当前位置:文档之家› 高中物理解题思路:平抛运动典型例题解题技巧三

高中物理解题思路:平抛运动典型例题解题技巧三

高中物理解题思路:平抛运动典型例题解题技巧三直线运动问题

题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.

思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;

对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板:常用的思维方法有两种.

解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;

图解法:根据平衡条件画出力的合成或分解图,根据图像分析

力的变化。

运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类。一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.

思维模板:主要有两种情况。

在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.

小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

抛体运动问题

题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.

思维模板:主要有两种情况。

平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;

斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向

做匀速直线运动,在两个方向上分别列相应的运动方程求解。

圆周运动问题

题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动。对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.

思维模板:主要有以下两点

对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力。

竖直面内的圆周运动可以分为三个模型:

绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;

杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;

牛顿运动定律的综合应用问题

题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,

也可以考查临界问题、周期性问题等内容,综合性较强。天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高。

思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力。对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律。

GMm/R2=mg。

对于做圆周运动的星体(包括双星、三星系统),可根据公式分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化。

机车的启动问题

题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析。

思维模板:有以下两种。

机车以额定功率启动。机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f。

这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs

计算(因为F为变力)。

机车以恒定加速度启动。恒定加速度启动过程实际包括两个过程。如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动。

以能量为核心的综合应用问题

题型概述:以能量为核心的综合应用问题一般分四类:

第一类为单体机械能守恒问题,

第三类为单体动能定理问题,

第四类为多体系统功能关系(能量守恒)问题。

多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.

思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.

动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;

能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;

力学实验中速度的测量问题

题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中

都要进行速度的测量。

速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度。

思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:vt/2=v平均=(v0+v)/2,Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法。

电容器问题

题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面。

思维模板:电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用。对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)带电粒子在电场中的运动问题

题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循

运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题。

思维模板:有以下3种情况

处理带电粒子在电场中的运动问题应从两种思路着手。

动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量。

功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择)。

处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力。

质子、α粒子、电子、离子等微观粒子一般不计重力;

液滴、尘埃、小球等宏观带电粒子一般考虑重力;

带电粒子在磁场中的运动问题

题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:

突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;

突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;

突出本部分知识在实际生活中的应用的考查,以对思维能力和

理论联系实际能力的考查为主.

思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法。

圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示)。

带电粒子在复合场中的运动问题

题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况:

看看网友们都有什么想法

网友1

归根结底掌握两个条件:其运动状态其实就是分解成一个匀速的水平运动和一个向下加速度为g的竖直运动。①水平速度,速度方向平行地面的不用解释,当不是平行的要利用其夹角解得水平和竖直方向的速度。②竖直方向下落时间根据下落的高度、初始竖直分速度、加速度、再结合能量守恒定理。很容易解、

网友2

物理分析法(用公式求解)、数学函数法(求最值)、图象法。至于自由落体运动,用比值法就OK。

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

平抛运动的典型例题

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说确的是( C )A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒(BD ) A.物体的末速度大小一定等于初速度大小的10倍B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C ) A.甲先抛出球 B.先抛出球 C.同时抛出两球 D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A . B . C . D . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

高一物理 平抛运动研究 典型例题精析

平抛运动研究典型例题精析 [例题1] 如图5-6(A)所示,MN为一竖直墙面,图中x轴与MN垂直.距墙面L的A点固定一点光源.现从A点把一小球以水平速度向墙面抛出,则小球在墙面上的影子运动应是 [] A.自由落体运动 B.变加速直线运动 C.匀速直线运动 D.无法判定

[思路点拨] 小球抛出后为平抛运动,在图中x方向上为匀速直线运动,在y方向上为自由落体运动.故不少同学选择(A)项,而实际上该答案是错误的.问题在于我们研究的并不是小球在竖直方向上的运动,而是在点光源照射下小球在墙上影子的运动. [解题过程] 设小球从A点抛出后经过时间t,其位置B坐标为(x,y),连接AB并延长交墙面于C(x′,y′).显然C点就是此时刻小球影子的位置(如图5-6(B)所示). 令AB与x轴夹角为α,则 依几何关系,影子位置y′=L·tanα.故 令 gL/2v0=k,则y′=k·t. 即影子纵坐标y′与时间t是正比例关系,所以该运动为匀速直线运动,应选(C)项.

