当前位置:文档之家› 如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱
如何使用贝叶斯网络工具箱

matlab神经网络工具箱简介

MATLAB软件中包含MATLAB神经网络工具箱,工具箱以人工神经网络为基础,只要根据自己需要调用相关函数,就可以完成网络设计、权值初始化、网络训练等,MATLAB神经网络工具箱包括的网络有感知器、线性网络、BP神经网络、径向基网络、自组织网络和回归网络,BP神经网络工具箱主要包括newff,sim和train三个神经网络函数各函数的解释如下:1 newff::::BP神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数 函数功能:构建一个BP神经网络。 函数形式:net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) P:输入数据矩阵 T:输出数据矩阵 S:隐含层节点数 TF:节点传递函数,包括硬限幅传递函数hardlim,对称硬限幅传递函数hardlims,线性传递函数purelin,正切S型传递函数tansig,对数S型传递函数logsig BTF:训练函数,包括梯度下降BP算法训练函数traingd,动量反传的梯度下降BP算法训练函数traingdm,动态自适应学习率的梯度下降BP算法训练函数traingda,动量反传和动态自适应学习率的梯度下降BP算法训练函数traingdx,Levenberg_Marquardt 的BP算法训练函数trainlm BLF:网络学习函数,包括BP学习规则learngd,带动量项的BP学习规则learngdm PF:性能分析函数,包括均值绝对误差性能分析函数mae,均方差性能分析函数mse IPF:输入处理函数 OPF:输出处理函数 DDF:验证数据划分函数 一般在使用过程中设置前六个参数,后四个参数采用系统默认参数。 2 train::::BP神经网络训练函数神经网络训练函数神经网络训练函数神经网络训练函数函数功能:用训练数据训练BP神经网络。 函数形式:[net,tr] = train(NET,X,T,Pi,Ai) NET:待训练网络 X:输入数据矩阵 T:输出数据矩阵 Pi:初始化输入层条件 Ai:初始化输出层条件 net:训练好的网络 tr:训练过程记录 一般在使用过程中设置前三个参数,后两个参数采用系统默认参数。 3 sim::::BP神经网络预测函数神经网络预测函数神经网络预测函数神经网络预测函数 函数功能:用训练好的BP神经网络预测函数输出 函数形式:y=sim(net,x) net:训练好的网络 x:输入数据 y:网络预测数据 只要我们能够熟练掌握上述三个函数,就可以完整的编写一个BP神经网络预测或者分类的程序。

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.doczj.com/doc/532202158.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

MATLAB神经网络工具箱详解

MATLAB 图形用户界面功能: ——作者:强哥1573:2017-09-01 nnstart - 神经网络启动GUI nctool - 神经网络分类工具 nftool - 神经网络的拟合工具 nntraintool - 神经网络的训练工具 nprtool - 神经网络模式识别工具 ntstool - NFTool神经网络时间序列的工具 nntool - 神经网络工具箱的图形用户界面。 查看- 查看一个神经网络。 网络的建立功能。 cascadeforwardnet - 串级,前馈神经网络。 competlayer - 竞争神经层。 distdelaynet - 分布时滞的神经网络。 elmannet - Elman神经网络。 feedforwardnet - 前馈神经网络。 fitnet - 函数拟合神经网络。 layrecnet - 分层递归神经网络。 linearlayer - 线性神经层。 lvqnet - 学习矢量量化(LVQ)神经网络。 narnet - 非线性自结合的时间序列网络。 narxnet - 非线性自结合的时间序列与外部输入网络。 newgrnn - 设计一个广义回归神经网络。 newhop - 建立经常性的Hopfield网络。 newlind - 设计一个线性层。 newpnn - 设计概率神经网络。 newrb - 径向基网络设计。 newrbe - 设计一个确切的径向基网络。 patternnet - 神经网络模式识别。 感知- 感知。 selforgmap - 自组织特征映射。 timedelaynet - 时滞神经网络。 利用网络。 网络- 创建一个自定义神经网络。 SIM卡- 模拟一个神经网络。 初始化- 初始化一个神经网络。 适应- 允许一个神经网络来适应。 火车- 火车的神经网络。 DISP键- 显示一个神经网络的属性。 显示- 显示的名称和神经网络属性 adddelay - 添加延迟神经网络的反应。 closeloop - 神经网络的开放反馈转换到关闭反馈回路。

matlab工具箱的使用_Toolbox

神经网络工具箱的使用 本章主要介绍神经网络工具箱的使用,使用nntool可以使得原本用编程来创建神经网络变得容易,而且不容易出错。 1 神经网络的创建与训练 神经网络的创建主要分为以下四步: 1)在命令窗口键入nntool命令打开神经网络工具箱。如图1: 图 1 2)点击Import按钮两次,分别把输入向量和目标输出加入到对应的窗口([Inputs]和[Targets])中,有两种可供选择的加入对象(点击Import后可以看见),一种是把当前工作区中的某个矩阵加入,另一种是通过.mat文件读入。如图2和图3:

