当前位置:文档之家› 三极管电路中各个输入端和输出端电压的测量方法

三极管电路中各个输入端和输出端电压的测量方法

三极管电路中各个输入端和输出端电压的测量方法

三极管电路中各个输入端和输出端电压的

测量方法

三极管从制造器件的材料上有锗管和硅管之分,从其电路结构形势上有共发射极、共集电极与共基极这么三种,从依据器件的制造工艺上分有PNP型与NPN型。

在通常情况下测量三极管的导通,可测其基极与发射极之间的电压,如果三极管应用在一般音频放大的前级,它的基极与发射之间的电压锗管0.2v~0.3v之间,硅管0.6v~0.7v 之间。

1.供给三极管的工作电流必须是直流电,所以你必须要用直流电压表测量。

2.三极管有三个极,分别叫做集电极C,基极B,发射极E。

3.基极和发射极是输入端、集电极和发射极是输出端。用直流电压表测量基极和发射极两端的电压即为输入端电压;用直流电压表测量集电极和发射极两端的电压即为输出端电压。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

三极管及放大电路基础教案..

第 2 章三极管及放大电路基础 课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。4.理解三极管的主要参数的含义。【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和 集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电 流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。

三极管三个电极的电流(基极电流1 B、集电极电流l C、发射极电流l E)之间的关系为: I E| |I C I C l B l C、 l B l B 2.1.3三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1.输入特性曲线 输入特性曲线是指当集-射极之间的电压V CE为定值时,输入回路中的基极电流I B与加在基-射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集-射极间的 电压V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区:I B 0曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管 没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1?性能参数:电流放大系数、,集电极-基极反向饱和电流I CBO,集电极-发射极反向饱和电流I CEO。 2.极限参数:集电极最大允许电流I CM、集电极-发射极反向击穿电压V(BR)CEO、集电 极最大允许耗散功率P CM 。 3.频率参数:共发射极截止频率 f 、特征频率f T 。 2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对 三极管的类型予以介绍。 三、课堂小结1.三极管的结构、类型和电路符号。2.三极管的电流放大作用。 3.三极管三种工作状态的特点。4.三极管的主要参数。 四、课堂思考 P37 思考与练习题1、2、3。

(整理)三极管应用电路和基本放大电路.

三极管应用电路和基本放大电路 2G 郭标2005-11-29 三极管应用电路和基本放大电路 (1) 一、三极管三种基本组态 (2) 二、应用电路 (3) A、偏置使用 (3) B、放大电路应用 (5) 三、射频FET小信号放大器设计 (7) 1、基本概念: (7) 2、基于S-参数和圆图的分析方法 (8) 四、集成中小功率放大器 (9) 附1:容易发生自激的电路形式 (11) 附2 电路分析实例 (11)

一、三极管三种基本组态 共发 共集 共基 特点:共发-对电压电流都有放大,适合制做放大器 共集-电压跟随器 共基-电流继随器 直流工作点选取 交流小信号混和PI 型等效模型 e

二、应用电路 A 、偏置使用 1、有源滤波电路: R1 R2 特点:直流全通,交流对地呈高容性。 使用时可在b 和e 对地接大电容,增强滤波。 2、有源负载电路: Vcc 特点:直流负载很小,交流负载大,提高放大器的Rc 3、恒流源电路 独立电流源 镜像电流源 特点:较大的偏置电压变化,有较小的电流变化

4、电平控制与告警电路 特点:利用导通截至特性,控制电平可调整 5、电流补偿偏置电路 特点:补偿偏置三极管能够补偿放大管因长期工作时,gm变低导致的Ic变低而改变工作点。

特点:适用于设计低噪声、高增益、高稳定性、较低频的放大电路。选择特定的材料可以做到高频。 1、共发放大的形式: ☆发射级接电阻的: 电压放大倍数接近为Rc/Re ☆接有源负载的: 共发有源负载的作用:直流负载很小,交流负载大 以此提高Rc,增大电压放大倍数 电压和电流同时放大的形式只有共发。 2、cb和cc的放大器一般只作为辅助。电流接续和电压接续或隔离作用。 3、级联考虑: 差分放大一般在组合放大的第一级,目的不在提供增益,而是良好的输入性能,如共模抑制比,温度漂移等;(互补型)共集电路(前置隔离级)做为最后一级,可兼容不同负载。而中间级一般是为了取得较高的增益,所以采用(有源偏置的)共发放大器。 放大电路中采用恒流偏置电路提高稳定性。 互补型共集电路 互补型共集电路特点:作为隔离级,提高动态范围

三极管及放大电路基础教案..