[小结] (1)要认真审清题意:本题所研究的是“点光源照射下小球影子的运动”,否则会差之毫厘,谬之千里. (2)对选择题的分析判断,切莫主观猜测,要做到弃之有理,选之有据.对于需做出定量研究的问题,最好的方法就是将物理图景利用数学语言表达出来,例如在本题中就是写出位移随时间的函数关系. [例题2] 如图5-7所示,M和N是两块相互平行的光滑竖直弹性板.两板之间的距离为L,高度为H.现从M板的顶端O以垂直板面的水平速度v0抛出一个小球.小球在飞行中与M板和N板,分别在A点和B点相碰,并最终在两板间的中点C处落地.求: (1)小球抛出的速度v0与L和H之间满足的关系; (2)OA、AB、BC在竖直方向上距离之比. [思路点拨] 根据平抛运动规律,建立小球在MN之间的运动图景是本题关键之一.小球被水平抛出后,如果没有板面N的作用,其运动轨迹应如

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 , 所以Q点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有 同理 则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。 取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有 ?① ?② 当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离 当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为

例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s ) 分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m . 解:由位置关系得 1202.6s s s =+- 物体平抛运动的时间 0.7t s '= 由以上三式可得 例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大? 解:小球运动是合运动,小球在水平方向作匀速直线运动,有 0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有 2 12 L at = ② 根据牛顿第二定律列方程 sin mg ma θ= ③ 由①,②,③式解得s v v == 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37?变成53?,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用. 解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知: 由以上两式解得017.1/v m s = 9 7 t s = 物体在这1s 内下落的高度 例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

平抛运动典型例题 (2)

平抛运动典型例题 1、平抛运动中,(除时间以外)所有物理量均由高度与初速度两方面决定。 v水平抛出,抛出点离地面的高度为h,阻力不计,求:(1)小球在例1、一小球以初速度 o 空中飞行的时间;(2)落地时速度;(3)水平射程;(4)小球的位移。 2、从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 例2、如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过x=5m 的壕沟,沟面对面比A处低h=1.25m,摩托车的速度至少要有多大? 3、平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 例3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其 运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须 A.甲先抛出球 B.先抛出球 C.同时抛出两球 D.使两球质量相等 例4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙 高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不 计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2 4、平抛运动轨迹问题——认准参考系 例5、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动5、平抛运动运动性质的理解——匀变速曲线运动(a→) 例6、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 6、平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系

平抛运动和圆周运动典型例题

平抛运动、圆周运动 一、 平抛运动 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件: a 、只受重力; b 、初速度与重力垂直. 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。g a = 4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 5、平抛运动的规律 ①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2 2y x v v v += 物体的合速度v 与x 轴之间的夹角为: tan v gt v v x y = = α ②水平位移:t v x 0=,竖直位移22 1gt y = 合位移(实际位移)的大小:22y x s += 物体的总位移s 与x 轴之间的夹角为: 2tan v gt x y == θ 可见,平抛运动的速度方向与位移方向不相同。 而且θα tan 2tan =而θα2≠

轨迹方程:由t v x 0=和2 21gt y =消去t 得到:22 2x v g y =。可见平抛运动的轨迹为抛物线。 6、平抛运动的几个结论 ①落地时间由竖直方向分运动决定: 由2 21gt h = 得:g h t 2= ②水平飞行射程由高度和水平初速度共同决定: g h v t v x 20 0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移 x 夹角θ正切值的两倍。 ④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:2 21tan 20x s s gt v gt =?==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下(与g 同向)。任意相同时间内的Δv 都相同(包括大小、方向),如右图。 二、 V V V ⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。) 三、 如右图:所以θtan 20 g v t = )tan(v gt v v a x y = = +θ

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

平抛运动典型题+测试卷(有答案)

