当前位置:文档之家› 飞机总体设计课程设计

飞机总体设计课程设计

飞机总体设计课程设计
飞机总体设计课程设计

国内使用的喷气式公务机设计

班级:0111107

学号:011110728

姓名:于茂林

一、公务机设计要求

类型

国内使用的喷气式公务机。

有效载重

旅客6-12名,行李20kg/人。

飞行性能:

巡航速度:0.6 - 0.8 M

最大航程:3500-4500km

起飞场长:小于1400-1600m

着陆场长:小于1200-1500m

进场速度:小于230km/h

据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。

根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。

由此,从中选出一些较主流机型作为参考

二、确定飞机总体布局

1、参考机型

庞巴迪航空:里尔45xr、里尔60xr

巴西航空:飞鸿300、

塞斯纳航空:奖状cj3

机型座位数巡航速度

M

起飞场长

m

着陆场长

m

航程km

最大起飞

重量kg

里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择:

正常式

前三点起落架

T型平尾/ 高置平尾+ 单垂尾

尾吊双发涡轮喷气发动机/ 翼吊双发喷气发动机/ 尾吊双发喷气发动机

小后掠角梯形翼+下单翼/ 小后掠角T型翼+中单翼/ 直机翼+上单翼

3、最终定型及改进

1)正常式、T型平尾、单垂尾

①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化

②“失速”警告(安全因素)

③外形美观(市场因素)

④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大

2)小后掠角梯形翼(带翼梢小翼)、下单翼

①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。

②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。

③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。

3)尾吊双发涡轮喷气发动机,稍微偏上

①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。

②机翼升力系数大

③单发停车时,由于发动机离机身近,配平操纵较容易;

④起落架较短,可以减轻起落架重量。

⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。

4)前三点起落架,主起落架安装在机翼上

①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。

②具有起飞着陆时滑跑的稳定性。

③飞行员座舱视界的要求较容易满足。

④可使用较强烈的刹车,缩短滑跑距离。

4、三视图草图

三、主要参数的确定

1、估计巡航阶段燃油系数

在重量估算中,最关键的是估算巡航阶段燃油系数。 根据设计要求:

--航程Range=4000km; --巡航速度:M=0.7; --巡航高度:12000m ;

--声速:a=576.4kts(296.5m/s);

预估数据(参考统计数据):

--耗油率C=0.6(涵道比假设为6) --升阻比L/D=14.6

根据Breguet 方程:

ln

initial final

W Range a L W M C D =

???? ???????

计算得:

246.1W =W final

initial

所以:W fuel cruise /W to =1-1/1.246=0.197

燃油系数主要由任务剖面中巡航阶段确定,其它阶段(除巡航阶段以外)的燃油系数为:

参照算例中各阶段燃油系数

2165

.0003.00197.0013.0002.00005.0001.0=++++++=W

W

to

fuel

2、估算飞机最大起飞重量(lb ) 每位乘客80kg 并携带20kg 行李

Wto 60,000 35,000 10,000 Wfuel 12,990 11,077.5 2,165 Wpayload 2,425 2,425 2,425 Wempty

44,585

21,497.5

5,140

最终求得的重量数据:

重量lb 比例Wto 23500 1

Wfuel 5087.75 0.2165

Wpayload 2425 0.1032

Wempty 15987.25 0.6803

3、估算推重比和翼载荷

15002000

2500

3000

3500

4000

4500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

翼载

荷(N/m

2)

线

起飞

平衡场

抗风

求进

近速

陆距

二阶段爬升

巡航1巡航

2

根据界限线图,选择如下技术指标:

--翼载荷:W/S=3400N/m2

--推重比:T o/W to=0.35(10N/kg)

计算得:

--机翼面积:S=31.35m2

--发动机推力:T o=37307.78N

--单发推力:T'=18653.89N

四、发动机选择

根据飞行高度和飞行速度选择发动机类型

根据巡航马赫数M=0.7,飞行高度12000m,选择涡轮风扇发动机。

根据初始参数,查找出3个系列5种型号的发动机,简介如下:

(一)、TFE731系列

由美国霍尼尔有限公司研制的双转子齿轮传动涡轮风扇发动机。该型发动机按照喷气公务机的主要要求(噪声小、性能好、经济、安全可靠)制造。它的设计点为H=12200m,M=0.8。并同时将发动机的维修性与性能和质量放在同等重要的位置。

TFE731—4 (起飞推力1815daN) 曾用于“奖状”Ⅶ生产型公务机。

TFE731—5 (起飞推力1915daN) 拥有更高的涵道比风扇,采用了新型的低压涡轮驱动。曾用于“霍克”125—800型飞机。

TFE731—40—200G (起飞推力1890daN) 采用TFE731—5的风扇,用了新的高压气机,高压涡轮和齿轮箱。曾用于”湾流”100型飞机。

(二)、PW500系列

由加拿大普拉特·惠特尼公司研制的一种大涵道比涡轮风扇发动机。它继承了JT15D发动机的优点,在可靠性、寿命方面也比较好。

PW545B (起飞推力1775daN) 该系列最新型的一台发动机,曾用于塞斯纳“奖状”XLS飞机。(三)、PW300 系列

同为普·特公司研制的一种双转子中等涵道比涡轮风扇发动机。它的研制主要针对那种高速、低成本、跨大陆飞行的公务机。

PW305A (起飞推力2081daN) 曾用于庞巴迪公司的“利尔喷气”60飞机。

型号推重比

单位迎面推

力(daN/

m2)

耗油

A涵道比

B巡航耗油

率(da

N·h)

可靠维修性

及寿命

价格($)

TFE731-4(1815daN)4.97 4504

A:2.80

B:0.78

性能安全可

靠,使用寿命

120~1

30万

TFE731-5

(1915da

N)5.05 4284

A:3.84

B:0.79

同一系列,性

能上有改进

147.5万

TFE731-4

0-200G(1890da

N)4.76 4690

A:2.9

B:0.74

同一系列,性

能上有改进

145~1

50万

PW545B

(1775da

N)4.7 3420 A:4.1

易维修,翻修

时间长,使用

寿命长

98万

PW305A

(2081da

N)5.25 2816

A:4.3

B:0.69

使用成本低,

可靠性高

145万

参照以上表格的分析,在推重比和可靠维修性方面,五种发动机都不错。

对于PW305A,虽然在推重比和耗油方面有着优越的特性,但其迎面推力还是比较低的,不能把它放入优选的行列。PW545B的静推力较小,因此以上两台发动机作为在推力需要较大调整时的选择对象。

