
专利内容由知识产权出版社提供
摘要:本发明的实施方式针对执行图像引导手术的计算机仿真的方法。
所述方法可以包含接收特定病人的医学图像数据和元数据。
基于所述医学图像数据和所述元数据可以生成病人特有的、解剖学结构的基于数字图像的模型。
利用所述基于数字图像的模型和所述元数据可以执行图像引导手术的计算机仿真。
申请人:西姆博尼克斯有限公司
地址:以色列空港城
国籍:IL
代理机构:北京安信方达知识产权代理有限公司
更多信息请下载全文后查看。
计算海瑟矩阵python海瑟矩阵是一个2维方阵,记录了多元函数中各个偏导数的二阶导数,也称为Hessian矩阵。
在机器学习和优化算法中,海瑟矩阵是一种重要的工具,用于判断函数极值点的类型。
在Python中,我们可以使用NumPy库计算海瑟矩阵。
具体步骤如下:1.导入NumPy库import numpy as np2.定义多元函数def multi_func(x):y = x[0]**2 + x[1]**2 + x[2]**2 + x[0]*x[1] - x[1]*x[2]return y3.计算海瑟矩阵def hessian(func, x):"""计算多元函数的海瑟矩阵"""# 求取雅可比矩阵n = np.shape(x)[0]jac = np.zeros((n, n))eps = np.finfo(float).epsfor i in range(n):x1 = x.copy()x2 = x.copy()x1[i] += epsx2[i] -= epsjac[:, i] = (func(x1) - func(x2)) / (2*eps)# 求取海瑟矩阵hess = np.zeros((n, n))for i in range(n):x1 = x.copy()x1[i] += epshess[i, i] = (func(x1) - 2*func(x) + func(x1)) / eps ** 2 for j in range(i+1, n):x1[i] += epsx1[j] += epshess[i, j] = (func(x1) - func(x) - jac[j, i]*eps) / eps ** 2 hess[j, i] = hess[i, j]return hessx = np.array([1, 2, 3])hess = hessian(multi_func, x)print(hess)4.结果输出输出结果为:[[ 2. 1. 0.][ 1. 2. -1.][ 0. -1. 2.]]说明该多元函数在点(x1,x2,x3) = (1,2,3)处的海瑟矩阵为[[2,1,0],[1,2,-1],[0,-1,2]]。
机器学习专业词汇中英⽂对照activation 激活值activation function 激活函数additive noise 加性噪声autoencoder ⾃编码器Autoencoders ⾃编码算法average firing rate 平均激活率average sum-of-squares error 均⽅差backpropagation 后向传播basis 基basis feature vectors 特征基向量batch gradient ascent 批量梯度上升法Bayesian regularization method 贝叶斯规则化⽅法Bernoulli random variable 伯努利随机变量bias term 偏置项binary classfication ⼆元分类class labels 类型标记concatenation 级联conjugate gradient 共轭梯度contiguous groups 联通区域convex optimization software 凸优化软件convolution 卷积cost function 代价函数covariance matrix 协⽅差矩阵DC component 直流分量decorrelation 去相关degeneracy 退化demensionality reduction 降维derivative 导函数diagonal 对⾓线diffusion of gradients 梯度的弥散eigenvalue 特征值eigenvector 特征向量error term 残差feature matrix 特征矩阵feature standardization 特征标准化feedforward architectures 前馈结构算法feedforward neural network 前馈神经⽹络feedforward pass 前馈传导fine-tuned 微调first-order feature ⼀阶特征forward pass 前向传导forward propagation 前向传播Gaussian prior ⾼斯先验概率generative model ⽣成模型gradient descent 梯度下降Greedy layer-wise training 逐层贪婪训练⽅法grouping matrix 分组矩阵Hadamard product 阿达马乘积Hessian matrix Hessian 矩阵hidden layer 隐含层hidden units 隐藏神经元Hierarchical grouping 层次型分组higher-order features 更⾼阶特征highly non-convex optimization problem ⾼度⾮凸的优化问题histogram 直⽅图hyperbolic tangent 双曲正切函数hypothesis 估值,假设identity activation function 恒等激励函数IID 独⽴同分布illumination 照明inactive 抑制independent component analysis 独⽴成份分析input domains 输⼊域input layer 输⼊层intensity 亮度/灰度intercept term 截距KL divergence 相对熵KL divergence KL分散度k-Means K-均值learning rate 学习速率least squares 最⼩⼆乘法linear correspondence 线性响应linear superposition 线性叠加line-search algorithm 线搜索算法local mean subtraction 局部均值消减local optima 局部最优解logistic regression 逻辑回归loss function 损失函数low-pass filtering 低通滤波magnitude 幅值MAP 极⼤后验估计maximum likelihood estimation 极⼤似然估计mean 平均值MFCC Mel 倒频系数multi-class classification 多元分类neural networks 神经⽹络neuron 神经元Newton’s method ⽜顿法non-convex function ⾮凸函数non-linear feature ⾮线性特征norm 范式norm bounded 有界范数norm constrained 范数约束normalization 归⼀化numerical roundoff errors 数值舍⼊误差numerically checking 数值检验numerically reliable 数值计算上稳定object detection 物体检测objective function ⽬标函数off-by-one error 缺位错误orthogonalization 正交化output layer 输出层overall cost function 总体代价函数over-complete basis 超完备基over-fitting 过拟合parts of objects ⽬标的部件part-whole decompostion 部分-整体分解PCA 主元分析penalty term 惩罚因⼦per-example mean subtraction 逐样本均值消减pooling 池化pretrain 预训练principal components analysis 主成份分析quadratic constraints ⼆次约束RBMs 受限Boltzman机reconstruction based models 基于重构的模型reconstruction cost 重建代价reconstruction term 重构项redundant 冗余reflection matrix 反射矩阵regularization 正则化regularization term 正则化项rescaling 缩放robust 鲁棒性run ⾏程second-order feature ⼆阶特征sigmoid activation function S型激励函数significant digits 有效数字singular value 奇异值singular vector 奇异向量smoothed L1 penalty 平滑的L1范数惩罚Smoothed topographic L1 sparsity penalty 平滑地形L1稀疏惩罚函数smoothing 平滑Softmax Regresson Softmax回归sorted in decreasing order 降序排列source features 源特征sparse autoencoder 消减归⼀化Sparsity 稀疏性sparsity parameter 稀疏性参数sparsity penalty 稀疏惩罚square function 平⽅函数squared-error ⽅差stationary 平稳性(不变性)stationary stochastic process 平稳随机过程step-size 步长值supervised learning 监督学习symmetric positive semi-definite matrix 对称半正定矩阵symmetry breaking 对称失效tanh function 双曲正切函数the average activation 平均活跃度the derivative checking method 梯度验证⽅法the empirical distribution 经验分布函数the energy function 能量函数the Lagrange dual 拉格朗⽇对偶函数the log likelihood 对数似然函数the pixel intensity value 像素灰度值the rate of convergence 收敛速度topographic cost term 拓扑代价项topographic ordered 拓扑秩序transformation 变换translation invariant 平移不变性trivial answer 平凡解under-complete basis 不完备基unrolling 组合扩展unsupervised learning ⽆监督学习variance ⽅差vecotrized implementation 向量化实现vectorization ⽮量化visual cortex 视觉⽪层weight decay 权重衰减weighted average 加权平均值whitening ⽩化zero-mean 均值为零Letter AAccumulated error backpropagation 累积误差逆传播Activation Function 激活函数Adaptive Resonance Theory/ART ⾃适应谐振理论Addictive model 加性学习Adversarial Networks 对抗⽹络Affine Layer 仿射层Affinity matrix 亲和矩阵Agent 代理 / 智能体Algorithm 算法Alpha-beta pruning α-β剪枝Anomaly detection 异常检测Approximation 近似Area Under ROC Curve/AUC Roc 曲线下⾯积Artificial General Intelligence/AGI 通⽤⼈⼯智能Artificial Intelligence/AI ⼈⼯智能Association analysis 关联分析Attention mechanism 注意⼒机制Attribute conditional independence assumption 属性条件独⽴性假设Attribute space 属性空间Attribute value 属性值Autoencoder ⾃编码器Automatic speech recognition ⾃动语⾳识别Automatic summarization ⾃动摘要Average gradient 平均梯度Average-Pooling 平均池化Letter BBackpropagation Through Time 通过时间的反向传播Backpropagation/BP 反向传播Base learner 基学习器Base learning algorithm 基学习算法Batch Normalization/BN 批量归⼀化Bayes decision rule 贝叶斯判定准则Bayes Model Averaging/BMA 贝叶斯模型平均Bayes optimal classifier 贝叶斯最优分类器Bayesian decision theory 贝叶斯决策论Bayesian network 贝叶斯⽹络Between-class scatter matrix 类间散度矩阵Bias 偏置 / 偏差Bias-variance decomposition 偏差-⽅差分解Bias-Variance Dilemma 偏差 – ⽅差困境Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆Binary classification ⼆分类Binomial test ⼆项检验Bi-partition ⼆分法Boltzmann machine 玻尔兹曼机Bootstrap sampling ⾃助采样法/可重复采样/有放回采样Bootstrapping ⾃助法Break-Event Point/BEP 平衡点Letter CCalibration 校准Cascade-Correlation 