图 2 图 3 3)点击[New Network]按钮,填入各参数:(以最常用的带一个隐层的3层神经网络为例说明,下面没有列出的参数表示使用默认值就可以了,例如Network Type为默认的BP神经网络);

i)Input Range——这个通过点击Get From Input下拉框选择你加入的输入向量便可自动完成,当然也可以自己手动添加。 ii) Training Function——最好使用TRAINSCG,即共轭梯度法,其好处是当训练不收敛时,它会自动停止训练,而且耗时较其他算法(TRAINLM,TRAINGD)少,也就是收敛很快(如果收敛的话),而且Train Parameters输入不多,也不用太多的技巧调整,一般指定迭代次数、结果显示频率和目标误差就可以了(详见下文)。 iii) Layer 1 Number of Neurons——隐层的神经元个数,这是需要经验慢慢尝试并调整的,大致上由输入向量的维数、样本的数量和输出层(Layer2)的神经元个数决定。一般来说,神经元越多,输出的数值与目标值越接近,但所花费的训练时间也越长,反之,神经元越少,输出值与目标值相差越大,但训练时间会相应地减少,这是由于神经元越多其算法越复杂造成的,所以需要自己慢慢尝试,找到一个合适的中间点。比如输入是3行5000列的0-9的随机整数矩阵,在一开始选择1000个神经元,虽然精度比较高,但是花费的训练时间较长,而且这样神经网络的结构与算法都非常复杂,不容易在实际应用中实现,尝试改为100个,再调整为50个,如果发现在50个以下时精度较差,则可最后定为50个神经元,等等。 iv)Layer 1 Transfer Function——一般用TANSIG(当然也可以LOGSIG),即表示隐层输出是[-1,1]之间的实数,与LOGSIG相比范围更大。 v) Layer 2 Number of Neurons——输出层的神经元个数,需要与输出的矩阵行数对应,比如设置为3,等等。 vi) Layer 2 Transfer Function——如果是模式识别的两类(或者多类)问题,一般用LOGSIG,即表示输出层的输出是[0,1]之间的实数;如果输出超过[0,1]则可选择PURELIN。如图4和图5。

神经网络工具箱操作

1. 打开MATLAB,在命令行输入nntool,将出现如下界面: 图1 神经网络工具箱主界面 其中最主要的分为6个部分:第1部分中显示的是系统的输入数据;第2部分是系统的期望输出;第3部分是网络的计算输出;第4部分是网络的误差,即2 和3之间的差异;第5部分呈现的是已经建立的神经网络实例;第6部分的两个按钮分别负责数据的导入和网络模型的建立。 2. 点击“Import”按钮,分别导入输入数据与目标输出数据(数据可从工作区导入,也可从文件导入): 图2 导入输入数据集

图3 导入期望输出数据集 导入数据后主界面的情况如下: 图4 导入数据后的情况 重要说明:神经网络的数据是以列为基本单位的,即输入与输出数据的列数必须相同,否则将报错!如果原先数据是以行为单位组织的话,可以先在MATLAB 中实现转置然后再导入,即B = A’。

3.现在需要的数据已经有了,下一步就是建立一个神经网络模型对数据集进行学习。以下步骤以BP网络为例,首先点击“New”按钮,出现如下界面: 几个重要部分已在上图中框出:1处用于定义该神经网络的名称;2处用于选择神经网络的类型;3处用于选择网络的输入数据;4处用于确定网络的期望输出数据;5、6、7处分别对神经网络的主要机制函数进行设置;8处设置网络层数;9处用于选择各网络层(需要说明的是:第1层指的是隐含层而不是输入层),从而在10和11处可以对该层的神经元个数和传递函数进行设置;12处按钮可以用于查看当前所设置的神经网络的结构图(下附图);点击13处按钮即可生成对应的神经网络模型。前面只是简单地介绍了各个部分的作用,具体参数应该如何设置就只有各位自行去学习相关的文献了,此处不再多言。

