当前位置:文档之家› 全定制施密特触发器汇总

全定制施密特触发器汇总

全定制施密特触发器汇总
全定制施密特触发器汇总

成绩评定表

I

课程设计任务书

II

摘要

施密特触发器(Schmitt Trigger)是脉冲波形变换中经常使用的一种电路。利用它所具有的电位触发特性,可以进行脉冲整形,把边沿不够规则的脉冲整形为边沿陡峭的矩形脉冲;通过它可以进行波形变换,把正弦波变换成矩形波;另一个重要用途就是进行信号幅度鉴别,只要信号幅度达到某一设定值,触发器就翻转。本次课程设计是在cadence公司的全定制平台IC5141下,完成了施密特触发器的全定制电路设计。根据施密特触发器在性能上的特点以及设计要求,采用180nmpdk工艺库并用CMOS工艺实现。实现施密特触发器的关键是反馈电路的构建,最简单的方法是采用电阻反馈的方式。首先,根据电路图进行原理图的绘制,然后进行电路测试。在版图部分要对N管和P管进行例化。最后,进行DRC和LVS验证。

IC5141工具主要包括集成平台design frame work II、原理图编辑工具virtuoso schematic editor、仿真工具spectre、版图编辑工具virtuoso layout editor、以及物理验证工具diva。

关键字:施密特触发器;全定制;物理验证;

III

目录

1 电路设计 (1)

1.1 原理分析 (1)

1.2 施密特触发器电路 (1)

2 施密特原理图输入 (3)

2.1 建立设计库 (3)

2.2 电路原理图输入 (4)

3电路仿真与分析 (5)

3.1 创建symbol (5)

3.2 创建仿真电路图 (5)

3.3 电路仿真与分析 (6)

4 电路版图设计 (9)

4.1 建立pCell库版图 (9)

4.2 pCell库器件参数化 (11)

4.3 器件板图绘制 (14)

5物理验证 (17)

5.1 设计规则检查DRC (17)

5.2 LVS检查 (17)

结论 (21)

参考文献 (22)

IV

1

1 电路设计

1.1 原理分析

施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压V T+,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压V T-。正向阈值电压与负向阈值电压之差称为回差电压

T 。

1.2 施密特触发器电路

将两级反相器串接起,同时通过分压电阻把输出端的电压反馈到输入端,就构成了图1-1(a)所示的施密特触发器电路。其中G 1、G 2是CMOS 电路,它们的阈值电压V TH =0.5V DD ,且R 1

图1.1 用CMOS 反相器构成的施密特触发器

普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的。

如果以图1.1(a )中的v o 作为输出端,则得到得电压传输特性将如图1.2(a )所示,这种形式的电压传输特性叫做同相输出。

如果以图1.1(a )中的v o `作为输出端,则得到得电压传输特性将如图1.2(b )所示,这种形式的电压传输特性叫做反相输出。

2

图1.2施密特触发器的电压传输特性

由于图1.1电路的电路图中含有电阻,在电路功能实现以及版图绘制时有较多的限制,故在本次设计中并未采用这种结构。图1.3就是这次设计所采用的电路。

图1.3 CMOS 施密特触发器

3

2 施密特原理图输入

原理图的绘制要在Linux 下的IC5141下完成。本次设计中采用cadence 的3.2版的180nmpdk (/opt/eda/cadence/lib 下)工艺库。使用Cadence ,必须在计算机上作一些相应的设置,这些设置包括很多方面。作为初学者,只需进行几项简单设置即可,在此不再赘述。环境配置完成以后,在工作目录下键入icfb&IC ,IC514界面即可启动。

2.1 建立设计库

在ic5141中,设计的管理以库的方式进行。库管理器中包含有设计使用的工艺库和ic5141软件提供的一些元件库,如analogLib ,basic 等。用户在工作过程中建立的库也放在库管理器中。无论画电路图还是设计版图,都和建库有关,建电路图库的步骤如下。

1)CIW 界面点击File 菜单,出现下拉菜单,选命令→New→Library ,出现“New Library”对话框。

2)在对话框Library 的Name 项中输入新库名mylib 。在Technology File 项中提示:“如果要在这个库中建立掩模版图或其他物理数据,需要技术文件”若只需要用电路图或HDL 数据,则不需要技术文件。

3)由于新建库后面还将用于版图绘制,因此选第二个选项,即“Attach to an existingtechfile ,单击“OK“按钮,选择工艺库gpdk180。下面可以进行电路原理图绘制了。 具体可见图2.1所示。

图2.1 新建设计库

4

2.2 电路原理图输入

设计库建立好后,就可以开始画电路原理图,具体过程如下:

1)建立设计原理图:在CIW 中选菜单项File→New→Cellview ,出现“Create →New File”对话框,新建inv 单元,填写、选择相应的选项即可,点击OK 按钮,进入原理图编辑器virtuoso schematic editor 界面。

2)例化并添加器件:在原理图编辑器中选择菜单项Add→nstance ,出现添加器件对话框,选择相应的器件,并根据设计要求填写相应参数。并按着电路原理图的相应位置摆放器件。

3)器件互联:在电路图编辑窗口菜单中,选择 “Add”->”Wire(narrow)”或点击工具栏中的放置细线或用快捷键w ,便可以将已经放置好的元件连接起来。

4)添加输入输出端口:完成连线后直接添加pin 完成原理图输入。选择“Add”->“Pin”或点击工具栏中的放置端口或用快捷键P 均可,弹出pin 选项表,填好端口名,并使之与端口方向(分别为input 和output )的选项一致,即可完成输入输出端口的添加。

5)检查与保存。选择“Design”->“Check and Save”,如果电路图有绘制问题,会报告出错。至此我们就完成了整体电路图绘制。整体原理图如图2.2所示:

图2.2 施密特触发器原理图

5

3电路仿真与分析

3.1 创建symbol

完成原理图之后,为便于进行仿真,需要进行symbol 的创建。

(1)生成符号图:在原理图编辑窗口,点击菜单项Design→Create Cellview →From Cellview ,出现symbol 生成选项表(图3.1上部分),点击OK 按钮出现图3.1下部分。

图3.1 symbol 生成选项表

在的表项中只采用默认值,直接点击OK 按钮,即可看到symbol 编辑窗口。

3.2 创建仿真电路图

完成电路原理图的输入之后,为了对设计进行仿真和性能分析,需要建立一个仿真平台,将电源、各种激励信号输入待测的电路inv ,然后采用仿真器进行分析。

1)建立设计原理图:在命令解释器窗口CIW 中选菜单项File→New→Cellview ,出现“Create New File”对话框,填写、选择相应的选项,点击OK

按钮,进入原理图编辑

6

器virtuoso schematic editor 界面。(同前述电路原理图输入时的操作一样)。

2)例化并添加器件:在原理图编辑器中选择菜单项Add →Instance (或者按快捷键i ,或者点击编辑器左侧的工具栏Instance 按钮均可)出现例化选项表。分别添加vdd 和gnd(注意这里采用的是analogLib 库中的元件)。添加负载电容,设置电源vdc 和输入信号。