1. 如图2所示,重物A 、B 由刚性绳拴接,跨过定滑轮处于 图中实际位置,此时绳恰好拉紧,重物静止在水平面上,用外力水平向左推A,当A 的水平速度为v A 时,如图中虚线所示,则此时B 的速度为( ) A.3/3A v B.4/3A v C.A v 3 D.2/3A v 2. 如图3所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd ,从a 点正上方O以速度v 水 平抛出一个小球,它落在斜面的b 点;若小球从O以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( ) A.b 与c 之间某一点 B.c 点 C.d 点 D.c 与d 之间某一点 3.作物体做平抛运动的x-y 图象,物体从O 点抛出,x 、y 分别为其水平和竖直位移,在物体运动的过程中,经某一点P(x,y) 时,其速度的反向延长线交于x 轴上的A 点,则O A 的长为( ) A .x B .0.5x C .0.3x D .不能确定 4.从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是 v H v 12 D .相遇时小球2上升高度是H gH v 1212 - ? ? ? ? ? 5、如图2所示,以9.8m/s 的水平速度V 0抛出的物体,飞行一段时间后垂直地撞在倾角为θ=30°的斜面上,可知物体完成这段飞行的时间是 ( ) 图 2 30 60 v F 图 a c b d O 图3

6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相 等,以下判断正确的是( ) A .此时小球的竖直分速度大小等于水平分速度大小 B .此时小球的速度大小为2 v 0 C .小球运动的时间为2 v 0/g D .此时小球速度的方向与位移的方向相同 8、如图4所示,从倾角为θ的斜面上的A 点以速度V 0平抛一个小球,小球落在斜面上的B 点.则小球从A 到B 的运动时间为 。 9.如图所示,从高为H 的地方A 平抛一物体,其水平射程为2s 。在A 点正上方高度为2H 的地方B 点,以同方向平抛另一物体,其水平射程为s ,两物体在空中的轨道在同一竖直平面内,且都是从同一屏M 的顶端擦过,求屏M 的高度是_____________。 10一个同学做"研究平抛物体运动"实验时,只在纸上记下了重垂线的方向,忘记在纸上记下斜槽末端位置,并只在坐标上描出了如图7所示的曲线.现在在曲线上取A、B两点,用刻度尺分别量出它们到y 轴的距离AA′ =x 1,BB′=x 2,以及AB的竖直距离h.则小球抛出时的初速度v 0= x 1 A B x 2 A′ B′ 图7

平抛运动的典型例题分类汇编

平抛运动典型例题 一:平抛运动“撞球”问题——判断两球运动的时间是否相同(h 是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 1、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在 空中相遇,则必须 ( ) A .甲先抛出球 B .先抛出球 C .同时抛出两球 D .使两球质量相等 2、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h ,将甲乙两球分别以v 1.v 2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( ) A .同时抛出,且v 1< v 2 B .甲后抛出,且v 1> v 2 C .甲先抛出,且v 1> v 2 D .甲先抛出,且v 1< v 2 二:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 3、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( ) A . B . C . D . 4、作平抛运动的物体,在水平方向通过的最大距离取决于( ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 5、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( )

A.tanφ=sinθ B. tanφ=cosθ

C. tan φ=tan θ D. tan φ=2tan θ 6、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求: (1)物体的水平射程 (2)物体落地时速度大小 ②建立等量关系解题 7、如图所示,一条小河两岸的高度差是h ,河宽是高度差的4倍,一辆摩托车(可看作质点)以v 0=20m/s 的水平速度向河对岸飞出,恰好越过小河。若g=10m/s 2,求: (1)摩托车在空中的飞行时间 (2)小河的宽度 8、如图所示,一小球从距水平地面h 高处,以初速度v 0水平抛出。 (1)求小球落地点距抛出点的水平位移 (2)若其他条件不变,只用增大抛出点高度的方法使小球落地点到抛出点的水平位移增大到原来的2培,求抛出点距地面的高度。(不计空气阻力) 9、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. 10、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为 ,求第二次抛球的初速度是多少? 三:平抛运动位移相等问题——建立位移等量关系,进而导出运动时间(t )