贝叶斯网络工具箱使用

matlab贝叶斯网络工具箱使用 2010-12-18 02:16:44| 分类:默认分类| 标签:bnet 节点叶斯matlab cpd |字号大中小订阅 生成上面的简单贝叶斯网络,需要设定以下几个指标:节点,有向边和CPT表。 给定节点序,则只需给定无向边,节点序自然给出方向。 以下是matlab命令: N = 4; %给出节点数 dag = false(N,N); %初始化邻接矩阵为全假,表示无边图C = 1; S = 2; R = 3; W = 4; %给出节点序 dag(C,[R,S])=true; %给出有向边C-R,C-S dag([R,S],W)=true; %给出有向边R-W,S-W discrete_nodes = 1:N; %给各节点标号 node_sizes = 2*ones(1,N); %设定每个节点只有两个值 bnet = mk_bnet(dag, node_sizes); %定义贝叶斯网络bnet %bnet结构定义之后,接下来需要设定其参数。 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); 至此完成了手工输入一个简单的贝叶斯网络的全过程。 要画结构图的话可以输入如下命令: G=bnet.dag; draw_graph(G); 得到:

Matlab神经网络工具箱介绍与数值试验

第一章Matlab神经网络工具箱介绍和数值试验 1.1Matlab神经网络工具箱中BP网络相关函数介绍 MATLAB神经网络工具箱中包含了许多用于BP网络分析和设计的函数。BP网络的常用函数如表4-1所示。[10,12] 表4-1 BP网络的常用函数 函数类型函数名称函数用途 前向网络创建函数newcf 创建一个多层前馈BP网络newff 创建一个前向BP网络 newfftd 创建一个前馈输入延迟BP网络 传递函数logsig S型的对数函数dlogsig Logig的导函数tansig S型的正切函数dtansig tansig的导函数purelin 纯线性函数 学习函数traingd 基于标准BP算法的学习函数trainrp 采用Rprop算法训练 trainlm 采用LM算法训练 traincgf 基于共轭梯度法的学习函数 仿真函数sim 仿真一个神经网络 1.2数值试验 1.2.1.“异或”问题 “异或”问题(XOR)是典型的非线性划分问题。这里以它为例,简单介绍BP网络的使用。 在Matlab7.0环境下,建立一个三层的BP神经网络,其中输入层和隐层分别各有两个神经元,输出层有一个神经元。现要求训练这一网络,使其具有解决“异或”问题的能力。 “异或”问题的训练输入和期望输出如表5-1。

表5-1 异或问题的训练输入和期望输出 1X 2X 1d 0 0 0 0 1 1 1 0 1 1 1 1) 基于标准BP 算法 结果如下及图5.1所示: 横轴表示迭代次数,纵轴表示误差。迭代到第240次时达到预设精度。迭代停止时,误差为9.97269e-005,此时的梯度为0.00924693。 050 100150200 10 -4 10 -3 10 -2 10 -1 10 10 1 240 Epochs T r a i n i n g -B l u e G o a l -B l a c k Performance is 9.97269e-005, Goal is 0.0001 图5.1 基于标准BP 算法的“异或”问题 2) 基于共轭梯度法 结果如下及图5.2所示: 横轴表示迭代次数,纵轴表示误差。迭代到第16次时达到预设精度。迭代停止时,

贝叶斯网络构建算法

3.1 贝叶斯网络构建算法 算法3.1:构建完全连接图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。 输出:一个完全连接图S 算法: 1、 连接任意两个节点,即连接边 L ij=1,i ≠j 。 2、 为任一节点V i 邻接点集合赋值,B i= V\{V i }。 算法3.2:构建最小无向图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。及算法3.1中得到的邻接点集B i ,连接边集 L ij 先验知识:节点V i ,V j 间连接边是否存在 变量说明:L 为连接边,|L|=n(n –1)/2为连接边的数量,B i 表示变量V i 的直接邻近集,|B i |表示与变量B i 相邻的变量数。(V i ⊥V j |Z)表示V i 和V j 在Z 条件下条件独立,设∧(X ,Y)表示变量X 和Y 的最小d-分离集。 输出:最小无向图S 1、根据先验知识,如果V i 和V j 不相连接,则L ij =0 . 2、对任一相连接边,即L ij ≠0,根据式(3-12)计算互信息I (V i ,V j ) ),(Y X I =))()(|),((y p x P y x p D =????? ?)()(),(log ),(Y p X p Y X p E y x P (3-12) if I (V i ,V j )ε≤ then { L ij =0 //V i 和V j 不相连接 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 } else I ij = I (V i ,V j ) //节点V i 和V j 互信息值 3、对所有连接边,并按I ij 升序排序 4、如果连接边集L ij 不为空,那么按序选取连接边L ij ,否则 goto 10 if |B i |≥ |B j |,令Z= B i else Z= B j //为后面叙述方便,这里先假设|B i |≥ |B j | 5、逐一计算L ij 的一阶条件互信息I(V i ,V j |Z 1),Z 1={Y k }, Y k ∈Z, if I(V i ,V j |Z 1)ε≤ then { L ij =0 //V i 和V j 关于Z 1条件独立 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 d ij = Z 1 //L ij 最小d 分离集为Z 1 goto 4