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管三种电路的特点

三极管三种电路的特点 1.共发射极电路特点 共射极电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相,低频性能差,适用于低频、和多级放大电路的中间级 共发射极放大电路 共发射极的放大电路,如图2所示。 图2 共发射极放大电路 因具有电流与电压放大增益,所以广泛应用在放大器电路。其电路特性归纳如下: 输入与输出阻抗中等(Ri约1k~5k ;RO约50k)。 电流增益: 电压增益: 负号表示输出信号与输入信号反相(相位差180°)。 功率增益: 功率增益在三种接法中最大。 共发射极放大电路偏压

图4自给偏压方式 又称为基极偏压电路,最简单的偏压电路,稳定性差,容易受β值的变动影响,温度每升高10℃时,逆向饱和电流ICO增加一倍。温度每升高1℃时,基射电压VBE减少2.5mV ,β随温度升高而增加(影响最大) 。

图5带电流反馈的基极偏压方式 三极管发射极加上电流反馈电阻,特性有所改善,但还是不太稳定。 图6分压式偏置电路 此为标准低频信号放大原理图电路,其R1(下拉电阻)及R2为三极管偏压电阻,为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意: 三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真,注意C1及C3的容量大小对低频信号(尤其是脉波)有影响.在R4并联一个C2,放大倍数就会变大。而在交流时C2将R4短路。 为什么要接入R1及R4? 因为三极管是一种对温度非常敏感的半导体器件,温度变化将导致集电极电流的明显改变。温度升高,集电极电流增大;温度降低,集电极电流减小。这将造成静态工作点的移动,有可能使输出信号产生失真。在实际电路中,要求流过R1和R2串联支路的电流远大于基极电流IB。这样温度变化引起的IB的变化,对基极电位就没有多大的影响了,就可以用R1和R2的分压来确定基极电位。采用分压偏置以后,基极电位提高,为了保证发射结压降正常,就要串入发射极电阻R4。 R4的串入有稳定工作点的作用。如果集电极电流随温度升高而增大,则发射极对地电位升高,因基极电位基本不变,故UBE减小。从输入特性曲线可知,UBE的减小基极电流将随之下降,根据三极管的电流控制原理,集电极电流将下降,反之亦然。这就在一定程度上稳定了工作点。分压偏置基本放大电路具有稳定工作点的作用,这个电路具有工作点稳定的特性。当流过R1和R2串联支路的电流远大于基极电流IB(一般大于十倍以上)时,可以用下列方法计算工作

如何快速确定三极管的工作状态三极管的三种工作状态分析判断

如何快速确定三极管的工作状态三极管的三种工作状态分析判断有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。 一、三种工作状态的特点 1.三极管饱和状态下的特点 要使三极管处于饱和状态,必须基极电流足够大,即IB≥IBS。三极管在饱和时,集电极与发射极间的饱和电压(UCES)很小,根据三极管输出电压与输出电流关系式UCE=EC-ICRC,所以IBS=ICS/β=EC-UCES/β≈EC/βRC。三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBES=0.7V(锗管UBES=-0.3V),而UCES=0.3V,可见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。三极管饱和后,C、E 间的饱和电阻RCE=UCES/ICS,UCES 很小,ICS 最大,故饱和电阻RCES很小。所以说三极管饱和后G、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。 2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流IB=0,此时集电极IC=ICEO≈0(ICEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。 三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈ECO 可见,UBE≤0,UBC1V 以上,UBE>0,UBC 二、确定电路中三极管的工作状态 下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。 例题:图2 所示放大电路中,已知EC=12V,β=50,Ri=1kΩ,Rb=220kΩ,Rc=2kΩ,其中Ri 为输入耦合电容在该位置的等效阻抗。问:1.当输入信号最大值为+730mV,最小值为-730mV 时,能否经该电路顺利放大?2.当β=150 时,该电路能否起到正常放大作用?