3)器件互联:连线这里不详述,操作同电路原理图输入。最后得到的仿真电路图如图3.2所示一致。

图3.2 施密特触发器仿真电路图

3.3 电路仿真与分析

对于ic5141模拟设计环境ADE 来说,默认的仿真器是spectre ,这里直接采用spectre 对设计进行仿真和分析。

(1)启动模拟设计环境ADE (Analog Design Environment ):在图3.2的窗口中选择菜单项Tools→Analog Environment ,随即启动ADE 。窗口如图3.3

所示。所示我们的

7

电路仿真与分析就要在该平台下进行。

图3.3 ADE 启动界面

(2)添加模型与仿真文件:在图3.3的界面中,选择菜单项Setup→Model Libraries ,进入ModelSetup Library 窗口。然后点击右下角的Browse…按钮,进入模型库的选择,如下图3.4所示。点击OK 按钮选中模型文件gpdk.scs ,窗口回到Model Library Setup 界面。在Section(opt)下的框中填入stat ,点击Add 按钮添加模型文件。最后点击OK 选中模型文件并退出。

选定模型后,还需要设置仿真文件。选择菜单选项Setup→Simulation Files ,弹窗口 中填入仿真文件的路径,点击OK 完成设置。

图3.4 仿真分析模型选择

(3)设置分析类型:根据不同的需要,可以对电路进行不同类型的分析。在此选择瞬态(transient )分析。在ADE 界面中,选择菜单项Analyses→Choose ,选择仿真参数和类型,分析时间相对于激励适当即可。

8

(4)信号分析输出捕捉:这里选择需要查看的信号。在ADE 界面中,选择菜单项Output→To be plotted→Select On Schematic ,此时invTest 的原理图窗口变成活跃的,直接用鼠标点击需要查看的信号即可。这里选择inv 的输入和输出信号线,可以看见这两个信号线的颜色发生了变化,表示被选中。

(5)运行仿真与波形查看:选中信号后回到ADE 窗口,此时的窗口内容如下图3.5所示。

图3.5 完成设置的ADE

选择菜单项Simulation→Netlist and run (或相应工具栏按钮),运行仿真,直接点击OK 关闭弹出的欢迎页(Welcome to spectre )。随即出现仿真文字输出和波形输出。波形如图3.6所示:

图3.6 施密特触发器输出波形

9

4 电路版图设计

本课程设计采用工具软件为cadence 平台ic5.1.41,主要为Virtuoso ,用于原理图、版图输入,DIV A 用于提取、DRC 、LVS 。这里首先建立一个基本器件版图库,再将器件加上参数,使之成为参数化单元库(Parameterized Cell )。然后在参数化器件基础上,绘制设计的版图。最后对设计版图进行版图提取、DRC/LVS 验证。

4.1 建立pCell 库版图

软件工具启动后,关闭“what’s new”窗口,新建参数化器件库pCell 。在CIW (Command Interpreter Window )界面选择菜单项File→New→Library…,弹出如下图4.1所示窗口。

图4.1 新建设计库

1)完成建库后就可以在该设计库pCell 中设计器件。在CIW 界面选择菜单项File →New Cellview ,弹出窗口,按照要求填写与选择,点击按钮OK 完成mypmos 器件文件创建。随后出现的界面就是版图编辑器窗口。

2)N 阱绘制:回到编辑窗口中,选择菜单项Create→Rectangle (或工具栏Rectangle ,或快捷键r ),直接点击Hide 按钮隐藏弹出窗口。在编辑窗口移动鼠标,查看窗口菜单项上方的坐标显示,在位置(0,0)单击鼠标,向右上方拉伸至(2.78,1.6)再次单击,完成N 阱绘制。

3)在LSW 界面点击下方Nimp 条形栏,选中Nimp 作为当前绘图层。回到编辑窗口中,仍采用Rectangle 形状进行绘制。用同样方法绘制Pimp ,此时完成注入区(Nimp

10

Pimp )的绘制。

4)然后要进行Poly 层制作。在LSW 窗口选中Poly ,回到编辑窗口中,选择菜单项Create→Path (或工具栏Path ,或快捷键p ),出现弹出窗口,宽度Width 项填入0.18,即可进行Poly 的绘制。

5)最后应该绘制的是,Oxide 、 两处 Metal1、三处Cont 。注意相应的坐标,切勿出错。

最后得到完整的PMOS 绘图如下图4.2所示:

图4.2 PMOS 版图

在版图编辑窗口,选中菜单项Design Save As…,将当前设计mypmos 的PMOS 版图另存于同一库中,并命名mynmos 。然后选中菜单项Window Close ,关闭mypmos 。再在CIW 窗口选中菜单项File→Open ,以编辑方式打开mynmos 版图。在版图编辑器中,删去mynmos 的Nwell 图层;在保持几何尺寸不变的条件下,将原来Pimp 图层改成Nimp , 将原来Nimp 改为Pimp ;其余的图层保持不变。这样就得到了一个NMOS 的版图,如下图4.3所示:

图4.3 NMOS 版图

4.2 pCell库器件参数化

1)长度length和宽度width设置参数:这里对MOS器件所设的参数为管子长度length和宽度width。首先在CIW中选菜单项File→Open,以编辑方式打开mypmos版图,开始进行参数设置。在版图编辑器窗口,选菜单项Tools→Pcell,则在编辑器中多出一菜单项Pcell。先进行宽度参数设定。选菜单项Pcell→Stretch in Y…启动命令,然后移动鼠标在点(-0.15,0.8)附近单击一下,会看到一条以单击点为起点的水平直线,向右拉伸,穿过三个cont,在点(3,0.8)附近双击鼠标(仍可用Backspace取消前一单击点),出现弹出Y向拉伸参数窗口,并参照图示填写、选择相关内容,点击按钮OK完成设定。

2)编译:设定width参数后,要进行编译:Pcell →Compile→To Pcell,在弹出窗口中选择transistor,并按钮OK完成设置(只在第一次编译中出现)。编译完后就要实际验证一下。在CIW窗口,选择菜单File New Cellview,任意命名一个cell(单元),比如pcellTest,主要用来测试刚刚编译过的pcell。在pcellTest的版图编辑界面,例化pCell库中的pmos版图,弹出窗口如下图4.4,可见width参数项。