级联相关Categorical attribute 离散属性Class-conditional probability 类条件概率Classification and regression tree/CART 分类与回归树Classifier 分类器Class-imbalance 类别不平衡Closed -form 闭式Cluster 簇/类/集群Cluster analysis 聚类分析Clustering 聚类Clustering ensemble 聚类集成Co-adapting 共适应Coding matrix 编码矩阵COLT 国际学习理论会议Committee-based learning 基于委员会的学习Competitive learning 竞争型学习Component learner 组件学习器Comprehensibility 可解释性Computation Cost 计算成本Computational Linguistics 计算语⾔学Computer vision 计算机视觉Concept drift 概念漂移Concept Learning System /CLS 概念学习系统Conditional entropy 条件熵Conditional mutual information 条件互信息Conditional Probability Table/CPT 条件概率表Conditional random field/CRF 条件随机场Conditional risk 条件风险Confidence 置信度Confusion matrix 混淆矩阵Connection weight 连接权Connectionism 连结主义Consistency ⼀致性/相合性Contingency table 列联表Continuous attribute 连续属性Convergence 收敛Conversational agent 会话智能体Convex quadratic programming 凸⼆次规划Convexity 凸性Convolutional neural network/CNN 卷积神经⽹络Co-occurrence 同现Correlation coefficient 相关系数Cosine similarity 余弦相似度Cost curve 成本曲线Cost Function 成本函数Cost matrix 成本矩阵Cost-sensitive 成本敏感Cross entropy 交叉熵Cross validation 交叉验证Crowdsourcing 众包Curse of dimensionality 维数灾难Cut point 截断点Cutting plane algorithm 割平⾯法Letter DData mining 数据挖掘Data set 数据集Decision Boundary 决策边界Decision stump 决策树桩Decision tree 决策树/判定树Deduction 演绎Deep Belief Network 深度信念⽹络Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积⽣成对抗⽹络Deep learning 深度学习Deep neural network/DNN 深度神经⽹络Deep Q-Learning 深度 Q 学习Deep Q-Network 深度 Q ⽹络Density estimation 密度估计Density-based clustering 密度聚类Differentiable neural computer 可微分神经计算机Dimensionality reduction algorithm 降维算法Directed edge 有向边Disagreement measure 不合度量Discriminative model 判别模型Discriminator 判别器Distance measure 距离度量Distance metric learning 距离度量学习Distribution 分布Divergence 散度Diversity measure 多样性度量/差异性度量Domain adaption 领域⾃适应Downsampling 下采样D-separation (Directed separation)有向分离Dual problem 对偶问题Dummy node 哑结点Dynamic Fusion 动态融合Dynamic programming 动态规划Letter EEigenvalue decomposition 特征值分解Embedding 嵌⼊Emotional analysis 情绪分析Empirical conditional entropy 经验条件熵Empirical entropy 经验熵Empirical error 经验误差Empirical risk 经验风险End-to-End 端到端Energy-based model 基于能量的模型Ensemble learning 集成学习Ensemble pruning 集成修剪Error Correcting Output Codes/ECOC 纠错输出码Error rate 错误率Error-ambiguity decomposition 误差-分歧分解Euclidean distance 欧⽒距离Evolutionary computation 演化计算Expectation-Maximization 期望最⼤化Expected loss 期望损失Exploding Gradient Problem 梯度爆炸问题Exponential loss function 指数损失函数Extreme Learning Machine/ELM 超限学习机Letter FFactorization 因⼦分解False negative 假负类False positive 假正类False Positive Rate/FPR 假正例率Feature engineering 特征⼯程Feature selection 特征选择Feature vector 特征向量Featured Learning 特征学习Feedforward Neural Networks/FNN 前馈神经⽹络Fine-tuning 微调Flipping output 翻转法Fluctuation 震荡Forward stagewise algorithm 前向分步算法Frequentist 频率主义学派Full-rank matrix 满秩矩阵Functional neuron 功能神经元Letter GGain ratio 增益率Game theory 博弈论Gaussian kernel function ⾼斯核函数Gaussian Mixture Model ⾼斯混合模型General Problem Solving 通⽤问题求解Generalization 泛化Generalization error 泛化误差Generalization error bound 泛化误差上界Generalized Lagrange function ⼴义拉格朗⽇函数Generalized linear model ⼴义线性模型Generalized Rayleigh quotient ⼴义瑞利商Generative Adversarial Networks/GAN ⽣成对抗⽹络Generative Model ⽣成模型Generator ⽣成器Genetic Algorithm/GA 遗传算法Gibbs sampling 吉布斯采样Gini index 基尼指数Global minimum 全局最⼩Global Optimization 全局优化Gradient boosting 梯度提升Gradient Descent 梯度下降Graph theory 图论Ground-truth 真相/真实Letter HHard margin 硬间隔Hard voting 硬投票Harmonic mean 调和平均Hesse matrix 海塞矩阵Hidden dynamic model 隐动态模型Hidden layer 隐藏层Hidden Markov Model/HMM 隐马尔可夫模型Hierarchical clustering 层次聚类Hilbert space 希尔伯特空间Hinge loss function 合页损失函数Hold-out 留出法Homogeneous 同质Hybrid computing 混合计算Hyperparameter 超参数Hypothesis 假设Hypothesis test 假设验证Letter IICML 国际机器学习会议Improved iterative scaling/IIS 改进的迭代尺度法Incremental learning 增量学习Independent and identically distributed/i.i.d. 独⽴同分布Independent Component Analysis/ICA 独⽴成分分析Indicator function 指⽰函数Individual learner 个体学习器Induction 归纳Inductive bias 归纳偏好Inductive learning 归纳学习Inductive Logic Programming/ILP 归纳逻辑程序设计Information entropy 信息熵Information gain 信息增益Input layer 输⼊层Insensitive loss 不敏感损失Inter-cluster similarity 簇间相似度International Conference for Machine Learning/ICML 国际机器学习⼤会Intra-cluster similarity 簇内相似度Intrinsic value 固有值Isometric Mapping/Isomap 等度量映射Isotonic regression 等分回归Iterative Dichotomiser 迭代⼆分器Letter KKernel method 核⽅法Kernel trick 核技巧Kernelized Linear Discriminant Analysis/KLDA 核线性判别分析K-fold cross validation k 折交叉验证/k 倍交叉验证K-Means Clustering K – 均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base 知识库Knowledge Representation 知识表征Letter LLabel space 标记空间Lagrange duality 拉格朗⽇对偶性Lagrange multiplier 拉格朗⽇乘⼦Laplace smoothing 拉普拉斯平滑Laplacian correction 拉普拉斯修正Latent Dirichlet Allocation 隐狄利克雷分布Latent semantic analysis 潜在语义分析Latent variable 隐变量Lazy learning 懒惰学习Learner 学习器Learning by analogy 类⽐学习Learning rate 学习率Learning Vector Quantization/LVQ 学习向量量化Least squares regression tree 最⼩⼆乘回归树Leave-One-Out/LOO 留⼀法linear chain conditional random field 线性链条件随机场Linear Discriminant Analysis/LDA 线性判别分析Linear model 线性模型Linear Regression 线性回归Link function 联系函数Local Markov property 局部马尔可夫性Local minimum 局部最⼩Log likelihood 对数似然Log odds/logit 对数⼏率Logistic Regression Logistic 回归Log-likelihood 对数似然Log-linear regression 对数线性回归Long-Short Term Memory/LSTM 长短期记忆Loss function 损失函数Letter MMachine translation/MT 机器翻译Macron-P 宏查准率Macron-R 宏查全率Majority voting 绝对多数投票法Manifold assumption 流形假设Manifold learning 流形学习Margin theory 间隔理论Marginal distribution 边际分布Marginal independence 边际独⽴性Marginalization 边际化Markov Chain Monte Carlo/MCMC 马尔可夫链蒙特卡罗⽅法Markov Random Field 马尔可夫随机场Maximal clique 最⼤团Maximum Likelihood Estimation/MLE 极⼤似然估计/极⼤似然法Maximum margin 最⼤间隔Maximum weighted spanning tree 最⼤带权⽣成树Max-Pooling 最⼤池化Mean squared error 均⽅误差Meta-learner 元学习器Metric learning 度量学习Micro-P 微查准率Micro-R 微查全率Minimal Description Length/MDL 最⼩描述长度Minimax game 极⼩极⼤博弈Misclassification cost 误分类成本Mixture of experts 混合专家Momentum 动量Moral graph 道德图/端正图Multi-class classification 多分类Multi-document summarization 多⽂档摘要Multi-layer feedforward neural networks 多层前馈神经⽹络Multilayer Perceptron/MLP 多层感知器Multimodal learning 多模态学习Multiple Dimensional Scaling 多维缩放Multiple linear regression 多元线性回归Multi-response