TFE731—40—200G的推重比在三个中低了一点儿,但它有着不俗的静推力和耗油率,这也是我们很需要的。所以将TFE731—40—200G作为首选对象

所以将TFE731—40—200G作为首选对象,其它两台可作为适当调整备选对象。在今后的设计过程中将更适合的发动机装配给飞机。

技术数据

最大起飞推力(daN)

TFE731—4 1815

TFE731—5 1915

TFE731—40—200G 1890

巡航推力(H=12200m,M=0.8,daN)

TFE731—4 413

TFE731—5 425

TFE731—40—200G 449

起飞耗油率(kg/(daN·h))

TFE731—5 0.494

TFE731—40—200G 0.481

巡航耗油率(kg/(daN·h))

TFE731—4 0.786

TFE731—5 0.792

TFE731—40—200G 0.748

推重比

TFE731—4 4.97

TFE731—5 5.05

TFE731—40—200G 约4.76

空气流量(海平面,静态,kg/s)

TFE731—5 64.86

TFE731—40—200G 65.77

涵道比

TFE731—5 3.48

TFE731—40—200G 2.90

总增压比

TFE731—5 17.5

TFE731—40—200G 22

涡轮进口温度(最大起飞状态,℃)

TFE731—5 952

TFE731—40—200G 1022

进口直径(mm)

TFE731—4 716

TFE731—5 754

TFE731—40—200G 716

宽度(mm)

TFE731—4 869

TFE731—5 858

TFE731—40—200G 847

长度(mm)

TFE731—4 1464

TFE731—5 1652

TFE731—40—200G 1547

干质量(kg)

TFE731—4 373

TFE731—5 387

TFE731—40—200G 406

五、机身外形设计

1、中机身设计

飞机典型座椅宽度

座椅宽度:23英寸

典型过道宽度:19英寸

座椅与机舱边距:10英寸

在完成客舱布置基础上,将客舱内壁向外增加100-140mm 公务机底板下无货运集装箱

座椅排距:38英寸(9人5排) 厨房卫生间(客舱后部)

考虑到座椅和厨卫,加间距4英寸

考虑公务机的舒适性,在第一排前部布置一张桌子,同时左侧空间用于布置乘客登机门,位于机身左侧,桌子长度取20英寸。 故中机身总长度:

英寸

246365*3820L

=++=

2、前机身设计

参考同类飞机前机身长径比,确定本机前机身长径比为1.9 前机身长度:

英寸

17195*8.1L

==

3、后机身设计

参考同类飞机后机身长径比,确定本机后机身长径比为3 后机身长度:

英寸

28595*3L

==

尾部上翘角:11°

机身总长度:L=702英寸 长径比:λ=7.4

六、机翼外形设计

1、翼型选择 设计升力系数:

L

C S v L W ??==2

21ρ

q

S W C L 1

)(

?= 在初步设计时,近似认为

c l

l

C =

C l 三维机翼的升力系数 c l 翼型的升力系数

--翼载荷:Wto/S=3400N/m2 ; --机翼面积:S=31.35m2; --巡航速度:M=0.7; --巡航高度:12000m ; 得到升力系数

511.0C =l

根据设计升力系数选出合适的翼型 采用NACA6翼型,参考翼型数据网站 由后续的相对厚度范围10-16%

选择原则:

1、翼型在其设计升力系数附近,具有最有利的压力分布,其阻力系数最小,升阻比也比较大。

2、在设计升力系数附近阻力越小越好。

3、较好的失速特性:最大升力系数较高,失速过程比较缓和。

4、俯仰力矩系数应较低或中等大小为宜,以防止过高的配平阻力;

5、翼型的结构高度尽可能大,以利于减轻结构重量和内部布置; 综上,选择NACA 65(1)-412

2、机翼平面形状的设计

①展弦比AR

机翼的展弦比AR=l2/S 大小对机翼的诱导阻力系数、零升阻力系数和升力线斜率方面的气动特性都有影响,总的来说,亚声速飞机适宜采用较大的展弦比,公务机5.0-8.8。

飞机类型展弦比(AR)

轻型飞机 5.0~8.0

涡桨支线客机11.0~12.8

公务机 5.0~8.8

喷气运输机7.0~9.5

超声速战斗机 2.5~5.0

AR=8

算的L=15.8m

②梯形比λ

当λ=0.4时,升力分布接近椭圆形,故许多低速飞机η为0.4左右;

λ 减小,可减轻机翼结构重量;

λ减小,有利于布置起落架;

λ 小对防止翼尖失速不利。

飞机类型梯形比

轻型飞机 1.0~0.6

涡桨支线客机0.6~0.4

公务机0.6~0.4

喷气运输机0.4~0.2

超声速战斗机0.5~0.2

λ=0.4

③后掠角χ

对于亚声速飞机:Λ=0或Λ< 15o (用于调整重心)

对于高亚声速飞机:Λ= 25~;可以提高临M界数,延缓激波的产生。

虽然是亚声速飞机,但是参照所已有机型,将后掠角适当增加

χ1/4=25°

④相对厚度 喷气运输机机翼厚度的典型分布

由上图,翼根处(t/c)=15%,转折处(t/c )=12%,翼尖处(t/s )=11%,喷气运输机和公务机的平均相对厚度一般在10%至12%之间,取平均相对厚度为12%。 阻力发散马赫数0.775>0.7, 符合要求。 ⑤机翼参数 面积S=31.35m2 展长L=15.8m 弦长

m 83.2)]λ1(/[*2=+=l S c 根

m 132.1λc ==根尖

c

气动弦长 2.10m λ)1/()λ1()3/2λ2

=+++=c root MAC (

前缘后掠角

520.0λ)]λ)/[AR(11(ΛΛ

4

/1=+-+=tg tg 前缘

平均气动弦到翼根距离386

.3λ)