图4.4 width参数变化

对参数width分别给以不同的数值,这里是0.6和1.2,查看例化结果。从下图4.5 width参数变化见cont的尺寸发生变化,这是不希望的。

11

12

图4.5 参数设定

尺寸问题的变化是这样解决的,在mypmos 版图编辑界面,执行菜单命令Pcell →Repetition →Repeat in Y …,然后在窗口中用鼠标分别单击三个cont ,三个cont 随即高亮表示被选中。若有别的图层被选中,可按住键盘的Ctrl 键再在多余的图层单击鼠标左键即可。单击选中三个cont 之后按键盘Enter 键,或者选中最后一个cont 时双击鼠标,就会出现如图4.6所示的表单项。完成这个参数设置之后点击OK 按钮。先编译,再查看总结。

图4.6 Y 向重复选项参数

13

同样要进行例化验证,将参数width 分别设为默认值和1。

至此,参数width 设置完成,下面来进行参数length 的设置。在版图编辑窗口,执行菜单命令Pcell→ Stretch in X…,移动鼠标至点(1.59,1.8)附近单击,垂直垂直拉伸至点(1.59,-0.2)附近双击,会有窗口弹出,如图4.7所示。

图4.7 X 向伸展和length 参数设置

照上图填写、选择之后按OK 键。然后进行编译、查看参数总结,如图4.8所示。

图4.8 参数总结

图4.9是将参数length分别设为默认值和0.36的例化结果。

图4.9 length参数例化验证

PMOS管的两个参数width和length已经设置完成,可以正常使用了。和PMOS的参数化一样,NMOS做法步骤完全一样。

至此,pCell库中的两个单元(cell)pmos和nmos版图已经参数化完成,拥有长度lengt h和宽度wi dt h两个参数,并且cont在宽度方向上随widt h参数改变而重复,这些在设计中都可以直接使用。注意在今后的设计当中,应尽量使用厂商提供的pdk中的参数化器件。下面就利用pCell库中的参数化单元进行电路版图制。

4.3器件板图绘制

要求为设计单独建一个库,例示中命名为mylib。操作同前述所有的建库操作一样。在设计库mylib中创建cell,使用菜单命令File→New→Cellview,弹出如下窗口,填写、选择完成点击OK按钮,进入名为sub 单元(cell)的版图编辑界面。

1)PMOS和NMOS的例化:在版图编辑界面中,直接按下键盘中i键,弹出例化cell的窗口,如下图填写、选择,完成例化PMOS单元,如图4.10所示。

14

15

图4.10 PMOS 的表单与摆放

当点击Hide 按钮后,Create Instance 窗口消失,在版图编辑窗口出现一个随鼠标移动的PMOS 管。同样例化一个NMOS 管,见下图4.11。

图4.11 NMOS 的表单与摆放

2)反相器版图的绘制:反相器由一个PMOS 管和NMOS 管构成,先摆放PMOS 管和NMOS ,在用Metal1和Poly 进行连接,接口pin 用Metal1

连接出来即可。反相器

16

版图如图4.12所示。

图4.12 反相器版图

对例化的PMOS 、NMOS 及反相器进行调用,在新的版图编辑窗口将调用的元件按电路原理图摆放,计算好个器件之间的最小尺寸,以达到面积的优化。施密特触发器的版图如图4.13所示。

图4.13 施密特触发器版图

集成触发器及其应用电路设计

华中科技大学 电子线路设计、测试与实验》实验报告 实验名称:集成运算放大器的基本应用 院(系):自动化学院 地点:南一楼东306 实验成绩: 指导教师:汪小燕 2014 年6 月7 日

、实验目的 1)了解触发器的逻辑功能及相互转换的方法。 2)掌握集成JK 触发器逻辑功能的测试方法。 3)学习用JK 触发器构成简单时序逻辑电路的方法。 4)熟悉用双踪示波器测量多个波形的方法。 (5)学习用Verliog HDL描述简单时序逻辑电路的方法,以及EDA技术 、实验元器件及条件 双JK 触发器CC4027 2 片; 四2 输入与非门CC4011 2 片; 三3 输入与非门CC4023 1 片; 计算机、MAX+PLUSII 10.2集成开发环境、可编程器件实验板及专用电缆 三、预习要求 (1)复习触发器的基本类型及其逻辑功能。 (2)掌握D触发器和JK触发器的真值表及JK触发器转化成D触发器、T触发器、T 触发器的基本方法。 (3)按硬件电路实验内容(4)(5),分别设计同步3 分频电路和同步模4 可逆计数器电路。 四、硬件电路实验内容 (1)验证JK触发器的逻辑功能。 (2)将JK触发器转换成T触发器和D触发器,并验证其功能。 (3)将两个JK触发器连接起来,即第二个JK触发器的J、K端连接在一起, 接到第一个JK触发器的输出端Q两个JK触发器的时钟端CP接在一起,并输入1kHz 正方波,用示波器分别观察和记录CP Q、Q的波形(注意它们之间的时序关系),理解2分频、4分频的概念。 (4)根据给定的器件,设计一个同步3分频电路,其输出波形如图所示。然后组装电路,并用示波器观察和记录CP Q、Q的波形。 (5)根据给定器件,设计一个可逆的同步模4 计数器,其框图如图所示。图中,M为控制变量,当M=0时,进行递增计数,当M=1时,进行递减计数;Q、 Q为计数器的状态输出,Z为进位或借位信号。然后组装电路,并测试电路的输入、输出