三极管三种电路的特点

三极管三种电路的特点 1.共发射极电路特点 共射极电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相, 低频性能差,适用于低频、和多级放大电路的中间级 共发射极放大电路 共发射极的放大电路,如图2所示。 图2 共发射极放大电路 因具有电流与电压放大增益,所以广泛应用在放大器电路。其电路特性归纳如下:输入与输出阻抗中等(Ri约1k?5k ;RO约50k)。 电流增益: 禺*=令》1 电压增益: 一T一〒7 瓦 负号表示输出信号与输入信号反相(相位差180°。 *卫二比j '丄=仔 功率增益: 功率增益在三种接法中最大。 共发射极放大电路偏压

V : 输入信号 图4自给偏压方式 又称为基极偏压电路,最简单的偏压电路,稳定性差,容易受B 值的变动影 响,温度每升高10C 时,逆向饱和电流ICO 增加一倍。温度每升高「C 时,基射 电压VBE 减少2.5mV ,B 随温度升高而增加(影响最大)。 O VCC 图5带电流反馈的基极偏压方式 三极管发射极加上电流反馈电阻,特性有所改善,但还是不太稳定 Cl ?tr Vo 3

图6分压式偏置电路 此为标准低频信号放大原理图电路,其R1 (下拉电阻)及R2为三极管偏压电阻,为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意:三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真 , 注意C1及C3的容量大小对低频信号(尤其是脉波)有影响?在R4并联一个C2,放大倍数就会变大。而在交流时C2将R4短路。 为什么要接入R1及R4? 因为三极管是一种对温度非常敏感的半导体器件,温度变化将导致集电极电 流的明显改变。温度升高,集电极电流增大;温度降低,集电极电流减小。这将造成静态工作点的移动,有可能使输出信号产生失真。在实际电路中,要求流过R1和R2串联支路的电流远大于基极电流IB。这样温度变化引起的IB的变化,对基极电位就没有多大的影响了,就可以用R1和R2的分压来确定基极电位。采用分压偏置以后,基极电位提高,为了保证发射结压降正常,就要串入发射极电阻R4。 R4的串入有稳定工作点的作用。如果集电极电流随温度升高而增大,则发射极对地电位升高,因基极电位基本不变,故UBE减小。从输入特性曲线可知,UBE的减小基极电流将随之下降,根据三极管的电流控制原理,集电极电流将下降,反之亦然。这就在一定程度上稳定了工作点。分压偏置基本放大电路具有稳定工作点的作用,这个电路具有工作点稳定的特性。当流过R1和R2串联支路的电流远大于基极电流IB (一般大于十倍以上)时,可以用下列方法计算工作

半导体三极管及放大电路基础

半导体三极管及放大电 路基础 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体三极管及放大电路基础 第一节学习要求 第二节半导体三极管 第三节共射极放大电路 第四节图解分析法 第五节小信号模型分析法 第六节放大电路的工作点稳定问题 第七节共集电极电路 第八节放大电路的频率响应概述 第九节本章小结 第一节学习要求 (1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。 (2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。 (3)掌握频率响应的概念。了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。 第二节半导体三极管(BJT) BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同 于单个 PN结的特性而具有电流放大,从而使PN结的应 用发生了质的飞跃。本节将围绕BJT为什么具有电流放 大作用这个核心问题,讨论BJT的结构、内部载流子的 运动过程以及它的特性曲线和参数。 一、BJT的结构简介 BJT又常称为晶体管,它的种类很多。按照频率分,有高频管、低频管;按照功率分,有小、中、大功

率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。但从它们的外形来看,BJT都有三个电极,如图所示。 图是NPN型BJT的示意图。它是由两个 PN结的三层半导体制成的。中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。虽然发射区和集电区都是N 型半导体,但是发射区比集电区掺的杂质多。在几何尺寸上,集电区的面积比发射区的大,这从图也可看到,因此它们并不是对称的。 二、BJT的电流分配与放大作用 1、BJT内部载流子的传输过程 BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。 在外加电压的作用下, BJT内部载流子的传输过程为: (1)发射极注入电子 由于发射结外加正向电压V EE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射

实验二 三极管基本放大电路(指导书)