(1)

λ21()

6

(Y =++=b

机翼平面图如图:

3、机翼其他布局参数

①安装角 翼型迎角5°时CL=0.511可取,iw=5°

w

L Des L i C C ?=α,

(CL ,Des -巡航时所需的升力系数) 统计值

喷气客机: 1o~5.3o 战斗机: -1o~3.6o ②扭转角

采用几何扭转-负扭转:从翼根至翼尖, iw 逐渐减小。 公务机、喷气运输机:负扭转角 0o~7o 取扭转角为4° ③上反角

在概念设计阶段,主要依据统计值。统计值的大小与飞机布局型式有关。 亚声速后掠翼+下单翼,可取3°-7°

对于“T”平尾和下单翼布局,上反角为3o左右。 故取上反角3°

飞机类型 下单翼 中单翼 上单翼 直机翼 5o~7o 2o~4o 0o~2o 亚声速后掠翼 3o~7o -2o~2o -5o~2o 超声速后掠翼

0o~5o

-5o~0o

-5o~0o

④翼梢小翼

采用翼梢小翼,可以减少翼梢外气流漩涡效应,对翼梢处的旋涡进行遮挡,翼梢小翼设计成有弯度,翼梢涡在小翼产生升力,这个升力方向向前,可减小总阻力。 ⑤內翼后缘拓展

目的:增加根部弦长,便于起落架的布置;可降低根部弦剖面升力系数,便于气动设计。 ⑥增升装置

△ C lmax 起飞 = 1.07 (C lmax 起飞 - C Lmax )=1.37 △ C lmax 着陆 = 1.07 (C lmax 着陆- C Lmax )=1.37

根据计算结果选择襟翼类型和尺寸,同时参考统计数据,涡桨支线客机、公务机和喷气运输机一般采用双缝襟翼。

故采用双缝襟翼---襟翼相对弦长C襟/C=35% 襟翼展长L襟=5m

襟翼型式相对弦长偏转角△CLmax对应Clmax

的α

开裂式0%~25% 50°~60°0.6-0.8(α=13-14°)后退式30%~40% 40°~50° 1.3~1.4(α=13°)双缝式30%~40% 40°~50° 1.4~1.5(α=12°)多缝式35%~45% 50°~60° 1.6~1.8(α=12°)⑦副翼

参考统计数据:

相对面积S副/S = 0.06 相对弦长c副/c = 0.25

相对展长L副/L = 0.35

偏角副= 25°

统计数据:副翼的相对展长与相对弦长

⑧扰流片

功用:

当非对称打开时,可产生滚转力矩。

当在飞行中对称打开时,可增加阻力,起减速作用和增加下降速率。

当在着陆时对称打开时,可增加阻力,缩短着陆距离。

公务机和喷气运输机一般配置有绕流板。

位置:

一般位于后缘襟翼的前面

⑨机翼梁

在概念设计阶段需定义机翼前、后粱的位置。

确定前、后粱位置要考虑的因素:

结构高度

襟翼尺寸和操纵机构所需的空间

副翼尺寸和操纵机构所需的空间

燃油容积

典型的前、后粱位置

前粱:16%~22%弦长处,取20%

后梁: 60%~75%弦长处,取65% ⑩燃油容积

通常公务机和运输机的机翼要容纳所有的燃油。

燃油一般装入由前、后粱和蒙皮上表面和下表面构成的空间内。 燃油容积近似计算:

Kg AR c t bS 31.2254/)0.49λλ89.01)(/(4202=+-

符合要求。 ?机翼纵向位置初步确定 X .25 m.a.c =56%*L Fus =9.99m

七、尾翼外形设计

1、平尾容量

纵向机身容量参数:

58

.12.1035.31/83

.17413.2c )*(*/))(2

2fus ==w w fus S L W (

其中,

W fus 最大机身宽度 L fus 机身长度 S W 机翼参考面积 C W 机翼平均气动弦长 由纵向机身容量参数与平尾容量的关系:

公务机的重心变化范围为18%

可以得到平尾容量为V H =4.4*18%=0.792

2、垂尾容量

航向机身容量参数:

(H fus2)(L fus)/s w b w=0.210

其中H fus最大机身高度L fus机身长度S w机翼参考面积b w机翼展长由航向机身容量参数与垂尾容量的关系:

可以得到:垂尾容量Vv=0.09

3、预估尾力臂的长度

发动机安装在机身后部,尾力臂=(45-50%)L机身

取尾力臂L V=50%L FUS=8.915m

根据尾容量和尾力臂长度,计算平尾和垂尾的面积

平尾的面积:

V H=S H/S*l H/c

V H : 平尾容量

S H : 平尾面积可得S H=5.85m2;

S :机翼面积

l H:尾力臂

c :平均气动弦长

垂尾的面积

V V=S V/S*l V/b w

V V : 垂尾容量

S V : 垂尾面积

S:机翼面积可得S V =5m2;l V:垂尾力臂

b W:机翼翼展

4、确定平尾和垂尾的外形数据

由平尾外形数据统计值:

取展弦比AR=4;梯形比λ=0.40;升降舵弦长c e/c=0.35;相对厚度t/c=0.8;后掠角χ=32.5;

由公式可得平尾:

展长L=4.84;C根=1.73m;C尖=0.69m;MAC=1.29m;

由垂尾外形数据统计值:

取展弦比AR=1.0;梯形比λ=0.50;方向舵弦长c e/c=0.30;相对厚度t/c=0.8;后掠角χ=45°;

由公式可得垂尾:

展长L=2.24m;C根=2.98m;C尖=1.49; MAC=2.32m;

5、绘制平尾和垂尾的外形草图

平尾:

垂尾:

八、发动机短舱初步布置

已知:

风扇直径D F=0.847m;

涵道比μ= 2.90;

总压比OPR=22;