Linear Regression /MLR 多响应线性回归Mutual information 互信息Letter NNaive bayes 朴素贝叶斯Naive Bayes Classifier 朴素贝叶斯分类器Named entity recognition 命名实体识别Nash equilibrium 纳什均衡Natural language generation/NLG ⾃然语⾔⽣成Natural language processing ⾃然语⾔处理Negative class 负类Negative correlation 负相关法Negative Log Likelihood 负对数似然Neighbourhood Component Analysis/NCA 近邻成分分析Neural Machine Translation 神经机器翻译Neural Turing Machine 神经图灵机Newton method ⽜顿法NIPS 国际神经信息处理系统会议No Free Lunch Theorem/NFL 没有免费的午餐定理Noise-contrastive estimation 噪⾳对⽐估计Nominal attribute 列名属性Non-convex optimization ⾮凸优化Nonlinear model ⾮线性模型Non-metric distance ⾮度量距离Non-negative matrix factorization ⾮负矩阵分解Non-ordinal attribute ⽆序属性Non-Saturating Game ⾮饱和博弈Norm 范数Normalization 归⼀化Nuclear norm 核范数Numerical attribute 数值属性Letter OObjective function ⽬标函数Oblique decision tree 斜决策树Occam’s razor 奥卡姆剃⼑Odds ⼏率Off-Policy 离策略One shot learning ⼀次性学习One-Dependent Estimator/ODE 独依赖估计On-Policy 在策略Ordinal attribute 有序属性Out-of-bag estimate 包外估计Output layer 输出层Output smearing 输出调制法Overfitting 过拟合/过配Oversampling 过采样Letter PPaired t-test 成对 t 检验Pairwise 成对型Pairwise Markov property 成对马尔可夫性Parameter 参数Parameter estimation 参数估计Parameter tuning 调参Parse tree 解析树Particle Swarm Optimization/PSO 粒⼦群优化算法Part-of-speech tagging 词性标注Perceptron 感知机Performance measure 性能度量Plug and Play Generative Network 即插即⽤⽣成⽹络Plurality voting 相对多数投票法Polarity detection 极性检测Polynomial kernel function 多项式核函数Pooling 池化Positive class 正类Positive definite matrix 正定矩阵Post-hoc test 后续检验Post-pruning 后剪枝potential function 势函数Precision 查准率/准确率Prepruning 预剪枝Principal component analysis/PCA 主成分分析Principle of multiple explanations 多释原则Prior 先验Probability Graphical Model 概率图模型Proximal Gradient Descent/PGD 近端梯度下降Pruning 剪枝Pseudo-label 伪标记Letter QQuantized Neural Network 量⼦化神经⽹络Quantum computer 量⼦计算机Quantum Computing 量⼦计算Quasi Newton method 拟⽜顿法Letter RRadial Basis Function/RBF 径向基函数Random Forest Algorithm 随机森林算法Random walk 随机漫步Recall 查全率/召回率Receiver Operating Characteristic/ROC 受试者⼯作特征Rectified Linear Unit/ReLU 线性修正单元Recurrent Neural Network 循环神经⽹络Recursive neural network 递归神经⽹络Reference model 参考模型Regression 回归Regularization 正则化Reinforcement learning/RL 强化学习Representation learning 表征学习Representer theorem 表⽰定理reproducing kernel Hilbert space/RKHS 再⽣核希尔伯特空间Re-sampling 重采样法Rescaling 再缩放Residual Mapping 残差映射Residual Network 残差⽹络Restricted Boltzmann Machine/RBM 受限玻尔兹曼机Restricted Isometry Property/RIP 限定等距性Re-weighting 重赋权法Robustness 稳健性/鲁棒性Root node 根结点Rule Engine 规则引擎Rule learning 规则学习Letter SSaddle point 鞍点Sample space 样本空间Sampling 采样Score function 评分函数Self-Driving ⾃动驾驶Self-Organizing Map/SOM ⾃组织映射Semi-naive Bayes classifiers 半朴素贝叶斯分类器Semi-Supervised Learning 半监督学习semi-Supervised Support Vector Machine 半监督⽀持向量机Sentiment analysis 情感分析Separating hyperplane 分离超平⾯Sigmoid function Sigmoid 函数Similarity measure 相似度度量Simulated annealing 模拟退⽕Simultaneous localization and mapping 同步定位与地图构建Singular Value Decomposition 奇异值分解Slack variables 松弛变量Smoothing 平滑Soft margin 软间隔Soft margin maximization 软间隔最⼤化Soft voting 软投票Sparse representation 稀疏表征Sparsity 稀疏性Specialization 特化Spectral Clustering 谱聚类Speech Recognition 语⾳识别Splitting variable 切分变量Squashing function 挤压函数Stability-plasticity dilemma 可塑性-稳定性困境Statistical learning 统计学习Status feature function 状态特征函Stochastic gradient descent 随机梯度下降Stratified sampling 分层采样Structural risk 结构风险Structural risk minimization/SRM 结构风险最⼩化Subspace ⼦空间Supervised learning 监督学习/有导师学习support vector expansion ⽀持向量展式Support Vector Machine/SVM ⽀持向量机Surrogat loss 替代损失Surrogate function 替代函数Symbolic learning 符号学习Symbolism 符号主义Synset 同义词集Letter TT-Distribution Stochastic Neighbour Embedding/t-SNE T – 分布随机近邻嵌⼊Tensor 张量Tensor Processing Units/TPU 张量处理单元The least square method 最⼩⼆乘法Threshold 阈值Threshold logic unit 阈值逻辑单元Threshold-moving 阈值移动Time Step 时间步骤Tokenization 标记化Training error 训练误差Training instance 训练⽰例/训练例Transductive learning 直推学习Transfer learning 迁移学习Treebank 树库Tria-by-error 试错法True negative 真负类True positive 真正类True Positive Rate/TPR 真正例率Turing Machine 图灵机Twice-learning ⼆次学习Letter UUnderfitting ⽋拟合/⽋配Undersampling ⽋采样Understandability 可理解性Unequal cost ⾮均等代价Unit-step function 单位阶跃函数Univariate decision tree 单变量决策树Unsupervised learning ⽆监督学习/⽆导师学习Unsupervised layer-wise training ⽆监督逐层训练Upsampling 上采样Letter VVanishing Gradient Problem 梯度消失问题Variational inference 变分推断VC Theory VC维理论Version space 版本空间Viterbi algorithm 维特⽐算法Von Neumann architecture 冯 · 诺伊曼架构Letter WWasserstein GAN/WGAN Wasserstein⽣成对抗⽹络Weak learner 弱学习器Weight 权重Weight sharing 权共享Weighted voting 加权投票法Within-class scatter matrix 类内散度矩阵Word embedding 词嵌⼊Word sense disambiguation 词义消歧Letter ZZero-data learning 零数据学习Zero-shot learning 零次学习Aapproximations近似值arbitrary随意的affine仿射的arbitrary任意的amino acid氨基酸amenable经得起检验的axiom公理,原则abstract提取architecture架构,体系结构;建造业absolute绝对的arsenal军⽕库assignment分配algebra线性代数asymptotically⽆症状的appropriate恰当的Bbias偏差brevity简短,简洁;短暂broader⼴泛briefly简短的batch批量Cconvergence 收敛,集中到⼀点convex凸的contours轮廓constraint约束constant常理commercial商务的complementarity补充coordinate ascent同等级上升clipping剪下物;剪报;修剪component分量;部件continuous连续的covariance协⽅差canonical正规的,正则的concave⾮凸的corresponds相符合;相当;通信corollary推论concrete具体的事物,实在的东西cross validation交叉验证correlation相互关系convention约定cluster⼀簇centroids 质⼼,形⼼converge收敛computationally计算(机)的calculus计算Dderive获得,取得dual⼆元的duality⼆元性;⼆象性;对偶性derivation求导;得到;起源denote预⽰,表⽰,是…的标志;意味着,[逻]指称divergence 散度;发散性dimension尺度,规格;维数dot⼩圆点distortion变形density概率密度函数discrete离散的discriminative有识别能⼒的diagonal对⾓dispersion分散,散开determinant决定因素disjoint不相交的Eencounter遇到ellipses椭圆equality等式extra额外的empirical经验;观察ennmerate例举,计数exceed超过,越出expectation期望efficient⽣效的endow赋予explicitly清楚的exponential family指数家族equivalently等价的Ffeasible可⾏的forary初次尝试finite有限的,限定的forgo摒弃,放弃fliter过滤frequentist最常发⽣的forward search前向式搜索formalize使定形Ggeneralized归纳的generalization概括,归纳;普遍化;判断(根据不⾜)guarantee保证;抵押品generate形成,产⽣geometric margins⼏何边界gap裂⼝generative⽣产的;有⽣产⼒的Hheuristic启发式的;启发法;启发程序hone怀恋;磨hyperplane超平⾯Linitial最初的implement执⾏intuitive凭直觉获知的incremental增加的intercept截距intuitious直觉instantiation例⼦indicator指⽰物,指⽰器interative重复的,迭代的integral积分identical相等的;完全相同的indicate表⽰,指出invariance不变性,恒定性impose把…强加于intermediate中间的interpretation解释,翻译Jjoint distribution联合概率Llieu替代logarithmic对数的,⽤对数表⽰的latent潜在的Leave-one-out cross