实验二三极管基本放大电路 一、实验目的 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 掌握放大器电压放大倍数、及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 共射放大电路既有电流放大,又有电压放大,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数来实现,负载电阻R L的变化不影响电路的静态工作点,只改变电路的电压放大倍数。该电路输入电阻居中,输出电阻高,适用于多级放大电路的中间级。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时V0的负半周将被削底;如工作点偏低易产生截止失真,即V0的正半周被缩顶(一般截止失真不如饱和失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一不定期的V i,检查输出电压V0的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。工作点偏高或偏低不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。 图2-1 基本放大电路实验图 三、实验内容与步骤 1.调整静态工作点:按图连线,然后接通12V电源,调节信号发生器的频率和幅值调切旋 钮,使之输出f=1000Hz,Ui=10mV的低频交流信号,然后调节电路图中Rp1和Rp2使放大器输出波形幅值最大,又不失真。 2.去掉输入信号(最好使输入端交流短路),测量静态工作点(Ic,U ce,U be) 3.测量电压放大倍数:重新输入信号,在波形不失真的条件下用交流毫伏表测量下述二种 情况下的U0值(加入信号和无信号),此时的U0和U i相位相反。 4.测量幅频频特性曲线:保持输入信号的幅度不变,改变信号源频率f,按照下面的的频率 要求逐点测出相应的输出电压U0,记入下表,并且画出幅频特性曲线。

三极管放大电路及其分析方法

三极管电路放大电路及其分析方法 一、教学要求 1.重点掌握的内容 (1)放大、静态与动态、直流通路与交流通路、静态工作点、负载线、放大倍数、输入电阻与输出电阻的概念; (2)用近似计算法估算共射放大电路的静态工作点; (3)用微变等效电路法分析计算共射电路、分压式工作点稳定电路的电压放大倍数A u和A us,输入电阻R i和输出电阻R0。 2.一般掌握的内容 (1)放大电路的频率响应的一般概念; (2)图解法确定共射放大电路的静态工作点,定性分析波形失真,观察电路参数对静态工作点的影响,估算最大不失真输出的动态范围; (3)三种不同组态(共射、共集、共基)放大电路的特点; (4)多级放大电路三种耦合方式的特点,放大倍数的计算规律。 3.一般了解的内容 (1)共射放大电路f L、f H与电路参数间的定性关系,波特图的一般知识。多级放大电路与共射放大电路频宽的定性分析; (2)用估算法估算场效应管放大电路静态工作点的方法。 二.内容提要 1.共射接法的两个基本电路 共射放大电路和分压式工作点稳定电路是模拟电路中最基本的单元电路。学习这两种基本电路的分析方法是学习比较复杂的模拟电路的基础。 2.两种基本分析方法——图解法和微变等效电路法 在“模拟电路”中,三极管是非线性元件,因此不能简单地采用“电路与磁路”课中线性电路地分析方法。图解法和微变等效电路法就是针对三极管非线性的特点而采用的分析方法。 3.放大电路的三种组态——共射组态、共集组态和共基组态 由于放大电路输入、输出端取自三极管三个不同的电极,放大电路有三种组态——共射组态、共集组态和共基组态。由于组态的不同,其放大电路反映出的特性是不同的。在实际中,可根据要求选择相应组态的电路。 4.两种放大元件组成的放大电路——双极型三极管放大电路和场效应管放大电路 一般来说,双极性三极管是一种电流控制元件,它通过基极电流i B的变化控制集电极电流I c的变化。而场效应管是一种电压控制元件,它通过改变栅源间的电压u GS来控制漏极电流i D的变化;其次,双极性三极管的输入电阻较小,而场效应管的输入电阻很高,静态时栅极几乎不取电流。由于它们性能和特点的不同,可根据要求选用不同元件组成的放大电路。 5.多级放大电路的三种耪合方式——阻容耦合、直接耦合和变压器耦合 将多级放大电辟连接起来的时候,就出现了级与级之间的耦合方式问题。通过电阻和电容将两级放大电路连接起来的方式称为阻容耦合。由于电容的作用,

电子专业都应知道的_三极管应用电路

电路图中的放大电路 能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。 一、放大电路的用途和组成 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中频和高频:按输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析,二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 (1)共发射极放大电路 图1(a)是共发射极放大电路。C1是输入电容,C2是输出电容,三极管VT就是起放大作用的器件,RB是基极偏置电阻,RC是集电极负载电阻。1、3端是输入,2、3端是输出。3端是公共点,通常是接地的,也称“地”端.静态时的直流通路见图1(b),动态时交流通路见图1(c)。电路的特点是电压放大倍数从十几到一百多,输出电压的相位拥输入