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

飞机总体设计大作业教学提纲

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20

飞机总体设计课程设计解析

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX

设计要求 一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度:M 0.78 –飞行高度:35000英尺 –航程:2800(nm) –备用油规则:5%任务飞行用油+ 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于250 (km/h)

飞机总体布局 一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

飞行器总体设计试题

一、填空题(25分,每空1分) 1. 飞机设计可分为3个阶段,分别是 (1) 、 (2) 、 (3) 。 2. 最重要的三个飞机总体设计参数是 (4) 、 (5) 、 (6) 。 3. 飞机空机重量可分为3部分,分别是 (7) 、 (8) 、 (9) ,飞机空机重量系数随起飞重量的增加而 (10) 。 4. 在飞机重心的第一次近似计算中,如果飞机重心不在规定的范围内,则须对飞机重心进行调整。调整飞机重心最常用的2种方法是 (11) 、 (12) 。 5. 超音速进气道的压缩方式有3种,分别是: (13) 、 (14) 和 (15) 。 6. 喷气式飞机在 (16) 状态下达到最远航程,此时其翼载荷为 (17) ;螺旋桨飞机在 (18) 状态下达到最远航程,此时其翼载荷为 (19) (假设飞机的极曲线为)。 7. 要缩短飞机起飞/着陆滑跑距离,可以采用 (20) 翼载荷 的方法。 8. 亚音速飞机的最大升阻比取决于 (21) 。 9. 进气道总压恢复系数是 (22) 与 (23) 之比。 10. 从飞机设计的角度来看,对发动机的主要设计要求可归结为2个方面,即要求发动机的 (24) 大和 (25) 大。 二、选择题(20分,每题1分,正确的选择“+”,错误的选择“-”) 1. 减小翼载荷对飞机的巡航性能有利。 2 0y x x C A C C ?+=

(+) (-) 2. 将喷气式发动机安装到飞机上,需要考虑装机修正和推进装置阻力。(+) (-) 3. 进气道的功用是将流入进气道的空气减速增压。(+) (-) 4. 机身结构重量大致与机身浸湿面积成正比。(+) (-) 5. 现代战斗机上常使用高涵道比的涡扇发动机。(+) (-) 6. 飞机起飞重量一定时,增加飞机的航程和航时会降低飞机的机动性。(+) (-) 7. 飞机的寿命周期成本包括研制成本和使用维护成本两部分。(+) (-) 8. 如技术水平一定,则飞机设计要求都要以一定的重量代价来实现。(+) (-) 9. 飞机的载油量是根据飞机所执行任务的任务剖面要求确定的。(+) (-) 10. 超音速飞行时,涡轮风扇发动机的耗油率小于涡轮喷气发动机。(+) (-) 11. 前三点式起落架几何参数选择时,应考虑的主要因素之一是防止飞机翻倒和防止飞机倒立。(+) (-) 12. 飞机起落架的重量一般占该机起飞重量的15%左右。(+) (-) 13. 雷达隐身飞机要求减小镜面反射和角反射器反射。(+) (-) 14. 按面积律设计的飞机能减小跨音速波阻。(+) (-) 15. 满足设计要求的起飞重量最小的飞机是设计先进的。(+) (-) 16. 设计要求不变时,结构重量增加1千克使飞机起飞重量也增加1千克。(+) (-)

飞行器设计与工程专业(卓越工程师)培养方案

飞行器设计与工程专业(卓越工程师)2017级本科培养方案一、专业简介 飞行器设计与工程专业依托航空宇航科学与技术学科及力学学科,将无人机、通用航空飞机、民用航空飞机、战斗机等飞行器作为重点对象,具有突出的专业特色。现具有专职教师9名,其中副教授2名,讲师7名,硕士生导师5名。近年来,完成多项省、市、国家级科研课题,完成航天科技集团、航天科工集团、中国商用飞机有限公司等重点专项课题,建立航空航天工程学部“创新飞行器设计实践基地,学生在实践基地完成创新型飞行器设计、制造和控制仿真等实践工作。 本专业注重工程教育与工程训练相结合,注重对学生创新精神和实践能力的培养,特别是在加强学生工程实践能力和综合能力培养方面取得了很好的实效,得到有关用人单位的高度评价。多年来招生和就业情况良好。 二、培养目标及服务面向 培养适应社会主义现代化建设和国家战略性航空航天产业迅猛发展需要的德、智、体、美等全面发展,具备较好的数学、力学基础知识和航空航天工程基本理论,具有较强的工程实践能力、技术创新意识、工程管理能力和综合素质的高级工程技术人员和研究人员。 毕业生应掌握空气动力、飞行器总体设计、强度分析、结构设计和飞行力学等方面的专业知识,熟悉间飞行器设计与制造相关领域的新技术,能够在航空航天企业、民航部门、科研院所、通用航空及相关领域中从事科研、设计、制造和开发等高级工程技术和管理方面的工作。 三、培养要求 1、具有较强的社会责任感、较好的人文素养和良好的职业道德,健全的人格和健康的体魄; 2、具有从事领域工作所需的自然科学知识和社会科学知识; 3、系统地掌握本专业领域宽广的基础知识,掌握飞行器设计基础、力学基础、机械设计、自动控制原理、电工与电子技术等方面的基础理论。 4、掌握本专业领域内所需的飞行器设计的空气动力、强度分析、结构设计和

A280-飞机总体设计-matlab-SRR-DT12-新型高超声速飞行器

飞机总体设计 新一代高超声速无人机——“赤隼” 第一阶段SRR总结报告 学院名称:航空科学与工程学院 专业名称:飞行器设计与工程 组号:DT12 组长:殷海鹏 2013 年 4月 1日

目录 一、任务陈述 (4) 二、市场需求 (4) 三、相关竞争实施方案 (5) 1. 天基信息系统 (5) 2. 空基侦查系统 (5) 四、运行理念 (6) 1. 潜在运用对象 (6) 2. 载荷能力 (6) 3. 典型任务剖面 (6) (1)任务剖面1(侦查过程中发现重要作战目标) (6) (2)任务剖面2(侦查过程中未发现重要作战目标) (6) 五、系统设计需求 (6) 1. 设计要求 (6) (1)X-43A (7) (2)X-51A (7) (3)HTV-2 (7) (4)HTV-3X (8) 六、新技术与新概念 (8) 1. 激光雷达 (8) 2. 气动布局 (8) 3.热防护 (8) 七、初始参数 (9) 方案一 (9) 方案二 (10) 八、人员分工 (10) 九、本阶段总结及下阶段任务计划 (11) 十、参考资料 (12)