不错的Matlab神经网络工具箱实用指南

Matlab的神经网络工具箱实用指南 文章摘要:第一章是神经网络的基本介绍,第二章包括了由工具箱指定的有关网络结构和符号的基本材料以及建立神经网络的一些基本函数,例如new、init、adapt和train。第三章以反向传播网络为例讲解了反向传播网络的原理和应用的基本过程。 第一章介绍 1.神经网络 神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。 一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。如下图所示。这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。 神经网络已经在各个领域中应用,以实现各种复杂的功能。这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。 如今神经网络能够用来解决常规计算机和人难以解决的问题。我们主要通过这个工具箱来建立示范的神经网络系统,并应用到工程、金融和其他实际项目中去。 一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。无监督网络可以被应用在数据组的辨别上。一些线形网络和Hopfield网络是直接设计的。总的来说,有各种各样的设计和学习方法来增强用户的选择。 神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。我们相信要成功和满意的使用这个工具箱,对范例

贝叶斯网络模型代码

addpath(genpathKPM(pwd)) N = 4; dag = zeros(N,N); C = 1; S = 2; R = 3; W = 4; dag(C,[R S]) = 1; dag(R,W) = 1; dag(S,W)=1; discrete_nodes = 1:N; node_sizes = 2*ones(1,N); bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes); onodes = []; bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes, 'observed', onodes); bnet = mk_bnet(dag, node_sizes, 'names', {'cloudy','S','R','W'}, 'discrete', 1:4); C = https://www.doczj.com/doc/532202158.html,s('cloudy'); % https://www.doczj.com/doc/532202158.html,s是一个关联数组; bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); CPT = zeros(2,2,2); CPT(1,1,1) = 1.0; CPT(2,1,1) = 0.1; CPT = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], [2 2 2]); bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); figure draw_graph(dag)

如何用MATLAB的神经网络工具箱实现三层BP网络

如何用MA TLAB的神经网络工具箱实现三层BP网络? % 读入训练数据和测试数据 Input = []; Output = []; str = {'Test','Check'}; Data = textread([str{1},'.txt']); % 读训练数据 Input = Data(:,1:end-1); % 取数据表的前五列(主从成分) Output = Data(:,end); % 取数据表的最后一列(输出值) Data = textread([str{2},'.txt']); % 读测试数据 CheckIn = Data(:,1:end-1); % 取数据表的前五列(主从成分) CheckOut = Data(:,end); % 取数据表的最后一列(输出值) Input = Input'; Output = Output'; CheckIn = CheckIn'; CheckOut = CheckOut'; % 矩阵赚置 [Input,minp,maxp,Output,mint,maxt] = premnmx(Input,Output); % 标准化数据 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% % 神经网络参数设置 %====可以修正处 Para.Goal = 0.0001; % 网络训练目标误差 Para.Epochs = 800; % 网络训练代数 Para.LearnRate = 0.1; % 网络学习速率 %==== Para.Show = 5; % 网络训练显示间隔 Para.InRange = repmat([-1 1],size(Input,1),1); % 网络的输入变量区间 Para.Neurons = [size(Input,1)*2+1 1]; % 网络后两层神经元配置

贝叶斯网络

贝叶斯网络 2007-12-27 15:13 贝叶斯网络 贝叶斯网络亦称信念网络(Belief Network),于1985 年由Judea Pearl 首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。它的节点用随机变量或命题来标识,认为有直接关系的命题或变量则用弧来连接。例如,假设结点E 直接影响到结点H,即E→H,则建立结点E 到结点H 的有向弧(E,H),权值(即连接强度)用条件概率P(H/E)来表示,如图所示: 一般来说,有 n 个命题 x1,x2,,xn 之间相互关系的一般知识可用联合概率分布来描述。但是,这样处理使得问题过于复杂。Pearl 认为人类在推理过程中,知识并不是以联合概率分布形表现的,而是以变量之间的相关性和条件相关性表现的,即可以用条件概率表示。如 例如,对如图所示的 6 个节点的贝叶斯网络,有 一旦命题之间的相关性由有向弧表示,条件概率由弧的权值来表示,则命题之间静态结构关系的有关知识就表示出来了。当获取某个新的证据事实时,要对每个命题的可能取值加以综合考查,进而对每个结点定义一个信任度,记作 Bel(x)。可规定 Bel(x) = P(x=xi / D) 来表示当前所具有的所有事实和证据 D 条件下,命题 x 取值为 xi 的可信任程度,然后再基于 Bel 计算的证据和事实下各命题