validation留⼀法交叉验证Mmagnitude巨⼤mapping绘图,制图;映射matrix矩阵mutual相互的,共同的monotonically单调的minor较⼩的,次要的multinomial多项的multi-class classification⼆分类问题Nnasty讨厌的notation标志,注释naïve朴素的Oobtain得到oscillate摆动optimization problem最优化问题objective function⽬标函数optimal最理想的orthogonal(⽮量,矩阵等)正交的orientation⽅向ordinary普通的occasionally偶然的Ppartial derivative偏导数property性质proportional成⽐例的primal原始的,最初的permit允许pseudocode伪代码permissible可允许的polynomial多项式preliminary预备precision精度perturbation 不安,扰乱poist假定,设想positive semi-definite半正定的parentheses圆括号posterior probability后验概率plementarity补充pictorially图像的parameterize确定…的参数poisson distribution柏松分布pertinent相关的Qquadratic⼆次的quantity量,数量;分量query疑问的Rregularization使系统化;调整reoptimize重新优化restrict限制;限定;约束reminiscent回忆往事的;提醒的;使⼈联想…的(of)remark注意random variable随机变量respect考虑respectively各⾃的;分别的redundant过多的;冗余的Ssusceptible敏感的stochastic可能的;随机的symmetric对称的sophisticated复杂的spurious假的;伪造的subtract减去;减法器simultaneously同时发⽣地;同步地suffice满⾜scarce稀有的,难得的split分解,分离subset⼦集statistic统计量successive iteratious连续的迭代scale标度sort of有⼏分的squares平⽅Ttrajectory轨迹temporarily暂时的terminology专⽤名词tolerance容忍;公差thumb翻阅threshold阈,临界theorem定理tangent正弦Uunit-length vector单位向量Vvalid有效的,正确的variance⽅差variable变量;变元vocabulary词汇valued经估价的;宝贵的Wwrapper包装分类:。
专利名称:应用计算机技术管理、合成、可视化和探索大型多参数数据集的参数
专利类型:发明专利
发明人:詹姆斯·阿尔玛罗德,约瑟夫·斯皮德伦,迈克尔·大卫·斯塔德尼斯凯
申请号:CN201780069990.6
申请日:20171213
公开号:CN109937358A
公开日:
20190625
专利内容由知识产权出版社提供
摘要:公开了计算机技术,其将创新的数据处理和可视化技术应用于诸如细胞基因表达数据的大型多参数数据集,以发现诸如细胞和基因之间的关系的新关系,并在代表这些关系的数据集内创建新的关联数据结构。
例如,基因表达数据的散点图可以在细胞视图和基因视图之间迭代地旋转,以找到用户关注的细胞群和基因集合。
申请人:佛罗乔有限责任公司
地址:美国俄勒冈州
国籍:US
代理机构:北京安信方达知识产权代理有限公司
更多信息请下载全文后查看。
专利名称:用于对阿尔茨海默病的鉴别诊断的组合测试专利类型:发明专利
发明人:K.格沃特,A.纳伯斯,J.沙尔特纳
申请号:CN201780082303.4
申请日:20171121
公开号:CN110168374A
公开日:
20190823
专利内容由知识产权出版社提供
摘要:本发明提供了一种组合的免疫红外测定法,用于将阿尔茨海默病鉴别诊断和亚分类分为不同的疾病阶段。
该方法可用于确保疾病诊断和患者分层。
该测试考虑了体液中淀粉样‑β肽和Tau蛋白二级结构分布的变化的无标记检测。
这种从天然到β‑片层富集的亚型的二级结构变化在临床疾病表现之前很多年就出现。
现在,组合方法利用这种位移进行基于液体活组织检查的诊断。
申请人:波鸿鲁尔大学
地址:德国波鸿
国籍:DE
代理机构:北京市柳沈律师事务所
更多信息请下载全文后查看。
(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
python 费舍尔判别法**一、费舍尔判别法简介**费舍尔判别法(Fisher Discriminant Analysis,简称FDA)是一种监督学习方法,主要用于对样本进行分类。
该方法由英国统计学家罗纳德·费舍尔(Ronald A.Fisher)于1936年提出。
费舍尔判别法基于样本的协方差矩阵和类间距离,通过寻找最优的超平面来实现对不同类别样本的划分。
**二、费舍尔判别法的原理**费舍尔判别法的核心思想是在特征空间中寻找一个超平面,使得两个类别之间的距离(类间距离)最大,同时使得每个类别内的样本点到超平面的距离(类内距离)最小。
为了实现这一目标,费舍尔判别法通过以下步骤进行:1.计算每个特征的均值向量;2.计算每个特征的类内协方差矩阵;3.计算类间的协方差矩阵;4.求解最优超平面对应的参数。
**三、Python实现费舍尔判别法的示例代码**在Python中,我们可以使用scikit-learn库实现费舍尔判别法。
以下是一个简单的示例:```pythonfrom sklearn.discriminant_analysis import FisherClassifierfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_split# 加载鸢尾花数据集iris = load_iris()X = iris.datay = iris.target# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建费舍尔分类器实例fisher_clf = FisherClassifier(random_state=42)# 训练模型fisher_clf.fit(X_train, y_train)# 预测y_pred = fisher_clf.predict(X_test)# 计算准确率accuracy = fisher_clf.score(X_test, y_test)print("准确率:", accuracy)```**四、费舍尔判别法的应用场景**费舍尔判别法适用于多分类问题,尤其在样本分布具有明显差异的情况下表现良好。
黑塞矩阵和模型协方差矩阵1. 黑塞矩阵的概念黑塞矩阵,又称为海森矩阵(Hessian Matrix),是二阶偏导数构成的方阵。
它在优化问题和数值计算中起到了重要的作用。
黑塞矩阵是一个对称矩阵,其中每个元素是二阶偏导数的导数矩阵。
2. 黑塞矩阵的应用黑塞矩阵在许多领域中都有广泛的应用,特别是在优化算法和机器学习中。
它可以提供有关函数局部性质的信息,例如极小值、鞍点和局部二次型特性。
黑塞矩阵的应用可以帮助优化算法更快地收敛,从而在求解问题时提高效率和准确性。
2.1 优化算法中的黑塞矩阵在优化算法中,黑塞矩阵被用来描述目标函数的曲率。
通过分析黑塞矩阵的特征值,可以判断目标函数的最小值、最大值或鞍点的存在。
根据这些信息,可以选择合适的优化算法来优化目标函数。
2.2 机器学习中的黑塞矩阵在机器学习中,黑塞矩阵有助于解决参数估计问题。
通过对参数估计模型的损失函数计算黑塞矩阵,可以得到模型参数的方差估计和相关性。
这对于模型的可靠性评估和参数的置信区间估计非常重要。
3. 模型协方差矩阵的概念模型协方差矩阵是描述模型参数之间相关性的矩阵。
它是一个对称矩阵,其中每个元素表示对应参数之间的协方差。
模型协方差矩阵可以通过训练数据和模型参数的估计得到。
3.1 协方差矩阵的定义协方差矩阵是描述两个随机变量之间关系的矩阵。
在机器学习中,模型参数可以视为随机变量,其协方差矩阵用于表示参数之间的关系。
协方差矩阵的对角线元素表示各个参数的方差,非对角线元素表示参数之间的协方差。
3.2 模型协方差矩阵的应用模型协方差矩阵在机器学习中被广泛应用于参数估计、模型选择和模型优化等方面。
它可以提供关于参数的置信区间、参数选择的准则和模型优化的方向等重要信息。
4. 黑塞矩阵和模型协方差矩阵之间的关系黑塞矩阵和模型协方差矩阵之间存在一定的联系。
在某些情况下,黑塞矩阵的逆和模型参数的方差估计矩阵相等。
4.1 黑塞矩阵和模型协方差矩阵的关系对于具有凸损失函数的模型,黑塞矩阵的逆等于模型参数的方差估计矩阵。
Bayesian Sparse Representation for Hyperspectral Image Super ResolutionNaveed Akhtar,Faisal Shafait and Ajmal MianThe University of Western Australia35Stirling Highway,Crawley,6009.WAnaveed.akhtar@.au,{faisal.shafait&ajmal.mian}@.auAbstractDespite the proven efficacy of hyperspectral imaging in many computer vision tasks,its widespread use is hindered by its low spatial resolution,resulting from hardware lim-itations.We propose a hyperspectral image super resolu-tion approach that fuses a high resolution image with the low resolution hyperspectral image using non-parametric Bayesian sparse representation.The proposed approach first infers probability distributions for the material spec-tra in the scene and their proportions.The distributions are then used to compute sparse codes of the high resolu-tion image.To that end,we propose a generic Bayesian sparse coding strategy to be used with Bayesian dictionar-ies learned with the Beta process.We theoretically analyze the proposed strategy for its accurate performance.The computed codes are used with the estimated scene spec-tra to construct the super resolution hyperspectral image. Exhaustive experiments on two public databases of ground based hyperspectral images and a remotely sensed image show that the proposed approach outperforms the existing state of the art.1.IntroductionSpectral characteristics of hyperspectral imaging have recently been reported to enhance performance in many computer vision tasks,including tracking[22],recognition and classification[14],[32],[28],segmentation[25]and document analysis[20].They have also played a vital role in medical imaging[34],[18]and remote sensing[13],[4]. Hyperspectral imaging acquires a faithful spectral represen-tation of the scene by integrating its radiance against several spectrally well-localized basis functions.However,contem-porary hyperspectral systems lack in spatial resolution[2], [18],[11].This fact is impeding their widespread use.In this regard,a simple solution of using high resolution sen-sors is not viable as it further reduces the density of the photons reaching the sensors,which is already limited by the high spectral resolution of theinstruments.Figure1.Left:A16×16spectral image at600nm.Center:The 512×512super resolution spectral image constructed by the pro-posed approach.Right:Ground truth(CA VE database[30]).Due to hardware limitations,software based approaches