图表目录 图1 天基信息系统 (5) 图2 空基侦察系统 (5) 图 3 X-43A (7) 图 4 X-51A (7) 图 5 HTV-2 (7) 图 6 方案一概念草图 (9) 图7 方案二概念草图 (10) 表 1 方案一初始参数 (9) 表 2 方案二初始参数 (10) 表 3 小组人员分工表 (10)

一、任务陈述 在新世纪的战争中,高超声速飞行器的优势主要体现在以下三个方面:首先是可以迅速打击数千或上万公里外的各类军事目标,大大地拓展了战场的空间。其次,突防能力更加强大,防空系统的拦截概率因反应时间太短而大幅度下降,具有较高的突防成功率。第三,超高速的飞行可以使得雷达难以探测,是一种新型的隐身方案。在新的战争形态中,信息战变得越发重要,侦查机是获取信息的重要来源,同时针对重要目标,在侦查同时具有一定攻击能力会使侦查起到意想不到的效果。从目前中国的空军机种来看,急需一款高超声速无人侦查机,此机最好还能有一定的攻击力,在侦查到重要目标时给予高效打击,对增强我国国防力量有重要作用。 二、市场需求 臭鼬工厂曾预测飞行器的下一场革命将来自于‘速度’,其速度优势会让各国现役防空导弹统统变成废铜烂铁。高超声速飞行器具有广阔的应用前景和巨大的军事价值。纵观21世纪的战场需求,高超声速飞行器已是不可缺少的攻击型和防御型兵器,世界各国都在加速这方面的研究工作,美国当前Ma为8-10的飞行器正在试验,而在2025年计划装备Ma为12-15的飞行器。澳、俄、法、德、日等很多国家对于高超声速飞行器的相关技术、功能、应用价值展开了积极的探讨与研究,并制定了一系列技术发展计划。从市场规模的角度来看,此类飞行器各国都有投入,但由于技术原因,规模较小而成功率偏低,在这种情况下,能率先设计生产出超高声速无人机的国家必能在错综复杂的国际环境下争取到先机,对于现在的世界态势和中国的防御性国防策略来说,我国对超高声速无人机有着极其重要的需求,比如马航失事后,如果能出动10Ma的侦察机进行快速侦查,必可得到最新最真实的情报,在新的战争理念中,被发现就是被消灭,侦察机与其他飞机相比必将会有着更高的军事地位。

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集: 二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波

阻 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ? ?? ? ? ??? ??= D L M C a R a n g e W W f i n a l i n i t i a l )l n ( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115 .1=f i n a l i n i t i a l W W

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞机原理与构造简答题答案

1、以双梁式直机翼为例,说明气动载荷是如何传递的。(18分) (1)蒙皮把气动载荷分别传给长桁和翼肋:蒙皮受气动吸力时,桁条和翼肋通过铆钉受拉对蒙皮提供支反力;蒙皮受气动压力时,蒙皮直接压在桁条和翼肋上,根据作用力与反作用力的原理,蒙皮把外载传递给了翼肋和长桁。 (2)长桁把自身承受的初始气动载荷传给翼肋 桁条与翼肋直接用角片(或间接通过蒙皮)相连,此时载荷方向垂直于长桁轴线,翼肋向长桁提供支持。此时,桁条可以看成支持在翼肋上的多点连续梁,长桁把气动载荷传递给了翼肋。至此,作用在蒙皮上的气动载荷直接或由长桁间接地全部传给了翼肋。 (3)翼肋把气动载荷转换成了垂直载荷和力矩,并相应的传到了梁腹板和组成封闭翼盒的各元件上 (4)翼梁将剪流往根部传递 由于梁腹板的抗弯能力比梁的缘条小的多,可略去其承弯能力,因而腹板以平板受剪的形式平衡,并将剪流往根部传递。最后在根部有机翼—机身对接接头提供垂直方向的支反力来平衡。 (5)蒙皮、腹板承受扭矩。机翼的第三个总体内力扭矩以蒙皮和腹板受剪的形式,向根部传递,总扭矩到机翼根部应通过加强肋将一圈剪流转换成适合于机翼—机身对接接头承受的一对集中力,再通过接头传给机身。 2、说明双梁式直机翼的普通翼肋的作用。(10分) (1)用以承受蒙皮传来的局部气动载荷 (2)把局部气动载荷转换成适合于主受力盒段各组成元件受力特性的载荷形式 (3)然后把它们传到这些主要元件上,向机翼根部传递,并进而通过对接接头传给机身 3、比较分析机翼各典型受力型式的结构受力特点。(20分) (1)梁式机翼:翼梁是主要受力构件,梁式机翼便于开口而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便;主要依靠翼梁承受弯矩(2)单块式机翼:上、下壁板为主要受力构件。这种机翼比梁式机翼的刚度特性好。同时,由于结构分散受力,能更好的利用剖面高度,在某些情况下材料利用率较高,重量可能较轻,缺点是不便于大开口。 (3)多腹板式机翼:主要由上、下蒙皮承受弯矩,与梁式、单块式机翼相比,材料分散性更大。一般来说,多腹板式机翼的刚度大,材料利用率也更好些,然而也存在类似单块式机翼的缺点 4、以桁条式机身后段上的一个垂直集中力Pz为例,分析说明载荷是如何传给机身结构,又是如何在机身结构中传递的?(10分) 桁条式机身的一个加强隔框和水平尾翼的接头相连接,该加强隔框受到由接头传来的P z力,该框受到P z力后,要有向上移动的趋势,对此桁条起不了直接的限制作用,而由蒙皮通过沿框缘的连接铆钉给隔框以支反剪流q。q的分布与机身的受力型式,更明确地说,是和该框平面处机身壳体上受正应力面积的分布有关。对桁条式机身,假设只有桁条承受正应力,而蒙皮只受剪切时,剪流沿周缘按阶梯形分布。若蒙皮也受正应力,则在两桁条间的剪流值将不是等值,而成曲线分布。又因为蒙皮与桁条连接,蒙皮因剪流q受剪时将由桁条提供轴向支反剪流平衡,也即蒙皮上的剪流q将在桁条上产生拉、压的轴向力。 作用在框平面内的集中力:(1)由加强框承受该集中载荷(2)加强框将集中力扩散,以剪流的形式传给蒙皮。(3)剪流在蒙皮中向机身中段传递时,其剪切内力通过蒙皮连续向前传递;而弯曲内力则通过桁条的轴向拉、压力向前传递。 5、阐述飞机起落架减震机构中油气式减震器工作原理。(12分)