的可信任程度。 团队作战目标选择 在 Robocode 中,特别在团队作战中。战场上同时存在很多机器人,在你附近的机器人有可能是队友,也有可能是敌人。如何从这些复杂的信息中选择目标机器人,是团队作战的一大问题,当然我们可以人工做一些简单的判断,但是战场的信息是变化的,人工假定的条件并不是都能成立,所以让机器人能自我选择,自我推理出最优目标才是可行之首。而贝叶斯网络在处理概率问题上面有很大的优势。首先,贝叶斯网络在联合概率方面有一个紧凑的表示法,这样比较容易根据一些事例搜索到可能的目标。另一方面,目标选择很容易通过贝叶斯网络建立起模型,而这种模型能依据每个输入变量直接影响到目标选择。 贝叶斯网络是一个具有概率分布的有向弧段(DAG)。它是由节点和有向弧段组成的。节点代表事件或变量,弧段代表节点之间的因果关系或概率关系,而弧段是有向的,不构成回路。下图所示为一个简单的贝叶斯网络模型。它有 5 个节 点和 5 个弧段组成。图中没有输入的 A1 节 点称为根节点,一段弧的起始节点称为其末节点的母节点,而后者称为前者的子节点。 简单的贝叶斯网络模型 贝叶斯网络能够利用简明的图形方式定性地表示事件之间复杂的因果关系或概率关系,在给定某些先验信息后,还可以定量地表示这些关系。网络的拓扑结构通常是根据具体的研究对象和问题来确定的。目前贝叶斯网络的研究热点之一就是如何通过学习自动确定和优化网络的拓扑结构。 变量 由上面贝叶斯网络模型要想得到理想的目标机器人,我们就必须知道需要哪些输入变量。如果想得到最好的结果,就要求我们在 Robocode 中每一个可知的数据块都要模拟为变量。但是如果这样做,在贝叶斯网络结束计算时,我们会得到一个很庞大的完整概率表,而维护如此庞大的概率表将会花费我们很多的系统资源和计算时间。所以在开始之前我们必须要选择最重要的变量输入。这样从比赛中得到的关于敌人的一些有用信息有可能不会出现在贝叶斯网络之内,比如速

神经网络工具箱

神经网络工具箱 版本6.0.4(R2010a版本)25-JAN-2010 图形用户界面的功能。 nctool - 神经网络分类的工具。 nftool - 神经网络拟合工具。 nprtool - 神经网络模式识别工具。 nntool - 神经网络工具箱的图形用户界面。 nntraintool - 神经网络训练工具。 视图- 查看一个神经网络。 分析功能。 混乱- 分类混淆矩阵。 errsurf - 单输入神经元的误差表面。 maxlinlr - 最大的学习率的线性层。 鹏- 受试者工作特征。 距离函数。 boxdist - 箱距离函数。 DIST - 欧氏距离权重函数。 mandist - 曼哈顿距离权重函数。 linkdist - 链路距离函数。 格式化数据。 combvec - 创建载体的所有组合。 con2seq - 转换并行向量连续载体。 同意- 创建并发偏载体。 dividevec - 创建载体的所有组合。 ind2vec - 转换指数为载体。 最小最大- 矩阵行范围。 nncopy - 复印基质或细胞阵列。 normc - 规格化矩阵的列。 normr - 规格化行的矩阵的。 pnormc - 矩阵的伪规格化列。 定量- 值离散化作为数量的倍数。 seq2con - 转换顺序向量并发载体。 vec2ind - 将矢量转换成指数。 初始化网络功能。 initlay - 层- 层网络初始化函数。 初始化层功能。