电压是相反的,性能不够稳定,可用于一般场合。 (2)分压式偏置共发射极放大电路 图2比图1多用3个元件。基极电压是由RBl和RB2分压取得的,所以称为分压偏置。发射极中增加电阻RE和电容CE,CE称交流旁路电容,对交流是短路的,RE则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是RB2上电压和RE上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 (3)射极输出器 图3(a)是一个射极输出器。它的输出电压是从射极输出的。图3(b)是它的交流通路图,可以看到它是共集电极放大电路。这个图中,晶体管真正的输入是Vl和V。的差值,所以这是一个交流负反馈很深的电路,由于很深的负反馈,这个电路的特点是:电压放大倍数小于1而接近1,输出电压和输入电压同相输入阻抗高输出阻抗低,失真小,频带宽,

半导体三极管及其放大电路练习及答案

半导体三极管及其放大电路 一、选择题 1.晶体管能够放大的外部条件是_________ a 发射结正偏,集电结正偏 b 发射结反偏,集电结反偏 c 发射结正偏,集电结反偏 答案:c 2.当晶体管工作于饱和状态时,其_________ a 发射结正偏,集电结正偏 b 发射结反偏,集电结反偏 c 发射结正偏,集电结反偏 答案:a 3.对于硅晶体管来说其死区电压约为_________ a 0.1V b 0.5V c 0.7V 答案:b 4.锗晶体管的导通压降约|UBE|为_________ a 0.1V b 0.3V c 0.5V 答案:b 5. 测得晶体管三个电极的静态电流分别为 0.06mA,3.66mA 和 3.6mA 。则该管的β为_____ a 40 b 50 c 60 答案:c 6.反向饱和电流越小,晶体管的稳定性能_________ a 越好 b 越差 c 无变化 答案:a 7.与锗晶体管相比,硅晶体管的温度稳定性能_________ a 高 b 低 c 一样 答案:a 8.温度升高,晶体管的电流放大系数 ________ a 增大 b 减小 c 不变 答案:a 9.温度升高,晶体管的管压降|UBE|_________ a 升高 b 降低 c 不变 答案:b 10.对 PNP 型晶体管来说,当其工作于放大状态时,_________ 极的电位最低。 a 发射极 b 基极 c 集电极 答案:c 11.温度升高,晶体管输入特性曲线_________ a 右移 b 左移 c 不变 答案:b 12.温度升高,晶体管输出特性曲线_________ a 上移 b 下移 c 不变 答案:a 12.温度升高,晶体管输出特性曲线间隔_________ a 不变 b 减小 c 增大 答案:c 12.晶体管共射极电流放大系数β与集电极电流Ic的关系是_________ a 两者无关 b 有关 c 无法判断 答案:a 15. 当晶体管的集电极电流Icm>Ic时,下列说确的是________ a 晶体管一定被烧毁 b 晶体管的PC=PCM c 晶体管的β一定减小 答案:c

三极管基本放大电路的三种组态

除去信号的输入、输出端。另一端就是共极三极管基本放大电路的三种组态 组态一:共射电路 组态二:共集电极电路 共集电极组态基本放大电路如图所示。

(1)直流分析 (2)交流分析 放大倍数/输入电阻/输出电阻

组态三:共基极放大电路共基组态放大电路如图

交流、直流通路 微变等效电路 共基极组态基本放大电路的微变等效电路 性能指标

三种组态电路比较 放大电路的三种基本组态 2.6.1共集电极放大电路 上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。又由于输出信号从发射极引出,因此这种电路也称为射极输出器。 下面对共集电极放大电路进行静态和动态分析。 一、静态工作点 根据上图(a)电路的基极回路可求得静态基极电流为

(2.6.1) 二、电流放大倍数 由上图(b)的等效电路可知 Ai= - (1+β) (2.6.4) 三、电压放大倍数 由上图(a)可得 Re’=Re//RL 由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。 四、输入电阻 由图2.6.1(b)可得 Ri=rbe+(1+β)Re’ 由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。 五、输出电阻 在上图(b)中,当输出端外加电压U。,而US=0时,如暂不考虑Re的作用,可得下图。 由图可得