飞行器总体设计教学大纲

《飞行器总体设计》教学大纲 学时数:64学时讲授 授课对象:飞行器设计工程专业大学本科 前期课程:理论力学、材料力学、结构力学、自动控制原理、空气动力学与 飞行性能计算 一、课程地位:本课程是飞行器设计工程专业必修的专业主干课,是一门综 合性、实践性很强的课程。它要求学生在学习本课程中总体设计知识的同时,紧 密结合前期课程中的基础理论,学习和掌握飞机总体设计的一般思路、原理和方法。促进学生把理论和知识、技能转化为飞机总体设计能力的结合点,是培养学 生分析工程实际问题和工程设计能力的重要环节。 二、课程任务:教授现代飞机总体的现代设计原理、综合设计思想理念和设 计技术;培养学生在综合运用广泛理论的基础上对工程实际问题的分析能力、分 析评价方法和设计能力,以及接受和适应深层次设计技术发展的能力;锻炼、培 养学生辩证逻辑思维、创造性思维和系统工程思维。 课程要求:在设计原理、概念、方法等基础方面强调系统全面、深刻精炼、 科学逻辑的有机结合,要使学生能真正掌握和运用;强调理论与实际的有机结合; 强调理论知识综合运用能力的培养,加强主动式教学,启发学生主观能动性,利 用现代技术的高信息含量使学生更多了解国内外飞机总体设计技术和前沿学科 的发展;最终使学生基本掌握现代飞机总体设计的先进设计思想、设计理论和设 计技术,着力于工程设计能力的培养。 三、课程内容: 第一章绪言(2) 1、理解“飞机总体设计”的基本含义,本课程的特点,以及学习本课程的 目的与任务。 2、初步建立如飞机设计阶段、特点等基本概念。 第二章设计的依据与参数选择(8) 1、了解飞机的设计要求 2、了解飞机的设计规范 3、熟悉飞机的总体技术指标 4、掌握飞机总体设计的参数选择

飞机降落曲线课程设计

中北大学理学院 课 程 设 计 题目:飞机降落曲线绘制 课程:数值分析

成员:1408024133 邢栋 1408024129 肖锦柽 目录 一.飞机降落问题介绍 (3) 二、问题分析 (4) 三.实验方法: (5) 方法一(多项式求解) (5) I思路 (5) II程序 (5) III运行结果 (6) IV图像 (6) 方法二(Hermite差值法) (7) I思路 (7) II程序 (7) III运行结果 (7) IV图像 (8) 四.实际案例: (8) 五.设计总结: (9) 六.心得体会: (10)

二.问题分析: 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线.根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线,已知飞机的飞行高度为1000m,开始降落时距原点的横向距离为12000m飞机的着陆点为原点O,且在整个降落过程中,飞机的水平速度始终保持为常数540km/h. 飞机降落图像有:

由此,我们假定降落曲线方程为:且该曲线方程满足已知条件

三.实验方法: 1.方法一(多项式求解): I思路.运用多项式求解方程组(Gauss),即将四个已知条件代入一般三次曲线方程中,得出关于a,b,c,d的新的方程组: II程序.在MATLAB中编写M文件如下: A=[12000^3,12000^2,12000,1;3*12000^2,2*12000,1,0;0 0 1 0;0 0 0 1]; b=[1000;0;0;0]; x=inv(A)*b y=poly2sym(x') x=0:12000; y=vectorize(y) y=eval(y);