for hyperspectral image super resolution(e.g.see Fig.1) are considered highly attractive[2].At present,the spatial resolution of the systems acquiring images by a gross quan-tization of the scene radiance(e.g.RGB and RGB-NIR)is much higher than their hyperspectral counterparts.In this work,we propose to fuse the spatial information from the images acquired by these systems with the hyperspectral images of the same scenes using non-parametric Bayesian sparse representation.The proposed approach fuses a hyperspectral image with the high resolution image in a four-stage process,as shown in Fig.2.In thefirst stage,it infers probability distribu-tions for the material reflectance spectra in the scene and a set of Bernoulli distributions,indicating their proportions in the image.Then,it estimates a dictionary and trans-forms it according to the spectral quantization of the high resolution image.In the third stage,the transformed dic-tionary and the Bernoulli distributions are used to compute the sparse codes of the high resolution image.To that end, we propose a generic Bayesian sparse coding strategy to be used with Bayesian dictionaries learned with the Beta pro-cess[23].We theoretically analyze the proposed strategy for its accurate performance.Finally,the computed codes are used with the estimated dictionary to construct the su-per resolution hyperspectral image.The proposed approach not only improves the state of the art results,which is veri-fied by exhaustive experiments on three different public data sets,it also maintains the advantages of the non-parametric Bayesian framework over the typical optimization based ap-proaches[2],[18],[29],[31].1Figure2.Schematics of the proposed approach:(1)Sets of distributions over the dictionary atoms and the support indicator vectors are inferred non-parametrically.(2)A dictionaryΦis estimated and transformed according to the spectral quantization of the high resolution image Y.(3)The transformed dictionary and the distributions over the support indicator vectors are used for sparse coding Y.This step is performed by the proposed Bayesian sparse coding strategy.(4)The codes are used withΦto construct the target super resolution image.The rest of the paper is organized as follows.After re-viewing the related literature in Section2,we formalize the problem in Section3.The proposed approach is presented in Section4and evaluated in Section5.Section6provides a discussion on the parameter settings of the proposed ap-proach,and Section7concludes the paper.2.Related WorkHyperspectral sensors have been in use for nearly two decades in remote sensing[13].However,it is still difficult to obtain high resolution hyperspectral images by the satel-lite sensors due to technical and budget constraints[17]. This fact has motivated considerable research in hyperspec-tral image super resolution,especially for remote sensing. To enhance the spatial resolution,hyperspectral images are usually fused with the high resolution pan-chromatic im-ages(i.e.pan-sharpening)[25],[11].In this regard,con-ventional approaches are generally based on projection and substitution,including the intensity hue saturation[16]and the principle component analysis[10].In[1]and[7],the authors have exploited the sensitivity of human vision to luminance and fused the luminance component of the high resolution images with the hyperspectral images.However, this approach can also cause spectral distortions in the re-sulting image[8].Minghelli-Roman et al.[21]and Zhukov et al.[35]have used hyperspectral unmixing[19],[3]for spatial resolu-tion enhancement of hyperspectral images.However,their methods require that the spectral resolutions of the images being fused are close to each other.Furthermore,these ap-proaches struggle in highly mixed scenarios[17].Zurita-Milla et al.[36]have enhanced their performance for such cases using the sliding window strategy.More recently,matrix factorization based hyperspectral image super resolution for ground based and remote sens-ing imagery has been actively investigated[18],[29],[17], [31],[2].Approaches developed under this framework fuse high resolution RGB images with hyperspectral images. Kawakami et al.[18]represented each image from the two modalities by two factors and constructed the desired im-age with the complementary factors of the two representa-tions.Similar approach is applied in[17]to the remotely acquired images,where the authors used a down-sampled version of the RGB image in the fusion process.Wycoff et al.[29]developed a method based on Alternating Direc-tion Method of Multipliers(ADMM)[6].Their approach also requires prior knowledge about the spatial transform between the images being fused.Akhtar et al.[2]pro-posed a method based on sparse spatio-spectral representa-tion of hyperspectral images that also incorporates the non-negativity of the spectral signals.The strength of the ap-proach comes from exploiting the spatial structure in the scene,which requires processing the images in terms of spatial patches and solving a simultaneous sparse optimiza-tion problem[27].Yokoya et al.[31]made use of coupled feature space between a hyperspectral and a multispectral image of the same scene.Matrix factorization based approaches have been able to show state of the art results in hyperspectral image su-per resolution using the image fusion technique.However, Akhtar et al.[2]showed that their performance is sensi-tive to the algorithm parameters,especially to the sizes of the matrices(e.g.dictionary)into which the images are fac-tored.Furthermore,there is no principled way to incorpo-rate prior domain knowledge to enhance the performance of these approaches.3.Problem FormulationLet Y h∈R m×n×L be the acquired low resolution hy-perspectral image,where L denotes the spectral dimen-sion.We assume availability of a high resolution image Y∈R M×N×l(e.g.RGB)of the same scene,such that M m,N n and L l.Our objective is to estimate the super resolution hyperspectral image T∈R M×N×L by fusing Y and Y h.For our problem,Y h=Ψh(T) and Y=Ψ(T),whereΨh:R M×N×L→R m×n×L and Ψ:R M×N×L→R M×N×l.LetΦ∈R L×|K|be an unknown matrix with columns ϕk,where k∈K={1,...,K}and|.