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

平抛运动典型例题.doc

平抛运动典型例题 1、平抛运动中, (除时间以外)所有物理量均由高度与初速度两方面决定。 例 1、一小球以初速度 v 水平抛出,抛出点离地面的高度为 h ,阻力不计,求:( 1)小球在 o 空中飞行的时间; ( 2)落地时速度; ( 3)水平射程;( 4)小球的位移。 2、从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候, 我们首先想到的方法, 就应该是从竖直方向上的自由落体运动中求出时间, 然后,根据水平方向做匀速直线运动, 求出速度。 例 2、如图 1 所示,某人骑摩托车在水平道路上行驶, 要在 A 处越过 x=5m 的壕沟,沟面对面比 A 处低 h=1.25m ,摩托车的速度至少要有多大? 3、平抛运动 “撞球” 问题——判断两球运动的时间是否相同 ( h 是否相同);类比追击问题, 利用撞上时水平位移、竖直位移相等的关系进行解决 例 3、在同一水平直线上的两位置分别沿同方向抛出小两小球 和 ,其运动轨迹如图所示,不计空气阻力 .要使两球在空中相遇,则必须 A .甲先抛出 球 B .先抛出 球 C .同时抛出两球 D .使两球质量相等 例 4、如图所示, 甲乙两球位于同一竖直线上的不同位置, 甲比乙高 h ,将甲乙两球分别以 v 1. v 2 的速度沿同一水平方向抛出,不 计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A .同时抛出,且 v < v 2 B .甲后抛出,且 v > v 2 1 1 C .甲先抛出,且 v > v 2 D .甲先抛出,且 v < v 2 1 1 4、平抛运动轨迹问题——认准参考系 例 5、 从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下 落过程中,下列说法正确的是( ) A .从飞机上看,物体静止 B .从飞机上看,物体始终在飞机的后方 C .从地面上看,物体做平抛运动 D .从地面上看,物体做自由落体运动 5、平抛运动运动性质的理解——匀变速曲线运动( a →) 例 6、把物体以一定速度水平抛出。不计空气阻力, g 取 10 ,那么在落地前的任意一 秒内 ( ) A .物体的末速度大小一定等于初速度大小的 10 倍 B .物质的末速度大小一定比初速度大 10 C .物体的位移比前一秒多 10m D .物体下落的高度一定比前一秒多 10m 6、平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系

平抛运动典型分类例题

1.定义 水平抛出的物体只在重力作用下的运动. 2.特征 加速度为重力加速度g的匀变速曲线运动,轨迹是抛物线. 平抛运动的速率随时间变化不是均匀的,但速度随时间的变化是均匀的,要注意区分. 4.规律 (1)平抛运动如图所示; (2)其合运动及在水平方向上、竖直方向上的运动如下表所示:

①从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角正切值的两倍. ②抛物线上某点的速度反向延长线与初速度延长线的交点到抛点的距离等于该段平抛水平位移的一半. ③在任意两个相等的t ?内,速度矢量的变化量v ?是相等的,即v ?的大小与t ?成正比,方向竖直向下. ④平抛运动的时间为t = ,取决于下落的高度,而与初速度大小无关.水平位移 0x v t v == 4.求解方法 (1)常规方法:将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,利用运动的合成及分解来做. (2)特殊方法:巧取参考系来求解,例如:选取具有相同初速度的水平匀速直线运动物体为参考系,平抛物体做自由落体运动;选取自由落体运动的物体为参考系,平抛物体做匀速直线运动. 题型一:对平抛性质的理解 【例1】 关于平抛运动,下列说法正确的是( ) A .是匀变速运动 B .是变加速运动 C .任意两段时间内速度变化量的方向相同 D .任意相等时间内的速度变化量相等 【例2】 物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的 ( ) A .速度的增量 B .加速度 C .位移 D .平均速率 题型二:对平抛基本公式、规律运用 【例3】 以速度0v 水平抛出一个小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下 判断正确的是( ) A .此时小球的竖直分速度大小等于水平分速度大小 B 0 C .小球运动的时间为 2v g D .此时小球的速度方向与位移方向相同 【例4】 一架飞机水平匀速飞行.从飞机上海隔l s 释放一个铁球,先后释放4个,若不计空气阻力,从地面

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P 点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度。 解析:设物体由抛出点P 运动到斜面上的Q 点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得竖直方向上,水平方向上, 所以Q 点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A 和B ,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B 两小球的运动时间之比为多少? 图3解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法 可以得到所以有同理则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有?① ?②当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为 例4:在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是 20.5/m s 2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?

相关主题
文本预览
相关文档 最新文档