新生研讨课心得总结报告及专业学习规划

新生研讨课心得总结报告及专业学习规划 工科四班刘一衡19720132203150 自开学以来,学校为帮助新生更好地了解自己的专业学科,更全面地适应大学学习生活,更有规划地完成自己的学业,更有方法地学习专业知识而开设了新生研讨课。在课上,不同专业的教授、老师以及学长学姐给我们新生答疑解难,让我们能够清楚地认识未来的专业领域,让我们在大一的时候能提早为今后的发展做好规划。与此同时,也让我们了解了自己专业的特点以及历史与前景,让我们对未来的学习充满信心。 至今已有八周的课时了,新生研讨课分别从以下这些方面进行授课:学习与生涯规划、学科定位、学科现状与前景――机械工程、测试技术与仪器、电气工程、飞行器动力工程,机电系与航空系本科教学计划、课程安排介绍、谈大学生创新实践能力的培养(2个系大创实施情况)。通过这八周的学习,也使得我们对学院有了更清楚的认识,对未来有了更完整的规划。 机电工程系 机电工程系是近年来顺应社会需求在厦门大学重新崛起的高层次的工科院系之一,现已拥有2个一级学科博士学位授权点(仪器科学与技术、机械工程), 5个硕士学位授权点(测试计量技术及仪器、精密仪器及机械、机械电子工程、机械制造及其自动化、机械设计理论)、2个工程硕士授权点(仪器仪表工程、机械工程)。本科专业设置横跨三个一级学科(仪器科学与技术、机械工程、电气工程)、多个二级学科。创办于 1940年秋的机电工程系,是由国际近代著名物理学家、卓越的电机工程学家、杰出教育家、厦门大学前校长萨本栋教授亲手创办起来的。创设时学生数为 9 人,至44 年度学生数猛增至 202人,是当时厦门大学师资水准最高、对新生最具吸引力的学系,连续几年为厦门大学第一大系。其时同步发展的厦门大学航空工程系是当时全国仅有的四所本科航空学系(清华大学、北洋大学、交通大学、厦门大学)之一。厦门大学为国内首次设置机电工程系与航空学系的院校。机电工程系因发展迅猛48 年又分为机械工程系和电机工程系。三系在 52---53 年全国院、系调整时分别并入清华大学、浙江大学、南京工学院、北京航空航天大学、南京航空航天大学。上述院校机电工程、航空工程方面创建初期骨干师资、优质生源有相当部分源自厦门大学。早期机电工程系、航空工程系办学成绩斐然,毕业10届学生遍布世界各地,不少系友成为享誉世界的杰出英才。中国两院院士艾兴、张启先、闵桂荣、阙端麟,国际电机及电子学会院士葛文勋、苏林翘,台湾新竹科学工业园区创始人、杰出教育家、实业家何宜慈,中国工程院院士陈一坚,印尼著名实业家邵建寅等是这期间系友中的佼佼者。 航空系 厦门大学航空教育始于1944年4月,是全国最早办有航空专业的几所高校之一。1951年,厦大航空系并入清华大学航空系,1952年又与其他学校的航空系合并成为北京航空学院(今北京航空航天大学)。1994年应厦门市政府要求,厦门大学恢复航空教育,以满足地方经济建设的需要。2008年4月6日厦门大学航空系复办揭牌。目前航空系拥有“航空宇航科学与技术”一级学科硕士学位授予权和“飞行器动力工程”本科专业。自1994年复办航空专业以来,迄今厦门大学已培养毕业于航空专业的硕士生和本科学生近600人、飞机维修工程专业专科学生约500人。厦门大学航空系拥有一支精干的教师队伍,目前在岗专任教师26人,其中教授5人(含3名博士生导师)、副教授9人;大多毕业于国内外航空院校,其中85%持有博士学位,1/3有海外留学或工作经历;40岁以下的年轻教师占70%,充满希望且具有巨大潜力。航空系现拥有福建省等离子体应用研究重点实验室,获赠一个波音747-400机头和一架波音747-200整机作为教具,还建设了一批教学科研实验室。例如,航电综合实验室、航空发动机实验室、飞行综合仿真实验室、无人机实验室、飞机结构实验室、PIV流体力学实验室、无损检测实验室、结构强度实验室、液压传动实验室、高低温环境实验室、微波暗

西北工业大学834飞机总体设计原理考研真题

2013西北工业大学834飞机总体设计原理真题回忆版 一、填空题(共40分,每空一分,只能记得以下题目,有些已经记不清了) 1.飞机的起飞重量可以分为_________、________、________,其中______重量系数 随起飞重量的增加而减小。 2.三种主要的飞机形式是________、_________、_________。 3.涡轮发动机可分为_________、_____________、__________、__________。 4.在飞机重心的第一次近似计算中,如果飞机中心不在规定的范围内,则须对飞机重 心进行调整,常用的两种方法是_________、__________。 5.超音速气流通过膨胀的流管时,流速_______,压强________。 6.飞机的阻力分为___________和_____________,形成的机理有_____、____、_____、_____、_______。 7.发动机的净装机推力应该在发动机的非装机推力的基础上,考虑两方面的修正,这 两方面的修正是_________、__________。 二、简答题(共30分,共六道,一道记不清了) 1、飞机总体布置的具体任务有哪些? 2、飞机设计要求包括哪些内容? 3、减小起飞滑跑距离的措施有哪些? 4、图解求平均气动弦长。 5、根据图片分析这款飞机(美国全球鹰)进气道设计的优缺点。 三、计算题(20分) 记不清了 四、分析论述题(30分) 请参考图片(),一架环球不着陆飞行飞机Global Fly,请综合描述其设计。(可从动力性能、结构、布局、气动等方面综合描述),(题目细节记不清了) 五、设计题(30分) 设计一架无人侦察机,要具备全天候飞行能力,夜间执行任务能力,隐身性能等,还有一些重量,飞行等性能要求。要画出飞机三面图。(题目细节记不清了)

150座客机总体设计毕业设计论文

南京航空航天大学课程作业题目150座客机总体设计负责人杨天鹏 负责人学号011110715 学院航空宇航学院 专业飞行器设计与工程 班级0111107 指导教师罗东明讲师 二〇一四年十一月

150座客机总体设计 摘要 本课程作业根据设计要求与适航条例进行了150座客机的总体设计,完成了包括全机布局设计,机身外形初步设计,确定主要参数,发动机选择等工作。实践了飞机总体设计的课程相关内容,为进一步进行飞机总体设计课程设计打下基础。 关键词:150座,客机,总体设计

目录 摘要 (ⅰ) 第一章设计要求 (1) 第二章全机布局设计 (2) 2.1 设计要求 (2) 2.2 飞机布局形式设计 (2) 2.3 飞机平尾设计 (3) 2.4 飞机机翼设计 (3) 2.5 机翼位置设计 (4) 2.6 发动机设计 (4) 2.7 起落架设计 (6) 2.8 小结 (6) 第三章机身外形初步设计 (7) 3.1 机身设计要求 (7) 3.2 中机身设计 (7) 3.3 前机身设计 (9) 3.4 后机身设计 (12) 3.5 小结 (12) 第四章飞机主要参数的确定 (13) 4.1飞机重量的估算 (13) 4.2 翼载荷与推重比设计 (15) 4.3 小结 (16) 第五章发动机设计 (18) 5.1 发动机设计要求 (18) 5.2 发动机类型的选择 (18) 5.3 发动机型号选择 (20) 组内分工 (21)

参考文献 (22) 致谢 (23)

第一章设计要求 要求设计150座民用客机,指标如下: (1)有效载荷:每人重75kg,每人行李总重20kg,机组7人,每人重85kg (2)巡航速度:Ma0.8 (3)飞行高度:35000英尺-41000英尺(10.668 km-12.4968km) (4)航程:5500km (5)备用油规则:5%任务飞行用油+ 1500英尺待机30分钟用油+ 200海里备降用油 (6)起飞场长:小于2200m (7)着陆场长:小于1700m (8)进场速度:70m/s 要求经济性高,安全性高,符合客户需求。