如何理解晶体管的三种基本特性

如何理解晶体管的三种基本特性 电子线路中晶体三极管是一个核心知识点,对三极管的认识程度直接影响对电路的理解和应用。而对一个初学者来说,晶体三极管的基本特性又是一个学习的难点,因为三极管的工作原理十分复杂,涉及半导体微观层面的诸多概念与因素。如何有效地理解三极管的基本工作原理,是电子线路入门的一个必须解决的问题。 替换理解是对复杂整体认识的一个有效方法。所谓替换理解,是指用我们熟知的现象去理解我们难以根本认识的内容。例如光在镜面上的反射是一个十分复杂的问题,而且我们很难从微观的角度来认识它,牛顿则将光想象成由若干弹性小球组成,并将这些弹性小球叫做“光子”,于是光的反射就可以理解为弹性小球撞击到平面后被反弹回去,从而从一个方面解释了光在镜面上的反射。虽然光子并非弹性小球,但这光的反射这个现象中,这样理解却是合理的,这就是替换理解。 一.三极管的水流模型与三端电流的关系 在三极管基本特性的理解中,我们也可以用这样的方式来理解。为了详细地说明这一问题,我们先做一个小装置: 我们先用一根直径大一点的水管,我们把它叫做主管,在它的中央横断地开一个槽,但不要锯断它,并在这个槽中嵌入一块厚度与槽宽相等的闸板,即闸板,如图1所示: 图1 带有闸板的水管(剖面) 这样一来就形成了一个阀:将闸板推进去,阀就关小,推到底后阀就关死了;将闸板拉出来阀就开大,拉得越多就开得越大,全部拉出来后阀就完全打开了。我们将这根水管的上端(入水口)叫做“集电极”,用“C”表示,而将管的下端(出水口)叫做“发射极”,用“E”表示。 下面我们再找一根直径较小的水管,我们且叫它做支管,将它弯曲后焊在主管上,

如图2所示: 图2 增加一根小管(剖面) 显然,从支管也可以注入水,这些水也会从主管的下端流出,如果我们将支管的入口叫做“基极”,用“B ”来表示,应可以得出结论:E 端流出的水是C 端和B 端注入水的总和,如果我们用“I ”来表示水流,即为: B C E I I I += 下面我们再做一点复杂一些装置在上面:我们在支管上做一个水车,如果支管有水流I B 流过,水车就会逆时针旋转。我们再在水车的轴上固定上一根细绳,当水车旋转时就会将细绳缠绕在轴上,同时在细绳的另一头形成拉力。如果将细绳的另一头拴在闸板上,水车的转动就会将闸板拉出来,从而将阀打开。为了保证在没有水时阀是关闭的,可以用两根弹簧将闸板压进管槽内,如图3所示。

三极管放大电路基本原理

三极管放大电路基本原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。以NPN三极管的共发射极放大电路为例来说明三极管放大电路的基本原理。 以NPN型硅三极管为例,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。 三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因: 首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必 须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小

的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。 另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前。 但是在实际使用中要注意,在开关电路中,饱和状态若在深度饱和时会影响其开关速度,饱和电路在基极电流乘放大倍数等于或稍大于集电极电流时是浅度饱和,远大于集电极电流时是深度饱和。因此我们只需要控制其工作在浅度饱和工作状态就可以提高其转换速度。对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN 的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里

三极管与放大电路基础教案..

第 2 章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引 导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个 PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和 PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

1

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流( 基极电 流 I B、集电极电 流 I C、发射极电 流 I E ) 之间的关系 为: I E I B I C 、I C、I C I B I B 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安 特性曲线。 1.输入特性曲线 输入特性曲线是指当集- 射极之间的电压V CE为定值时,输入回路中的基极电流I B与加 在基 - 射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集 - 射极间的 电压 V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区: I B 0 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状 态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。 三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数、,集电极 - 基极反向饱和电流I CBO,集电极 - 发射极反向饱和电流I CEO。 2. 极限参数:集电极最大允许电流I CM、集电极 - 发射 极反向击穿电压V(BR ) CEO、集电

相关主题
文本预览
相关文档 最新文档