initnw - 阮层的Widrow初始化函数。 initwb - 从重量和- 偏置层初始化函数。 初始化的重量和偏见的功能。 initcon - 良心的偏见初始化函数。 initzero - 零重量/偏置初始化函数。 initsompc - 初始化SOM的权重与主要成分。 中点- 中点重初始化函数。 randnc - 归一列重初始化函数。 randnr - 归行重初始化函数。 兰特- 对称随机重量/偏置初始化函数。 学习功能。 learncon - 良心的偏见学习功能。 learngd - 梯度下降重量/偏置学习功能。 learngdm - 梯度下降W /气势重量/偏置学习功能。 learnh - 赫布重学习功能。 learnhd - 赫布衰变重学习功能。 learnis - 重量龄学习功能。 learnk - Kohonen的重量学习功能。 learnlv1 - LVQ1重学习功能。 learnlv2 - LVQ2重学习功能。 learnos - Outstar重学习功能。 learnsomb - 批自组织映射权重学习功能。 learnp - 感知重量/偏置学习功能。 learnpn - 归感知重量/偏置学习功能。 learnsom - 自组织映射权重学习功能。 learnwh - 的Widrow - 霍夫重量/偏置学习规则。 在线搜索功能。 srchbac - 回溯搜索。 srchbre - 布伦特的结合黄金分割/二次插值。 srchcha - Charalambous“三次插值。 srchgol - 黄金分割。 srchhyb - 混合二分/立方搜索。 净输入功能。 netprod - 产品净输入功能。 netsum - 求和净输入功能。 网络创造的功能。 网络- 创建一个自定义的神经网络。 NEWC - 创建一个有竞争力的层。 newcf - 创建级联转发传播网络。

JAVA贝叶斯网络算法

贝叶斯网络 提纲: 最近工作: B-COURSE工具学习 BNT研究与学习 BNT相关实验及结果 手动建立贝叶斯网及简单推理 参数学习 结构学习 下一步工作安排 最近工作: 1. B-COURSE 工具学习 B-COURSE是一个供教育者和研究者免费使用的web贝叶斯网络工具。主要分为依赖关系建模和分类器模型设计。输入自己的研究数据,就可以利用该工具在线建立模型,并依据建立好的模型进行简单推理。 B-COURSE要求数据格式是ASCII txt格式的离散数据,其中第一行是各种数据属性变量,其余各行则是采集的样本,属性变量值可以是字符串也可以是数据,属性变量之间用制表符分割,缺失属性变量值用空格代替。读入数据后,在进行结构学习前,可以手动的选择需

要考虑的数据属性!生成过程中,可以手动确定模型,确定好模型后,可以选择JAVA playgroud,看到一个java applet程序,可以手动输入相应证据,从而进行简单推理。 B-COURSE的详细使用介绍,可详见 [url]http://b-course.cs.helsinki.fi/obc/[/url]。 B-COURSE工具隐藏了数据处理,算法实现等技术难点,所以对初学者来说,容易上手。但是却不能够针对不同的应用进行自主编程,缺乏灵活性。 2.贝叶斯网工具箱BNT的研究与学习 基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。 结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan(). 2. 数据完整条件下学习一般贝叶斯网络结构的K2算法 learn_struct_k2()、贪婪搜索GS(greedy search)算法

Matlab神经网络工具箱函数.

MATLAB 神经网络工具箱函数 说明:本文档中所列出的函数适用于 MATLAB5.3以上版本, 为了简明起见, 只列出了函数名, 若需要进一步的说明,请参阅 MATLAB 的帮助文档。 1. 网络创建函数 newp 创建感知器网络 newlind 设计一线性层 newlin 创建一线性层 newff 创建一前馈 BP 网络 newcf 创建一多层前馈 BP 网络 newfftd 创建一前馈输入延迟 BP 网络 newrb 设计一径向基网络 newrbe 设计一严格的径向基网络 newgrnn 设计一广义回归神经网络 newpnn 设计一概率神经网络 newc 创建一竞争层 newsom 创建一自组织特征映射 newhop 创建一 Hopfield 递归网络 newelm 创建一 Elman 递归网络 2. 网络应用函数

sim 仿真一个神经网络 init 初始化一个神经网络 adapt 神经网络的自适应化 train 训练一个神经网络 3. 权函数 dotprod 权函数的点积 ddotprod 权函数点积的导数 dist Euclidean 距离权函数normprod 规范点积权函数negdist Negative 距离权函数mandist Manhattan 距离权函数linkdist Link 距离权函数 4. 网络输入函数 netsum 网络输入函数的求和dnetsum 网络输入函数求和的导数5. 传递函数 hardlim 硬限幅传递函数hardlims 对称硬限幅传递函数purelin 线性传递函数

tansig 正切 S 型传递函数 logsig 对数 S 型传递函数 dpurelin 线性传递函数的导数 dtansig 正切 S 型传递函数的导数dlogsig 对数 S 型传递函数的导数compet 竞争传递函数 radbas 径向基传递函数 satlins 对称饱和线性传递函数 6. 初始化函数 initlay 层与层之间的网络初始化函数initwb 阈值与权值的初始化函数initzero 零权/阈值的初始化函数 initnw Nguyen_Widrow层的初始化函数initcon Conscience 阈值的初始化函数midpoint 中点权值初始化函数 7. 性能分析函数 mae 均值绝对误差性能分析函数 mse 均方差性能分析函数 msereg 均方差 w/reg性能分析函数