施密特触发器工作原理

使用CMOS集成电路需注意的几个问题 集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。在电子制作中使用CMOS集成电路时,除了认真阅读产品说明或有关资料,了解其引脚分布及极限参数外,还应注意以下几个问题: 1、电源问题 (1)CMOS集成电路的工作电压一般在3-18V,但当应用电路中有门电路的模拟应用(如脉冲振荡、线性放大)时,最低电压则不应低于4.5V。由于CMOS集成电路工作电压宽,故使用不稳压的电源电路CMOS集成电路也可以正常工作,但是工作在不同电源电压的器件,其输出阻抗、工作速度和功耗是不相同的,在使用中一定要注意。 (2)CMOS集成电路的电源电压必须在规定围,不能超压,也不能反接。因为在制造过程中,自然形成许多寄生二极管,如图1所示为反相器电路,在正常电压下,这些二极管皆处于反偏,对逻辑功能无影响,但是由于这些寄生二极管的存在,一旦电源电压过高或电压极性接反,就会使电路产生损坏。 2、驱动能力问题 CMOS电路的驱动能力的提高,除选用驱动能力较强的缓冲器来完成之外,还可将同一个芯片几个同类电路并联起来提高,这时驱动能力提高到N倍(N为并联门的数量)。如图2所示。 3、输入端的问题 (1)多余输入端的处理。CMOS电路的输入端不允许悬空,因为悬空会使电位不定,破坏正常的逻辑关系。另外,悬空时输入阻抗高,易受外界噪声干扰,使电路产生误动作,而且也极易造成栅极感应静电而击穿。所以“与”门,“与非”门的多余输入端要接高电平,“或”门和“或非”门的多余输入端要接低电平。若电路的工作速度不高,功耗也不需特别考虑时,则可以将多余输入端与使用端并联。 (2)输入端接长导线时的保护。在应用中有时输入端需要接长的导线,而长输入线必然有较大的分布电容和分布电感,易形成LC振荡,特别当输入端一旦发生负电压,极易破坏CMOS中的保护二极管。其保护办法为在输入端处接一个电阻,如图3所示,R=VDD/1mA。 (3)输入端的静电防护。虽然各种CMOS输入端有抗静电的保护措施,但仍需小心对待,在存储和运输中最好用金属容器或者导电材料包装,不要放在易产生静电高压的化工材料或化纤织物中。组装、调试时,工具、仪表、工作台等均应良好接地。要防止操作人员的静电干扰造成的损坏,如不宜穿尼龙、化纤衣服,手或工具在接触集成块前最好先接一下地。对器件引线矫直弯曲或人工焊接时,使用的设备必须良好接地。 (4)输入信号的上升和下降时间不易过长,否则一方面容易造成虚假触发而导致器件失去正常功能,另一方面还会造成大的损耗。对于74HC系列限于0.5us以。若不满足此要求,需用施密特触发器件进行输入整形,整形电路如图4所示。 (5)CMOS电路具有很高的输入阻抗,致使器件易受外界干扰、冲击和静电击穿,所以为了保护CMOS管的氧化层不被击穿,一般在其部输入端接有二极管保护电路,如图5所示。 其中R约为1.5-2.5KΩ。输入保护网络的引入使器件的输入阻抗有一定下降,但仍在108Ω以上。这样也给电路的应用带来了一些限制: (A)输入电路的过流保护。CMOS电路输入端的保护二极管,其导通时电流容限一般为1mA在可能出现过大瞬态输入电流(超过10mA)时,应串接输入保护电阻。例如,当输入端接的信号,其阻很小、或引线很长、或输入电容较大时,在接通和关断电源时,就容易产生较大的瞬态输入电流,这时必须接输入保护电阻,若VDD=10V,则取限流电阻为10KΩ即可。 (B)输入信号必须在VDD到VSS之间,以防二极管因正向偏置电流过大而烧坏。因此在

D触发器的设计

目录 第一章绪论0 简介0 集成电路0 版图设计1 软件介绍1 标准单元版图设计1 标准单元版图设计的概念1 标准单元版图设计的历史1 标准单元的版图设计的优点2 标准单元的版图设计的特点2 第二章D触发器的介绍 2 简介2 维持阻塞式边沿D触发器3 电路工作过程3 状态转换图和时序图3 同步D触发器3 电路结构3 逻辑功能4 真单相时钟(TSPC)动态D触发器4 第三章工艺基于TSPC原理的D触发器设计5 电路图的设计5 创建库与视图5 基于TSPC原理的D触发器电路原理图5 创建D触发器版图6 设计步骤6 器件规格7 设计规则的验证及结果8 第四章课程设计总结9 参考文献 9 第一章绪论 简介 集成电路 集成电路(Integrated Circuit,简称IC)是20世纪60年代初期发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。是一种微型电子器件或部件,采

用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。 版图设计 版图(Layout)是集成电路设计者将设计并模拟优化后的电路转化成的一系列几何图形,包含了集成电路尺寸大小、各层拓扑定义等有关器件的所有物理信息。集成电路制造厂家根据版图来制造掩膜。版图的设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。不同的工艺,有不同的设计规则。设计者只有得到了厂家提供的规则以后,才能开始设计。版图在设计的过程中要进行定期的检查,避免错误的积累而导致难以修改。很多集成电路的设计软件都有设计版图的功能,Cadence 的Virtuoso的版图设计软件帮助设计者在图形方式下绘制版图。 对于复杂的版图设计,一般把版图设计分成若干个子步骤进行: (1)划分为了将处理问题的规模缩小,通常把整个电路划分成若干个模块。(2)版图规划和布局是为了每个模块和整个芯片选择一个好的布图方案。(3)布线完成模块间的互连,并进一步优化布线结果。 (4)压缩是布线完成后的优化处理过程,他试图进一步减小芯片的面积。软件介绍 目前大部分IC 公司采用的是UNIX 系统,使用版本是SunSolaris。版图设计软件通常为Cadence ,它是一个大型的EDA 软件,它几乎可以完成电子设计的方方面面,包括ASIC 设计、FPGA设计和PCB 设计。软件操作界面人性化,使用方便,安全可靠,但价格较昂贵。 标准单元版图设计 标准单元版图设计的概念 标准单元,也叫宏单元。它先将电路设计中可能会遇到的所有基本逻辑单元的版图, 按照最佳设计的一定的外形尺寸要求, 精心绘制好并存入单元库中。实际设计ASIC电路时, 只需从单元库中调出所要的元件版图, 再按照一定的拼接规则拼接, 留出规则而宽度可调的布线通道, 即可顺利地完成整个版图的设计工作了。 基本逻辑单元的逻辑功能不同, 其版图面积也不可能是一样大小的。但这些单元版图的设计必须满足一个约束条件, 这就是在某一个方向上它们的尺寸必须是完全一致的, 比如说它们可以宽窄不一, 但它们的高度却必须是完全相等的,这就是所谓的“等高不等宽”原则。这一原则是标准单元设计法得以实施的根本保证。 标准单元版图设计的历史 随着集成电路产业迅猛的发展,工艺水平不断提高,集成电路特征尺寸循着摩尔定律不断缩小。设计芯片时需要考虑的因素越来越多,芯片设计的复杂程度也越来越高。因而尽可能复用一些已经通过工艺验证的IP核可以提高设计的效率,降低芯片设计的成本。

斯密特触发器概论

斯密特触发器 斯密特触发器又称斯密特与非门,是具有滞后特性的数字传输门. ①电路具有两个阈值电压,分别称为正向阈值电压和负向阈值电压②与双稳态触发器和单稳态触发器不同,施密特触发器属于"电平触发"型电路,不依赖于边沿陡峭的脉冲.它是一种阈值开关电路,具有突变输入——输出特性的门电路.这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变.当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的.从IC内部的逻辑符号和“与非”门的逻辑符号相比略有不同,增加了一个类似方框的图形,该图形正是代表斯密特触发器一个重要的滞后特性。当把输入端并接成非门时,它们的输入、输出特性是:当输入电压V1上升到VT+电平时,触发器翻转,输出负跳变;过了一段时间输入电压回降到VT+电平时,输出并不回到初始状态而需输入V1继续下降到VT-电平时,输出才翻转至高电平(正跳变),这种现象称它为滞后特性,VT+—VT-=△VT。△VT称为斯密特触发器的滞后电压。△VT与IC的电源电压有关,当电源电压提高时,△VT略有增加,一般△VT 值在3V左右。因斯密特触发器具有电压的滞后特性,常用它对脉冲波形整形,使波形的上升沿或下降沿变得陡直;还可以用它作电压幅度鉴别。在数字电路中它也是很常用的器件。 施密特触发器 施密特波形图 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。 门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正