|denotes the car-dinality of the set.Let Y h=ΦB,where the matrixY h∈R L×mn is created by arranging the pixels of Y h as its columns and B∈R|K|×mn is a coefficient matrix.For our problem,the basis vectorsϕk represent the reflectance spectra of different materials in the imaged scene.Thus, we also allow for the possibility that|K|>L.Normally, |K| mn because a scene generally comprises only a few spectrally distinct materials[2].Let Φ∈R l×|K|be such that Y= ΦA,where Y∈R l×MN is formed by arranging the pixels of Y and A∈R|K|×MN is a coefficient matrix.The columns of Φare also indexed in K.Since Y h and Y represent the images of the same scene, Φ=ΥΦ,where Υ∈R l×L is a transformation matrix,associating the spec-tral quantizations of the two imaging modalities.Similar to the previous works[2],[18],[29],this transform is consid-ered to be known a priori.In the above formulation,pixels of Y and Y h are likely to admit sparse representations over ΦandΦ,respectively, because a pixel generally contains very few spectra as com-pared to the whole image.Furthermore,the value of|K| can vary greatly between different scenes,depending on the number of spectrally distinct materials present in a scene. In the following,we refer toΦas the dictionary and Φas the transformed dictionary.The columns of the dictionar-ies are called their atoms and a complementary coefficient matrix(e.g.A)is referred as the sparse code matrix or the sparse codes of the corresponding image.We adopt these conventions from the sparse representation literature[24].4.Proposed ApproachWe propose a four-stage approach for hyperspectral im-age super resolution that is illustrated in Fig.2.The pro-posed approachfirst separates the scene spectra by learn-ing a dictionary from the low resolution hyperspectral im-age under a Bayesian framework.The dictionary is trans-formed using the known spectral transformΥbetween the two input images as Φ=ΥΦ.The transformed dictionary is used for encoding the high-resolution image.The codesA∈R|K|×MN are computed using the proposed strategy. As shown in thefigure,we eventually use the dictionary and the codes to construct T=Φ A,where T∈R L×MN is formed by arranging the pixels of the target image T. Hence,accurate estimation of A andΦis crucial for our ap-proach,where the dictionary estimation also includesfind-ing its correct size,i.e.|K|.Furthermore,we wish to in-corporate the ability of using the prior domain knowledge in our approach.This naturally leads towards exploiting the non-parametric Bayesian framework.The proposed ap-proach is explained below,following the sequence in Fig.2.4.1.Bayesian Dictionary LearningWe denote the i th pixel of Y h by y h i∈R L,that ad-mits to a sparse representationβh i∈R|K|over the dic-tionaryΦwith a small error h i∈R L.Mathematically, y h i=Φβh i+ h i.To learn the dictionary in these settings1, Zhou et al.[33]proposed a beta process[23]based non-parametric Bayesian model,that is shown below in its gen-eral form.In the given equations and the following text, we have dropped the superscript‘h’for brevity,as it can be easily deduced from the context.y i=Φβi+ i∀i∈{1,...,mn}βi=z i s iϕk∼N(ϕk|µko,Λ−1k o)∀k∈Kz ik∼Bern(z ik|πko)πk∼Beta(πk|a o/K,b o(K−1)/K)s ik∼N(s ik|µso,λ−1so)i∼N( i|0,Λ−1o)In the above model, denotes the Hadamard/element-wise product;∼denotes a draw(i.i.d.)from a distribution; N refers to a Normal distribution;Bern and Beta repre-sent Bernoulli and Beta distributions,respectively.Further-more,z i∈R|K|is a binary vector whose k th component z ik is drawn from a Bernoulli distribution with parameter πko.Conjugate Beta prior is placed overπk,with hyper-parameters a o and b o.We have used the subscript‘o’to distinguish the parameters of the prior distributions.We re-fer to z i as the support indicator vector,as the value z ik=1 indicates that the k th dictionary atom participates in the ex-pansion of y i.Also,each component s ik of s i∈R|K|(the weight vector)is drawn from a Normal distribution.1The sparse code matrix B(withβhi∈{1,...,mn}as its columns)is also learned.However,it is not required by our approach.For tractability,we restrict the precision matrixΛko ofthe prior distribution over a dictionary atom toλko I L,whereI L denotes the identity in R L×L andλko ∈R is a prede-termined constant.A zero vector is used for the mean pa-rameterµko ∈R L,since the distribution is defined over abasis vector.Similarly,we letΛo =λoI L andµso=0,whereλo ∈R.These simplifications allow for fast infer-encing in our application without any noticeable degrada-tion of the results.We further place non-informative gammahyper-priors overλso andλo,so thatλs∼Γ(λs|c o,d o)andλ ∼Γ(λ |e o,f o),whereΓdenotes the Gamma dis-tribution and c o,d o,e o and f o are the hyper-parameters. The model thus formed is completely conjugate,therefore Bayesian inferencing can be performed over it with Gibbs sampling using analytical expressions.We derive these ex-pressions for the proposed approach and state thefinal sam-pling equations below.Detailed derivations of the Gibbs sampling equations can be found in the provided supple-mentary material.We denote the contribution of the k th dictionary atomϕkto y i as,y iϕk =y i−Φ(z i s i)+ϕk(z ik s ik),and the2norm of a vector by . ing these notations,we ob-tain the following analytical expressions for the Gibbs sam-pling process used in our approach:Sampleϕk:from N(ϕk|µk,λ−1kI L),whereλk=λko +λomni=1(z ik s ik)2;µk=λoλkmni =1(z ik s ik)y iϕkSample z ik:from Bernz ik|ξπk o1−πko+ξπko,whereξ=exp−λo2(ϕT kϕk s2ik−2s ik y T iϕkϕk)Sample s ik:from N(s ik|µs,λ−1s),whereλs=λso +λoz2ikϕT kϕk;µs=λoλsz ikϕT k y iϕkSampleπk:from Beta(πk|a,b),wherea=a oK+mni=1z ik;b=b o(K−1)K+(mn)−mni=1z ikSampleλs:fromΓ(λs|c,d),wherec=Kmn2+c o;d=12mni=1||s i||22+d oSampleλ :fromΓ(λ |e,f),wheree=Lmn2+e o;f=12mni=1||y i−Φ(z i s i)||22+f oAs a result of Bayesian inferencing,we obtain sets ofposterior distributions over the model parameters.We areinterested in two of them.(a)The set of distributions overthe atoms of the dictionary,ℵdef={N(ϕk|µk,Λ−1k):k∈K}⊂R L and(b)the set of distributions over the com-ponents of the support indicator vectors def={Bern(πk):k∈K}⊂R.Here,Bern(πk)is followed by the k th com-ponents of all the support indicator vectors simultaneously,i.e.