[p]贝叶斯网络

贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(belief network)或是有向无环图模型(directed acyclic graphical model),是一种概率图型模型,借由有向无环图(directed acyclic graphs, or DAGs)中得知一组随机变数{}及其n组条件概率分配(conditional probability distributions, or CPDs)的性质。举例而言,贝叶斯网络可用来表示疾病和其相关症状间的概率关系;倘若已知某种症状下,贝叶斯网络就可用来计算各种可能罹患疾病之发生概率。 一般而言,贝叶斯网络的有向无环图中的节点表示随机变数,它们可以是可观察到的变量,抑或是隐变量、未知参数等。连接两个节点的箭头代表此两个随机变数是具有因果关系或是非条件独立的;而两个节点间若没有箭头相互连接一起的情况就称其随机变数彼此间为条件独立。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(descendants or children)”,两节点就会产生一个条件概率值。比方说,我们以表示第i个节点,而的“因”以表示,的“果”以表示;图一就是一种典型的贝叶斯网络结构图,依照先前的定义,我们就可以轻易的从图一可以得知: ,以及 大部分的情况下,贝叶斯网络适用在节点的性质是属于离散型的情况下,且依照此条件概率写出条件概率表(conditional probability table, or CPT),此条件概率表的每一行(row)列 出所有可能发生的,每一列(column)列出所有可能发生的,且任一行的概率总和必为1。写出条件概率表后就很容易将事情给条理化,且轻易地得知此贝叶斯网络结构图中各节点间之因果关系;但是条件概率表也有其缺点:若是节点是由很多的“因”所造成的“果”,如此条件概率表就会变得在计算上既复杂又使用不便。下图为图一贝叶斯网络中某部分结构图之条件概率表。 图一:部分结构图之条件概率表

贝叶斯网络结构学习总结

贝叶斯网络结构学习总结 一、 贝叶斯网络结构学习的原理 从数据中学习贝叶斯网络结构就是对给定的数据集,找到一个与数据集拟合最好的网络。 首先定义一个随机变量h S ,表示网络结构的不确定性,并赋予先验概率分布()h p S 。然后计算后验概率分布(|)h p S D 。根据Bayesian 定理有 (|)(,)/()()(|)/()h h h h p S D p S D p D p S p D S p D == 其中()p D 是一个与结构无关的正规化常数,(|)h p D S 是边界似然。 于是确定网络结构的后验分布只需要为每一个可能的结构计算数据的边界似然。在无约束多项分布、参数独立、采用Dirichlet 先验和数据完整的前提下,数据的边界似然正好等于每一个(i ,j )对的边界似然的乘积,即 1 1 1 () ()(|)()() i i q r n ij ijk ijk h i j k ij ij ijk N p D S N ===Γ?Γ?+=Γ?+Γ?∏∏ ∏ 二、 贝叶斯网络完整数据集下结构学习方法 贝叶斯网络建模一般有三种方法:1)依靠专家建模;2)从数据中学习;3)从知识库中创建。在实际建模过程中常常综合运用这些方法,以专家知识为主导,以数据库和知识库为辅助手段,扬长避短,发挥各自优势,来保证建模的效率和准确性。但是,在不具备专家知识或知识库的前提下,从数据中学习贝叶斯网络模型结构的研究显得尤为重要。 常用的结构学习方法主要有两类,分别是基于依赖性测试的学习和基于搜索评分的学习。 第一类方法是基于依赖性测试的方法,它是在给定数据集D 中评估变量之间的条件独立性关系,构建网络结构。基于条件独立测试方法学习效率最好,典型的算法包括三阶段分析算法(TPDA )。基于依赖性测试的方法比较直观,贴近贝叶斯网络的语义,把条件独立性测试和网络结构的搜索分离开,不足之处是对条件独立性测试产生的误差非常敏感。且在某些情况下条件独立性测试的次数相对于变量的数目成指数级增长。 第二类方法是基于评分搜索的方法,其原理是在所有节点的结构空间内按照一定的搜索策略及评分准则构建贝叶斯网络结构,这种算法虽然能够搜索到精确的网络结构,但是由于结构空间很大,从所有可能的网络结构空间搜索最佳的贝叶斯网络结构被证明为NP-hard 问题,所以一般需要使用启发式算法,代表性算法有K2算法等。基于搜索评分的方法是一种统计驱动的方法,试图在准确性、稀疏性、鲁棒性等多个因素之间找个平衡点。但由于搜索方法的先天弱点,导致用搜索评分的方法不一定能找到最好的结构,但是应用范围很广。 当观察到的数据足够充分且计算次数足够多时,基于搜索评分的方法和基于依赖性测试的方法都可以学到“正确”的网络结构。 此外,有人结合上述两种方法,提出了一些混合算法,这类算法首先利用独立性测试降