正反相施密特触发器电路的工作原理详解

正反相施密特触发器电路的工作原理详解 什么叫触发器 施密特触发电路(简称)是一种波形整形电路,当任何波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉波输出。不同于比较器,施密特触发电路有两个临界电压且形成一个滞后区,可以防止在滞后范围内之噪声干扰电路的正常工作。如遥控接收线路,传感器输入电路都会用到它整形。 施密特触发器 一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。 图1 (a)反相比较器 (b)输入输出波形 施密特触发器如图2 所示,其输出电压经由R1、R2分压后送回到运算放大器的非反相输入端形成正反馈。因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示 图2 (a)反相斯密特触发器 (b)输入输出波形

表1 反相施密特触发器 电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换: νO= ±Vsat。输出电压经由R1 、R2分压后反馈到非反相输入端:ν+= βνO, 其中反馈因数= 当νO为正饱和状态(+Vsat)时,由正反馈得上临界电压 当νO为负饱和状态(- Vsat)时,由正反馈得下临界电压 V TH与V TL之间的电压差为滞后电压:2R1 图3 (a)输入、输出波形 (b)转换特性曲线 输入、输出波形及转换特性曲线如图3(b)所示。

当输入信号上升到大于上临界电压V TH时,输出信号由正状态转变为 负状态即:νI >V TH→νo = - Vsat 当输入信号下降到小于下临界电压V TL时,输出信号由负状态转变为 正状态即:νI <V TL→νo = + Vsat 输出信号在正、负两状态之间转变,输出波形为方波。 非反相施密特电路 图4 非反相史密特触发器 非反相施密特电路的输入信号与反馈信号均接至非反相输入端,如图4所示。 由重迭定理可得非反相端电压 反相输入端接地:ν-= 0,当ν+ = ν- = 0时的输入电压即为临界电压。将ν+ = 0代入上式得 整理后得临界电压 当νo为负饱和状态时,可得上临界电压 当νo为正饱和状态时,可得下临界电压, V TH与V TL之间的电压差为滞后电压:

施密特触发器的特性和应用

施密特触发器的特性和应用 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。见图6-2: 解释:当输入信号Vi减小至低于负向阀值V-时,输出电压Vo翻转为高电平Vo H;而输入信号Vi增大至高于正向阀值V+时,输出电压Vo才翻转为低电平VoL。这种滞后的电压传输特性称回差特性,其值V+-V-称为回差电压。 一、用555定时器构成的施密特触发器 1.电路组成: 将555定时器的阀值输入端Vi1(6脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由Vo(3脚)或Vo’(7脚)挂接上拉电阻Rl及电源VDD作为输出端,便构成了如图6-3所示的施密特触发器电路。

2.工作原理: 如图所示,输入信号Vi,对应的输出信号为Vo,假设未接控制输入Vm 。 ①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。 ②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。 ③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3V cc,定时器状态翻转为1,输出Vo=1。 总结:未考虑外接控制输入Vm时,正负向阀值电压 V+=2/3Vcc、V- =1/3Vcc,回差电压△V=1/3Vcc。若考虑Vm,则正负向阀值电压V+=Vm、V-=1/2Vm,回差电压△V=1/2Vm。由此,通过调节外加电压Vm可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。 二、施密特触发器的应用举例 1.波形变换: 施密特触发器可用以将模拟信号波形转换成矩形波,如图6-4所示将正弦波信号同相转换成矩形波的例子,输出脉冲宽度tpo可通过回差电压加以调节。

触发器原理转换及设计

实验五触发器原理,转换及设计 2.5.1 实验目的 (1)掌握基本D,J_K触发器的电路结构及逻辑功能。 (2)掌握各种触发器之间的相互转换及应用。 2.5.2 实验仪器设备与主要器件 试验箱一个,双踪示波器一台;稳压电源一台,函数发生器一台。74LS74双D正沿触发器;74LS75锁存器74LS76双J-K触发器。 2.5.3 实验原理 前面所述的各种集成电路均属组合逻辑电路,该电路某一时刻的输出状态只有该时刻的输入状态决定。 数字系统中的另一类电路称为时序逻辑电路。构成时序逻辑电路的基本器件是触发器。具有两种不同稳定状态的存储二进制信息的基本单元统称为双稳态器件,常芝锁存器或触发器。 2.5.4 实验内容 (1)测试D触发器的逻辑功能。将D触发器74LS74的SD,RD和D分别接逻辑开关,CP接单词没冲,按D触发器的逻辑功能进行测试,记录测试功能,观察CP与Q之间的关系,画出同步波形。 D触发器的特征表: CP D Q n Q n+1 * * * * ↑0 * 0 ↑ 1 * 1 仿真图: 波形图如图示:上图为CP波形,下图为Q波形:

当D=0时,Q=0; 当D=1时,Q=1; 图2-5-5的仿真图:

波形图: 由波形图看出时钟每触发2个周期时,电路输出1个周期信号,即该电路实现了二分频功能。 (2)测试J-K触发器的逻辑功能,测试结果与图2-5-2所示的特征表对照,并按图2-5-8所试点链接,用函数发生器输出1KHZ的0-5v方波信号作为时钟脉冲,记录CP,Q1,Q2的同步波形。 真值表: CPJKQnQn+1 * ** * Qn ↓↓00 00 0 1 0保持 1 ↓↓10 10 0 1 1置1 1 ↓↓01 01 0 1 0置0 0 ↓↓11 11 0 1 1必翻 0 仿真图: 波形图:由上到下依次为CP,Q1,Q2的波形;

施密特触发器原理简介

施密特触发器简单介绍 本文来自: https://www.doczj.com/doc/533351074.html, 原文网址:https://www.doczj.com/doc/533351074.html,/sch/test/0083158.html 我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上 升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从 高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。正向 阈值电压与负向阈值电压之差称为回差电压()。普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。 图6.2.1 用CMOS反相器构成的施密特触发器 (a)电路(b)图形符号

图6.2.2 图6.2.1电路的电压传输特性 (a)同相输出(b)反相输出 用普通的门电路可以构成施密特触发器[图6.2.1]。因为CMOS门的输入电阻很高,所以 的输入端可以近似的看成开路。把叠加原理应用到和构成的串联电路上,我们可以推导出 这个电路的正向阈值电压和负向阈值电压。当时,。当从0逐渐上升到时, 从0上升到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。 因为此时电路状态尚未发生变化,所以仍然为0,, 于是,。与此类似,当时,。当从逐渐下降到 时,从下降到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻 的情况。因为此时电路状态尚未发生变化,所以仍然为, ,于是, 。通过调节或,可以调节正向阈值电压和反向阈值电压。不过,这个 电路有一个约束条件,就是。如果,那么,我们有及