北航专业简介

1、材料科学与工程学院 现设二个本科专业、六个硕士点、六个博士点和一个博士后流动站。每年招收本科生150余名,硕士生160余名(包括本、硕、博连读),博士生40余名,博士后10余名,近年来还招收来华留学生20余名。 低年级除执行学校统一的教学计划外,还开设材料学科大类平台课。高年级按金属与陶瓷材料、特种功能材料与器件、高分子及复合材料、材料加工工程与自动化、腐蚀与防护等五个培养方向组织教学,为高质量的本科人才培养提供了可靠保证。拥有从本科生到博士后的全过程培养条件。 学院下设材料科学、材料物理与化学、材料加工工程与自动化、高分子及复合材料共四个系,拥有以中国工程院院士、著名失效分析专家钟群鹏教授。 材料学院重视人才培养,锐意加强教学改革,教授给本科生上课的比例超过了85%。学院重视学生思想政治工作和学生全面素质培养的结合,实行教授班主任制度,注重加强育人环境的建设,学风好,学生出国留学与上研的比例为全校最高的院系之一,2010年应届毕业生上研和出国的比例达到了70%,学生就业率达100%。 材料学院与英国曼切斯特大学材料系、英国伦敦大学QueenMary学院、英国拉夫堡大学实行联合办学,凡在学院就读的学生,均可采用3+2(国内三年,国外两年)或2+3(国内两年,国外三年)两种模式到上述学校就读,毕业合格后授予上述学校工学硕士学历学位证书。 2、电子信息工程学院 每年招收本科生270余名,硕士生240余名,博士生50余名,博士后10余名,来华留学研究生10余名。

学院下设信息与通信工程系、电子科学与技术系、光电与信息工程系。拥有以中国工程院院士张彦仲教授;学院具有信息与通信工程、电子科学与技术、交通工程、光学工程、生物医学工程5个一级学科博士授予权,拥有通信与信息系统、电磁场与微波技术两个国家重点学科。学院目前共设有13个硕士点,9个博士点、4个自主建设博士点,3个博士后流动站。 与英国诺丁汉大学实行联合办学,与瑞典皇家工学院开展了科研项目与人才培养合作协议。 3、自动化科学与电气工程学院 北航自动化科学与电气工程学院具有从本科到博士的一体化的高级人才培养体系,拥有7个博士点、9个硕士点和1个工程硕士专业学位点,控制科学与工程是国家一级学科博士点,在全国重点一级学科评审中名列前茅。导航制导与控制、控制理论与控制工程、机械电子工程、检测技术与自动化装置、模式识别与智能系统5个二级学科为全国重点学科。 学院设有自动化大类本科专业,为国防重点专业,其口径宽、航空航天特色突出、学科资源优势明显,在自动控制、信息技术与电气工程领域为国家培养高级工程技术人才和管理人才。学生入学后自主选择自动化(自动控制与信息技术)和电气工程及其自动化两个专业进行专业培养。其中,自动化专业,以电为主、机电结合,适应数字化、信息化、综合化、网络化和智能化的发展趋势,以自动控制和计算机信息获取、信息处理与仿真为基础进行专业教育。该专业于2008年被再次评定为国防重点专业;电气工程及其自动化专业,根据电能的产生、传输、变换、检测与控制技术的发展,以电子技术、信息技术和

飞机总体设计大作业

— 飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速: 最大飞行高度:10000m " 航程: 2300km 待机时间:45分钟 爬升率: 0~10000m<25分钟 起飞距离: 1600m \ 接地速度 <220km/h 一、相近飞机资料收集: 二、飞机构型设计 ^

正常式布局:技术成熟,所积累资料丰富 T 型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻 【 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 < 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a==296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) ¥ –升阻比L/D =14 3.根据Breguet 航程方程: ??? ????? ??=D L M C a Range W W final initial )ln( 代入数据: Range = 1242nm ;

专业课程设计-大客飞机后缘襟翼运动机构设计

飞机总体设计 专业课程设计 计算说明书 设计题目大客飞机后缘襟翼运动机构设计分析航空科学与工程学院学院班设计者 指导教师 2012年9月20日

目录 第一章前言 (1) 第二章设计任务书及背景分析 (2) 2.1 课题题目与设计要求 (2) 2.1.1 课题题目 (2) 2.1.2 设计要求 (2) 2.1.3 原始技术资料 (2) 2.2 课题背景分析 (2) 第三章设计方案机构分析 (3) 3.1常见后缘襟翼运动机构类型及特点分析 (3) 3.1.1 常见后缘襟翼运动机构类型 (3) 3.1.2 常见后缘襟翼运动机构特点分析 (3) 3.2设计方案机构特点及尺寸分析 (4) 3.2.1 设计方案特点分析 (4) 3.2.2 设计方案尺寸设计及机构简图 (4) 第四章设计方案载荷及传力分析 (5) 4.1大客飞机后缘襟翼运动机构的载荷分析 (5) 4.1.1 大客飞机后缘襟翼及其运动机构基本参数设计 (5) 4.1.2 大客飞机后缘襟翼气动载荷分析 (5) 4.2大客飞机后缘襟翼运动机构的传力分析 (6) 第五章轴的设计计算 (8) 5.1驱动轴(O轴)设计 (8) 5.1.1驱动轴的材料和热处理的选择 (8) 5.1.2驱动驱动轴的设计计算与强度校核 (8) 5.1.3驱动轴的受力图及弯矩图 (9) 5.2连杆传动轴(A、B、C轴)设计 (9) 5.2.1连杆传动轴的材料和热处理的选择 (9) 5.2.2连杆传动轴的设计计算与强度校核 (9) 5.2.3连杆传动轴的受力图及弯矩图 (9) 第六章螺纹连接件的设计与校核 (11) 6.1 机翼后梁与O轴铰支座的连接设计及校核 (11)

相关主题
文本预览
相关文档 最新文档