(翻译)嵌入式贝叶斯网络在人脸识别中的应用

嵌入式贝叶斯网络在人脸识别中的应用 Ara V Nefian 英特尔公司 微处理器研究实验室 Santa Clara ,CA 95052 ara.nefian @ https://www.doczj.com/doc/532202158.html, 摘要:本文所介绍的嵌入式贝叶斯网络(EBN)是嵌入式隐马尔可夫模型的一种概括,嵌入式隐马尔可夫模型最初应用于人脸和字符识别。一个EBN 递归的被定义为一个层次结构,在这个结构里,“双亲”层节点在嵌入式贝叶斯网络或者描述“孩子”层各节点的观察序列的条件下是一个贝叶斯网络。在嵌入式贝叶斯网络下,可以建立复杂的N 维数据,在保护他们的灵活性和局部尺度不变性的同时避免复杂的贝叶斯网络。在本文中,我们提出了嵌入式贝叶斯网络在人脸识别上的一种应用,并且描述了该方法与特征脸方法以及嵌入式隐马尔可夫模型方法相比的完善之处。 1、 简介: 本文介绍的动机是需要实际的统计模型与n 维的依赖,特别是依赖使用二维图像分析。而隐马尔可夫模型(HMM)是非常成功的应用于语音识别或手势识别,在这个模型里,随着时间的推移数据依赖于一维,相当于一个N 维隐马尔可夫模型已被证明是不切实际的,由于其复杂性会随着数据的大小而成倍增长[1]。对于图像识别,特别是人脸识别[2],其数据本质上是二维的,基于采用主成分分析([3],[4]),线性判别分析([5]),神经网络([6],[7]),和匹配追踪方法的模板与早期的几何特征表现相比有了改进。然而,这些方法不能概括在尺度,方向,或面部表情方面的广泛差异。近年来,几种近似二维隐马尔可夫模型与实际计算模型的方法被研究了,诸如伪二维隐马尔可夫模型或嵌入式隐马尔可夫模型应用于字符识别[1]或人脸识别[10],[11]。这些模型在相当大的程度上降低了早期基于隐马尔可夫模型的人脸识别方法的错误率[11]。在文献[12]中,Jia 和 Gray 制定了一个有效的近似于隐马尔可夫模型的训练和识别的方法,并将其应用于文本图像分析。本文介绍了一个系列嵌入式贝叶斯网络(EBN )并研究它们的人脸识别性能。嵌入式贝叶斯网络通过允许每一个隐马尔可夫模型被任意的贝叶斯网络所代替来概括嵌入式隐马尔可夫模型。本文主要介绍在动态贝叶斯网络如HMM 或耦合HMMs 基础上建立的一系列嵌入式贝叶斯网络,并将他们的人脸识别性能与现有的一些方法相比较。 2、 耦合隐马尔可夫模型 耦合隐马尔可夫模型(CHMM )可以被视为一个HMMs 的集合,一个数据流集合,其中每个HMM 在时间t 时的离散型节点受所有相关HMMs 在时间t-1时的离散型节点的影响。图1显示了一个CHMM ,其中正方形代表隐藏的离散节点而环形代表连续观测节点。用C 表示一个CHMM 通道的数量,并用i =[il,..,,ic]表示状态向量,描述通道1处隐藏节点的状 态,…,在一个特定时间t 的实例。(C 是耦合隐马尔可夫模型(CHMM )的一个通道,i = [i l ,….,i c ]是描述在通道1……C 隐藏节点的状态的状态向量,1q [,...]C t t t q q 代表一个特定的时间例如t 时状态。)耦合隐马尔可夫模型的要素有 ,在通道c 里的状态i c 的初始状态概率;

相关主题
文本预览
相关文档 最新文档