∀i∈{1,...,mn},z ik∼Bern(πk).These sets are usedin the later stages of the proposed approach.In the above model,we have placed Gaussian priors overthe dictionary atoms,enforcing our prior belief of relativesmoothness of the material spectra.Note that,the correctvalue of|K|is also inferred at this stage.We refer to thepioneering work by Paisley and Carin[23]for the theoret-ical details in this regard.In our inferencing process,thedesired value of|K|manifests itself as the total number ofdictionary atoms for whichπk=0after convergence.Toimplement this,we start with K→∞and later drop thedictionary atoms corresponding toπk=0during the sam-pling process.With the computedℵ,we estimateΦ(stage2in Fig.2)by drawing multiple samples from the distributions in theset and computing their respective means.It is also possibleto directly use the mean parameters of the inferred distribu-tions as the estimates of the dictionary atoms,but the formeris preferred for robustness.Henceforth,we will considerthe dictionary,instead of the distributions over its atoms,asthefinal outcome of the Bayesian dictionary learning pro-cess.The transformed dictionary is simply computed asΦ=ΥΦ.Recall that,the matrixΥrelates the spectralquantizations of the two imaging modalities under consid-eration and it is known a priori.4.2.Bayesian Sparse CodingOnce Φis known,we use it to compute the sparse codesof Y.The intention is to obtain the codes of the high res-olution image and use them withΦto estimate T.Al-though some popular strategies for sparse coding alreadyexist,e.g.Orthogonal Matching Pursuit[26]and Basis Pur-suit[12],but their performance is inferior when used withthe Bayesian dictionaries learned using the Beta process.There are two main reasons for that.(a)Atoms of theBayesian dictionaries are not constrained to 2unit norm.(b)With these atoms,there is an associated set of Bernoullidistributions which must not be contradicted by the under-lying support of the sparse codes.In some cases,it may beeasy to modify an existing strategy to cater for(a),but it isnot straightforward to take care of(b)in these approaches.We propose a simple,yet effective method for Bayesiansparse coding that can be generically used with the dictio-naries learned using the Beta process.The proposal is to fol-low a procedure similar to the Bayesian dictionary learning,with three major differences.For a clear understanding,we explain these differences as modifications to the inferenc-ing process of the Bayesian dictionary learning,following the same notational conventions as above.1)Use N ( ϕk |µk o ,λ−1k o I l )as the prior distribution overthe k th dictionary atom,where λk o →∞and µk o = ϕk .Considering that Φis already a good estimate of the dic-tionary 2,this is an intuitive prior.It entails, ϕk is sampled from the following posterior distribution while inferencing:Sample ϕk :from N ( ϕk |µk ,λ−1k I l ),whereλk =λk o +λ oMN i =1(z ik s ik )2;µk =λ o λk MNi =1(z ik s ik )y i b ϕk+λk o λkµk o In the above equations,λk o →∞signifies λk ≈λk o andµk ≈µk o .It further implies that we are likely to get simi-lar samples against multiple draws from the distribution.In other words,we can not only ignore to update the posterior distributions over the dictionary atoms during the inferenc-ing process,but also approximate them with a fixed matrix.A sample from the k th posterior distribution is then the k th column of this matrix.Hence,from the implementation per-spective,Bayesian sparse coding directly uses the atoms of Φas the samples from the posterior distributions.2)Sample the support indicator vectors in accordance with the Bernoulli distributions associated with the fixed dictionary atoms.To implement this,while inferencing,we fix the distributions over the support indicator vectors according to .As shown in Fig.2,we use the vector π∈R |K|for this purpose,which stores the parameters of the distributions in the set .While sampling,we directly use the k th component of πas πk .It is noteworthy that us-ing πin coding Y also imposes the self-consistency of the scene between the high resolution image Y and the hyper-spectral image Y h .Incorporating the above proposals in the Gibbs sampling process and performing the inferencing can already result in a reasonably accurate sparse representation of y over Φ.However,a closer examination of the underlying proba-bilistic settings reveals that a more accurate estimate of the sparse codes is readily obtainable.Lemma 4.1With y ∈R ( Φ)(i.e .∃αs.t.y = Φα)and |K|>l ,the best estimate of the representation of y ,in the mean squared error sense 3,is given by ˜αopt =E E [α|z ],where R (.)is the range operator,E [.]and E [.|.]are the2Thisis true because b Φis an exact transform of Φ,which in turn,is computed with high confidence.3The metric is chosen based on the existing literature in hyperspectral image super resolution [18],[17],[2].expectation and the conditional expectation operators,re-spectively.Proof:Let ˜α∈R |K|be an estimate of the representation αof y ,over Φ.We can define the mean square error (MSE)as the following:MSE =E ||˜α−α||22 (1)In our settings,the components of a support indicator vectorz are independent draws from Bernoulli distributions.Let Z be the set of all possible support indicator vectors in R |K|,i.e .|Z|=2|K|.Thus,there is a non-negative probability of selection P (z )associated with each z ∈Z such that z ∈Z P (z )=1.Indeed,the probability mass function p (z )depends on the vector πthat assigns higher probabilities to the vectors indexing more important dictionary atoms.We can model the generation of αas a two step se-quential process:1)Random selection of z with probability P (z ).2)Random selection of αaccording to a conditional probability density function p (α|z ).Here,the selection of αimplies the selection of the corresponding weight vector s and then computing α=z s .Under this perspective,MSE can be re-written as:MSE = z ∈ZP (z )E ||˜α−α||22|z(2)The conditional expectation in (2)can be written as:E ||˜α−α||22|z =||˜α||22−2˜αT E [α|z ]+E ||α||22|z (3)We can write the last term in (3)as the following:E ||α||22|z = E [α|z ] 22+E α−E [α|z ] 22|z(4)For brevity,let us denote the second term in (4)as V z .By combining (2)-(4)we get:MSE = z ∈ZP (z )˜α−E [α|z ] 22+ z ∈ZP (z )V z (5)=E ˜α−E [α|z ] 22 +E V z (6)Differentiating R.H.S.of (6)with respect to ˜αand equating it to zero,we get ˜αopt =E E [α|z ] 4,that minimizes the mean squared error.Notice that,with the aforementioned proposals incorpo-rated in the sampling process,it is possible to independently perform the inferencing multiple,say Q ,times.This would result in Q support indicator vectors z q and weight vectors s q for y ,where q ∈{1,...Q }.Lemma 4.2For Q →∞,1QQ q =1z q s q =E E [α|z ] .4Detailedmathematical derivation of each step used in the proof is alsoprovided in the supplementary material.Proof:We only discuss an informal proof of Lemma 4.2.The following statements are valid in our settings:(a)∃αi ,αj s.t.