基于TSPC原理的触发器工艺版图设计

苏州市职业大学 课程设计说明书 名称基于TSPC原理的D触发器0.35μm工艺版图设计2011年12月19日至2011年12月23日共1 周 院系电子信息工程系 班级 姓名

目录 第1章:绪论 (3) 1.1 版图设计的基础知识 (3) 1.1.1 版图设计流程 (3) 1.1.2 版图设计步骤 (3) 1.1.3 版图设计规则 (4) 1.1.4 版图设计验证 (5) 1.2 标准单元版图的设计 (6) 1.2.1 标准单元库的定义 (6) 1.2.2 标准单元库用途 (6) 1.2.3 标准单元设计方法 (6) 第2章:D触发器的介绍 (7) 2.1 D触发器 (7) 2.2 维持阻塞D触发器 (7) 2.2.1 维持阻塞D触发器的电路结构 (7) 2.2.2 维持阻塞D触发器的工作原理 (8) 2.2.3 维持阻塞D触发器的功能描述 (9) 2.3 同步D触发器 (9) 2.3.1 同步D触发器的电路结构 (9) 2.3.2 同步D触发器的工作原理 (10) 2.3.3 逻辑功能表示方法 (10) 2.4 基于TSPC原理的D触发器 (11) 2.4.1 构成原理 (11) 2.4.2 仿真波形 (11) 第3章:0.35um工艺基于TSPC原理的D触发器设计 (12) 3.1 动态D触发器电路图的设计步骤及电路图 (12) 3.2 动态D触发器版图的设计步骤及电路图 (13) 3.3 DRC、LVS验证 (14) 第4章:心得体会 (15) 参考文献 (16)

第1章:绪论 1.1 版图设计的基础知识 1.1.1 版图设计流程 版图设计是创建工程制图(网表)的精确的物理描述的过程,即定义各工艺层图形的形状、尺寸以及不同工艺层相对位置的过程。其中版图设计的流程如图1.1.1所示。 图1.1.1 1.1.2 版图设计步骤 作为后端设计者,是集成电路从设计走向制造的桥梁,设计步骤包括以下几部分: 1、布局:安排各个晶体管、基本单元和复杂单元在芯片上的位置。 2、布线:设计走线、门间、单元间的互连。 3、尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(连线宽度)以及晶体管与互连之间的相对尺寸等。 4、版图编辑(Layout Editor):规定各个工艺层上图形的形状、尺寸和位置。 5、布局布线(Place and route):给出版图的整体规划和各图形间的连接。 6、版图检查(Layout Check):设计规则检查(DRC,Design Rule Check)、电器规则检查

施密特触发器

符号 电路图中的施密特触发器符号是一个三角中画有一个反相或非反相滞回符号。这一符号描绘了对应的理想滞回曲线。 非反相施密特触发器 反相施密特触发器

因此V in必须降低到低于时,输出才会翻转状态。一旦比较器的输出翻转到?V S,翻转回高电平的阈值就变成了。 非反相施密特比较器典型的滞回曲线,与其符号上的曲线一致,M是电源电压,T是阈值电压 这样,电路就形成了一段围绕原点的翻转电压带,而触发电平是。只有当输入 电压上升到电压带的上限,输出才会翻转到高电平;只有当输入电压下降到电压带的下限,输出才会翻转回低电平。若R1为0,R2为无穷大(即开路),电压带的宽度会压缩 到0,此时电路就变成一个标准比较器。输出特性如右图所示。阈值T由给出,输出M的最大值是电源轨。 实际配置的非反相施密特触发电路如下图所示。

反相施密特触发器的滞回曲线

上述电路满足如下关系: 其中U1和U2是阈值电压,U v是电源电压。 [编辑]两个晶体管实现的施密特触发器 在使用正反馈配置实现的施密特触发器中,比较器自身可以实现的大部分复杂功能都没有使用。因此,电路可以用两个交叉耦合的晶体管来实现(即晶体管可以用另外一种方式来实现输入级)。基于2个晶体管的施密特触发电路如下图所示。通路R K1 R1 R2设定了晶体管T2的基极电压,不过,这一分压通路会受到晶体管T1的影响,如果T1开路,通路将会提供更高的电压。因此,在两个状态间翻转的阈值电压取决于触发器的现态。

对于如上所示的NPN晶体管,当输入电压远远低于共射极电压时,T1不会导通。晶体管T2的基极电压由上述分压电路决定。由于接入负反馈,共射极上所加的电压必须几乎与分压电路上所确定的电压几乎一样高,这样就能使T2导通,并且触发器的输出是低电平状态。当输入电压(T1基极电压)上升到比电阻R E上的电压(射极电压)稍高时,T1将会导通。当T1开始导通时,T2不再导通,因为此时分压通路提供的电压低于T2基极电压,而射极电压不会降低,因为T1此时消耗通过R E的电流。此时T2不导通,触发器过渡到高电平状态。 此时触发器处于高电平状态,若输入电压降低得足够多,则通过T1的电流会降低,这会降低T2的共射极电压并提高其基极电压。当T2开始导通时,R E上的电压上升,然后会降低T1的基极-射极电位,T1不再导通。 在高电平状态时,输出电压接近V+;但在低电平状态时,输出电压仍会远远高于V?。因此在这种情况下,输出电压不够低,无法达到逻辑低电平,这就需要在触发器电路上附加放大器。 上述电路可以被简化:R1可以用短路连接代替,这样T2基极就直接连接到T1集电极,R2可以去掉并以开路代替。电路运行的关键是当T1接通(电流输入基极的结果)时,通过R E的电流比T1截止时小,因为T1导通时会使T2截止,而当T2导通时,相比T1会为R E提供更大的通过电流。当流入R E的电流减小时,其上的电压会降低,因此一旦电流开始流入T1,输入电压一定会降低以使T1回到截止状态,这是因为此时T1的射极电压已降低。这一施密特触发缓冲器也可以变成一个施密特触发反相器,而且在此过程中还能省去一个电阻,方法是将R K2以短接代替,并将V out连接到T2射极而不是集电极。不过在这种情况下,R E的阻值应该更大,因为此时R E要充当输出端的下拉电阻,作用是当输出应该为低电平时,其会降低输出端的电压。若R E的阻值较小,其上只能产生一个较小的电压,在输出应该为数字低电平时,这一电压实际上会提高输出电压。 [编辑]应用 施密特触发器在开环配置中常用于抗扰,在闭环正反馈配置中用于实现多谐振荡器。[编辑]抗扰 施密特触发器的一个应用是增强仅有单输入阈值的电路的抗扰能力。由于只有一个输入阈值,阈值附近的噪声输入信号会导致输出因噪声来回地快速翻转。但是对于施密特触发器,阈值附近的噪声输入信号只会导致输出值翻转一次,若输出要再次翻转,噪声输入信号必须达到另一阈值才能实现,这就利用了施密特触发器的回差电压来提高电路的抗干扰能力。 例如,在仙童半导体公司的QSE15x红外光电传感器家族[3]中,放大式红外光电二极管能产生电信号使频率在绝对最高值和绝对最低值间翻转。这种电信号经过低通滤波后能产生平滑信号,而这种平滑信号的上升和下降与翻转信号为开启或关闭所需时间的相对量一致。滤波后的输出传递到施密特触发器的输入。实际结果是施密特触发器的输出只从

D触发器的设计

目录 第一章绪论 (1) 1.1 简介 (1) 1.1.1 集成电路 (1) 1.1.2 版图设计 (1) 1.2 软件介绍 (2) 1.3 标准单元版图设计 (2) 1.3.1 标准单元版图设计的概念 (2) 1.3.2 标准单元版图设计的历史 (2) 1.3.3 标准单元的版图设计的优点 (3) 1.3.4 标准单元的版图设计的特点 (3) 第二章 D触发器的介绍 (4) 2.1 简介 (4) 2.2 维持阻塞式边沿D触发器 (4) 2.2.1 电路工作过程 (4) 2.2.2 状态转换图和时序图 (5) 2.3 同步D触发器 (5) 2.3.1 电路结构 (5) AHA12GAGGAGAGGAFFFFAFAF

2.3.2 逻辑功能 (6) 2.4 真单相时钟(TSPC)动态D触发器 (6) 第三章 0.35um工艺基于TSPC原理的D触发器设计 (8) 3.1 电路图的设计 (8) 3.1.1 创建库与视图 (8) 3.1.2 基于TSPC原理的D触发器电路原理图 (8) 3.2 创建 D触发器版图 (9) 3.2.1 设计步骤 (9) 3.2.2 器件规格 (11) 3.3 设计规则的验证及结果 (11) 第四章课程设计总结 (13) 参考文献 (14) AHA12GAGGAGAGGAFFFFAFAF

第一章绪论 1.1 简介 1.1.1 集成电路 集成电路(Integrated Circuit,简称IC)是20世纪60年代初期发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。是一种微型电子器件或部件,采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。当今 AHA12GAGGAGAGGAFFFFAFAF

施密特触发器和比较器的区别

施密特触发器原理图解详细分析 重要特性:施密特触发器具有如下特性:输入电压有两个阀值VL、VH,VL 施密特触发器通常用作缓冲器消除输入端的干扰。 施密特波形图 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。 门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。正向阈值电压与负向阈值电压之差称为回差电压。 它是一种阈值开关电路,具有突变输入——输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。 利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。 当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电 压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的. 从传感器得到的矩形脉冲经传输后往往发生波形畸变。当传输线上的电容较大时,波形的上升沿将明显变坏;当传输线较长,而且接受端的阻抗与传输

用定时器构成的施密特触发器

施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。见图6-2: 解释:当输入信号Vi减小至低于负向阀值时,输出电压Vo翻转为高电平VoH;而输入信号Vi增大至高于正向阀值时,输出电压Vo才翻转为低电平VoL。这种滞后的电压传输特性称回差特性,其值- 称为回差电压。 一、用555定时器构成的施密特触发器 1.电路组成: 将555定时器的阀值输入端Vi1(6脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由Vo(3脚)或Vo’(7脚)挂接上拉电阻Rl及电源VDD作为输出端,便构成了如图6-3所示的施密特触发器电路。 2.工作原理:如图所示,输入信号Vi,对应的输出信号为Vo,假设未接控制输入Vm 。 ①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。 ②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。 ③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3Vcc,定时器状态翻转为1,输出Vo=1。

总结:未考虑外接控制输入Vm时,正负向阀值电压=2/3Vcc、=1/3Vcc,回差电压△V=1/3Vcc。若考虑Vm,则正负向阀值电压=Vm、=1/2Vm,回差电压△V=1/2Vm。由此,通过调节外加电压Vm 可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。 二、施密特触发器的应用举例 1.波形变换: 施密特触发器可用以将模拟信号波形转换成矩形波,如图6-4所示将正弦波信号同相转换成矩形波的例子,输出脉冲宽度tpo可通过回差电压加以调节。 2.波形整形 若数字信号在传输过程中受到干扰变成如图6-5(a)所示的不规则波形, 可利用施密特触发器的回差特性将它整形成规则的矩形波。若负向阀值取为,则回差电压。整形后输出波形如图6-5(b)所示。由于输入信号的干扰在输出中表现为三个矩形脉冲,这是错误的。若减小负向阀值取为,则回差电压。此时整形后输出波形如图6-5(c)所示,消去了干扰。 3.幅度鉴别: 施密特触发器的翻转取决于输入信号是否高于或低于,利用此特性可以构成幅度鉴别器,用以从一串脉冲中检出符合幅度要求的脉冲。如图6-6所示,当输入脉冲大于时,施密特触发器翻转,输出端

用施密特触发器对脉冲整形

我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状 态发生变化的输入电压称为正向阈值电压(),在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。正 向阈值电压与负向阈值电压之差称为回差电压()。普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图 6.2.2(a)(b)]。 图6.2.1 用CMOS反相器构成的施密特触发器 (a)电路(b)图形符号 图6.2.2 图6.2.1电路的电压传输特性 (a)同相输出(b)反相输出

用普通的门电路可以构成施密特触发器[图6.2.1]。因为CMOS门的输入电阻很高,所以的输入端可以近似的看成开路。把叠加原理应用到和构成的串联电路上,我们可以推导出这个电路的正向阈值电压和负向阈值电压。当时,。当从0逐渐上升到时,从0上升到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。因为此时电路状 态尚未发生变化,所以仍然为0,,于是, 。与此类似,当时,。当从逐渐下降到时,从下降到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。因为此时电路状态尚未发生变化,所以仍然为,,于是, 。通过调节或,可以调节正向阈值电压和反向阈值电压。不过,这个电路有一个约束条件,就是。如果,那么,我们有 及,这说明,即使上升到或下降到0,电路的状态也不会发生变化,电路处于“自锁状态”,不能正常工作。

(最新经营)单稳态触发器与施密特触发器原理及应用

CD4047BE 单稳态触发器原理及应用 多谐振荡器是一种自激振荡电路。因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。具体地说,如果一开始多谐振荡器处于0状态,那么它于0状态停留一段时间后将自动转入1状态,于1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。 图6.4.1对称式多谐振荡器电路 对称式多谐振荡器是一个正反馈振荡电路[图6.4.1,]。和是两个反相器,和是两个耦合电容,和是两个反馈电阻。只要恰当地选取反馈电阻的阻值,就可以使反相器的静态工作点位于电压传输特性的转折区。上电时,电容器两端的电压和均为0。假设某种扰动使有微小的正跳变,那么经过一个正反馈过程,迅速跳变为,迅速跳变为,迅速跳变为,迅速跳变为,电路进入第一个暂稳态。电容和开始充电。的充电电流方向与参考方向相同, 正向增加;的充电电流方向与参考方向相反,负向增加。随着的正向增加,从逐渐上升;随着的负向增加,从逐渐下降。因为经和两条支路充电而经一条支路充电,所以充电速度较快,上升到时还没有下降到。上升到使跳变为。理论上,向下跳变,也将向下跳变。考虑到输入端钳位二极管的影响,最多跳变到。下降到使跳变为,这又使从向上跳变,即变成,电路进入第二个暂稳态。经一条支路反向充电(实际上先放电再