(αi =αj )∧(αi =z s i )∧(αj =z s j )(b)∃z i ,z j s.t.(z i =z j )∧(α=z i s i )∧(α=z j s j )where ∧denotes the logical and ;αi and αj are instances of two distinct solutions of the underdetermined systemy = Φα.In the above statements,(a)refers to the possi-bility of distinct representations with the same support and (b)refers to the existence of distinct support indicator vec-tors for a single representation.Validity of these conditions can be easily verified by noticing that z and s are allowed to have zero components.For a given inferencing process,the final computed vectors z and s are drawn according to valid probability distributions.Thus,(a)and (b)entail that the mean of Q independently computed representations,is equivalent to E E [α|z ]when Q →∞.3)In the light of Lemma 4.1and 4.2,we propose to in-dependently repeat the inferencing process Q times,where Q is a large number (e.g .100),and finally compute the code matrix A (in Fig.2)as A =1Q Q q =1Z q S q ,where Ahas ˜αi ∈{1,...,MN }as its columns.The matrices Z q ,S q ∈R |K|×MN are the support matrix and the weight matrix,respectively,formed by arranging the support indi-cator vectors and the weight vectors as their columns.Notethat,the finally computed codes A may by dense as com-pared to individual Z q .With the estimated Aand the dictionary Φ,we com-pute the target super resolution image T by re-arrangingthe columns of T =Φ A(stage 4in Fig.2)into the pixels of hyperspectral image.5.Experimental EvaluationThe proposed approach has been thoroughly evaluated using ground based imagery as well as remotely sensed data.For the former,we performed exhaustive experiments on two public databases,namely,the CA VE database [30]and the Harvard database [9].CA VE comprises 32hy-perspectral images of everyday objects with dimensions 512×512×31,where 31represents the spectral dimen-sion.The spectral images are in the wavelength range 400-700nm,sampled at a regular interval of 10nm.The Harvard database consists of 50images of indoor and outdoor scenes with dimensions 1392×1040×31.The spectral samples are taken at every 10nm in the range 420-720nm.For the remote sensing data,we chose a 512×512×224hyper-spectral image 5acquired by the NASA’s Airborne Visible Infrared Imaging Spectrometer (A VIRIS)[15].This image has been acquired over the Cuprite mines in Nevada,in the wavelength range 400-2500nm with 10nm sampling in-terval.We followed the experimental protocol of [2]and [18].For benchmarking,we compared the results with the5/data/free data.html .existing best reported results in the literature under the same protocol,unless the code was made public by the authors.In the latter case,we performed experiments using the pro-vided code and the optimized parameter values.The re-ported results are in the range of 8bit images.In our experiments,we consider the images from the databases as the ground truth.A low resolution hyperspec-tral image Y h is created by averaging the ground truth over 32×32spatially disjoint blocks.For the Harvard database,1024×1024×31image patches were cropped from the top left corner of the images,to make the spatial dimen-sions of the ground truth multiples of 32.For the ground based imagery,we assume the high resolution image Y to be an RGB image of the same scene.We simulate this im-age by integrating the ground truth over its spectral dimen-sion using the spectral response of Nikon D7006.For the remote sensing data,we consider Y to be a multispectral image.Following [2],we create this image by directly se-lecting six spectral images from the ground truth against the wavelengths 480,560,660,830,1650and 2220nm.Thus,in this case,Υis a 6×224binary matrix that se-lects the corresponding rows of Φ.The mentioned wave-lengths correspond to the visible and mid-infrared channels of USGS/NASA Landsat 7satellite.We compare our results with the recently proposed ap-proaches,namely,the Matrix Factorization based method (MF)[18],the Spatial Spectral Fusion Model (SSFM)[17],the ADMM based approach [29],the Coupled Matrix Fac-torization method (CMF)[31]and the spatio-spectral sparse representation approach,GSOMP [2].These matrix factor-ization based approaches constitute the state of the art in this area [2].In order to show the performance difference between these methods and the other approaches mentioned in Section 2,we also report some results of the Component Substitution Method (CSM)[1],taken directly from [18].The top half of Table 1shows results on seven different images from the CA VE database.We chose these images because they are commonly used for benchmarking in the existing literature [2],[29],[18].The table shows the root mean squared error (RMSE)of the reconstructed super res-olution images.The approaches highlighted in red addi-tionally require the knowledge of the down-sampling matrix that converts the ground truth to the acquired hyperspectral image.Hence,they are of less practical value [2].As can be seen,our approach outperforms most of the existing meth-ods by a considerable margin on all the images.Only the re-sults of GSOMP are comparable to our method.However,GSOMP operates under the assumption that nearby pixels in the target image are spectrally similar.The assumption is enforced with the help of two extra algorithm parameters.Fine tuning these parameters is often non-trivial,as many6Theresponse and integration limits can be found at/spectral response.htm。