反向充电),逐渐下降。经和两条支路反向充电(实际上先放电再反向充电),逐渐 上升。的上升速度大于的下降速度。当上升到时,电路又进入第一个暂稳态。此后,电路 将于两个暂稳态之间来回振荡。 非对称式多谐振荡器是对称式多谐振荡器的简化形式[图6.4.6]。这个电路只有一个反馈电阻和一个耦合电容。反馈电阻使的静态工作点位于电压传输特性的转折区,就是说,静态时,的输入电 平约等于,的输出电平也约等于。因为的输出就是的输入,所以静态时也被迫工 作于电压传输特性的转折区。 图6.4.6非对称是多谐振荡器电路 环形振荡器[图6.4.10]不是正反馈电路,而是一个具有延迟环节的负反馈电路。 图6.4.10最简单的环形振荡器

数字电路练习题及答案--施密特触发器

一、简答题: 1、获取矩形脉冲波形的途径有哪两种? (1)一种方法是利用各种形式的多谐振荡器电路直接产生所需要的矩形脉冲。(2)另一种方法是通过各种整形电路把已有的周期性变化波形变换为符合要求的矩形脉冲。其前提条件是,能够找到频率和幅度都符合要求的一种已有的电压信号。 2、施密特触发器在性能上有哪两个重要特点? (1)输入信号从低电平上升的过程中,电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。 (2)在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。 3、施密特触发器有哪些用途? (1)可以将边沿变化缓慢的信号波形整型为边沿陡峭的矩形波。 (2)可以将叠加在矩形脉冲高、低电平上的噪声有效地清除。 4、单稳态触发器的工作特性具有哪些显著特点? (1)它具有稳态和暂稳态两个不同的工作状态。 单稳只有一个稳定的状态。这个稳定状态要么是0,要么是1。在没有受到外界触发脉冲作用的情况下,单稳态触发器保持在稳态; (2)在外界触发脉冲作用下,能从稳态翻转到暂稳态,(假设稳态为0,则暂稳态为1)。在暂稳态维持一段时间以后,再自动返回稳态。 (3)单稳态触发器在暂稳态维持的时间长短仅仅取决于电路本身的参数,与触发脉冲的宽度和幅度无关。 二、计算题:

1、如图所示为一个用CMOS 门电路构成的施密特触发器,已知电源电压为10V , Ω=k R 101;Ω=k R 202;求其正向阈值电压、负向阈值电压及回差电压。(本题 6分) 解: (1)正向阈值电压为:(2分) (2)负向阈值电压为:(2分) (3)回差电压为:(2分) 解: (1)正向阈值电压为:V V R R V TH T 5.7210 )20101()1(21=+=+ =+(2分) (2)负向阈值电压为:V V R R V TH T 5.22 10 )20101()1(21=-=- =-(2分) (3)回差电压为:V V V V V V T T T 55.25.7=-=-=?-+(2分) 2、在图示的施密特触发器电路中,若G1和G2为74LS 系列与非门和反相器,它

cad d触发器设计

摘要 本设计是基于ZeniEDA D触发器的设计。本文分四个部分,其中详细叙述了D 触发器的电路设计和版图设计两个部分。第一部分是绪论,主要有集成电路CAD的发展现状、Zeni软件的说明以及集成电路设计流程等内容。第二部分是D触发器的电路设计,首先对Spice仿真进行了说明,然后就是D触发器的总体方案和D触发器的功能描述,还对D触发器的各个功能模块的设计与仿真作了详细说明。第三部分是D触发器的版图设计,首先对版图设计的逻辑划分、布线布局理论等进行了简明的阐述,然后对D触发器的各个单元模块的版图设计进行了说明,并给出了每个功能模块的版图以及D触发器的总版图,最后给出了D触发器的DRC验证和LVS 验证以及导出GDS-Ⅱ文档。本设计几乎涉及了集成电路CAD设计的各个流程,并作了详细的描述与说明。 关键词:D触发器;反相器;与非门;传输门;版图

目录 摘要.................................................................................................................. I 1绪论 . (1) 1.1集成电路CAD的发展现状 (5) 1.2Zeni软件说明 (6) 1.3集成电路设计流程 (3) 2电路设计 (5) 2.1Spice仿真说明 (5) 2.2总体方案及功能描述 (6) 2.3单元模块电路设计及仿真 (8) 3版图设计 (14) 3.1版图设计基础 (14) 3.2单元模块版图设计 (15) 3.3D触发器版图设计 (17) 3.4版图验证 ....................................................... 1错误!未定义书签。 3.5导出GDS-Ⅱ文档 (20) 4总结与体会 (21) 参考文献:................................................................... 错误!未定义书签。致谢 . (23)

17集成施密特触发器应用实验

数字电路-17 集成施密特触发器应用实验 一. 实验目的 1. 了解用示波器测试集成数字器件电压传输特性的方法。 2. 掌握集成施密特触发器的几种典型应用。 二. 实验原理 施密特触发器主要用于将随时间变化缓慢的非周期信号或周期性的非矩形波信号变换成上升时间和下降时间均很小的矩形波信号。 当输入u i 小于负向阀值电平U T-时,反相施密特触发器输出为“1”,当u i 大于正向阀值电平U T+时,施密特触发器输出为“0”。U i 介于两者之间时,施密特触发器的状态保持不变。所以,触发器的电压传输关系具有滞回特性,两个阀值电平之差称回差ΔU T 。 在电子系统中,施密特触发器具有广泛的应用。根据施密特触发器的滞回特性,可以将输入的三角波,正弦波和其他不规则的周期性电压信号转变成矩形信号输出。当电信号在传输过程中受到干扰而发生畸变时,可利用施密特触发器的回差特性对信号进行整形。当输入信号为一组幅度不等的脉冲时,可利用施密特触发器对输入信号的幅度进行鉴别,只有幅度达到施密特触发器阀值电平的信号,才能引起输出变化。 1. 用施密特触发器构成多谐振荡器 图17-1是用反相施密特触发器构成的多谐振荡电路。当输出u O 为高电平时,输入u c ≤U T+,施密特触发器的输出通过电阻R 向电容C 充电,u c 上升。至Uc 等于U T+,输出u O 变为低电平U OL 。然后电容通过电阻R 、施密特触发器输出端放电,u c 下降。在 +-<

相关主题
文本预览
相关文档 最新文档