当前位置:文档之家› 两相流、多相流

两相流、多相流

两相流、多相流
两相流、多相流

两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。固相通常以颗粒或团块的形式处于两相流中。

两相流的流动形态有多种。除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。

两相流研究的一个基本课题是判断流动形态及其相互转变。流动形态不同,则热量传递和质量传递的机理和影响因素也不同。例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。当分散相液滴或气泡时,有很多特点。例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面

上有波动,表面张力梯度会造成复杂的表面运动等。这些都会影响传质通量,进而影响设备的性能。两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。

两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。大量理论工作采用的是两类简化模型:①均相模型。将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。认为单相流的概念和方法可分别用于两相系统的各个相,同时考虑两相之间的相互作用。两种模型的应用都还存在不少困难,但在计算技术发展的推动下颇有进展。

气体和液体混合物的两相流动体系。通常分为单成分两相流和双成分两相流。前者是具有相同化学成分的同质异态两相流,如水和蒸汽两相流;后者是具有不同化学成分的异质异态两相流,如水和空气两相流。气-液流动包括掺有气泡的液体流动和带有液滴的气体流动,如掺气水流和含雾滴的大气流动等。气-液流动因管道压力、流量、热负荷、流向、工质物性等的不同,可形成各种不同流型。竖管中最常见的流型(见图)有:细小气泡散布于液相中的气泡状流型;管中心为气弹、壁附近为连续液膜的气弹状流型;管中心为夹带细小液滴的气核和壁附近为连续液膜的环状流型;气相中含细小液滴和壁附近无连续液膜的雾状

流型。不同的流型有不同的流体动力学和传热传质规律。对流型的分析方法,目前工程上应用较多的有均相流模型和分相流模型,前者适用于较均匀的气泡状流,后者用于有明显分界面的层状流。气-液两相流通过管道引起的压差称为压力降。在任意通流截面上,气相在两相混合物中所占的截面分数称为空隙率,它是计算重位压力降和加速压力降必不可少的参量。设计中,必须计算气-液两相流的压力降以确定所需动力,保证设备安全经济地运转。

**好东西**

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。

两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。

引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。离散相模型(DPM)

FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;

离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、

液体燃料的燃烧等;

应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等;

颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;

湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”

多相流模型

FLUENT中提供的模型:

VOF模型(Volume of Fluid Model)

混合模型(Mixture Model)

欧拉模型(Eulerian Model)

VOF模型(Volume of Fluid Model)

VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两

相交界面;

VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。

混合模型(Mixture Model)

用混合特性参数描述的两相流场的场方程组称为混合模型;

考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;

用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;

缺点:界面特性包括不全,扩散和脉动特性难于处理。

欧拉模型(Eulerian Model)

欧拉模型指的是欧拉—欧拉模型;

把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;

颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用;

各颗粒相在空间中有连续的速度、温度及体积分数分布。

几种多相流模型的选择

VOF模型适合于分层流动或自由表面流;

Mixture和Eulerian模型适合于流动中有混合或分离,或者离

散相的体积份额超过10%-12%的情况。

Mixture模型和Eulerian模型区别

如果离散相在计算域分布较广,采用Mixture模型;如果离散相只集中在一部分,使用Eulerian模型;

当考虑计算域内的interphase drag laws 时,Eulerian模型通常比Mixture模型能给出更精确的结果;从计算时间和计算精度上考虑。

选用FLUENT多相流模型的几个要点

多相流的计算,首先是要对要研究的问题要有一个比较详细的了解。你对模拟过程了解多少,可能的结果是什么。可以想象一下你模拟的过程,你想要得到的结果侧重点在哪里,等等。然后根据问题选择不同的多相流模型。由于不同的模型适合不同的模型,因此首先要对FLUENT各个多相模型有一明确的概念。你如何简化问题。另外,网格的划分很重要。尽量采用简单的网格。网格的疏密程度,那些地方要细,那些地方可以疏些,等等。好的前处理对获得快速收敛的解非常非常重要!

关于FLUENT不同多相流模型的选择和比较:

1) 对DPM模型,采用的是Lagraian-Eulerian方法。粒子的运动是按Lagrarian方法,连续流体的计算是按Eulerian方法。DPM可以跟踪单独粒子的运动轨迹。但该方法不考虑粒子对连续流体运动的影响,所以只适用于粒子体积占总体积不大于10%的情况。

2) VOF模型。该模型能够比较好的反映多相流之间的界面情况。比如大的气泡以比较慢的速度在液体中流动,气液界面等。由于VOF模型采用的方程中的各项物性参数,如密度,粘度等,是各相物性的体积平均值,所以要求各相的速度之间差别不能太大,否则会对计算结果的精度影响很大。一般情况VOF采用非稳态模拟比较好。主相的体积值不是从体积守恒方程得到的,而是1减去其他离散相的值。

3)Mixture模型。此模型考虑了离散相和连续相的速度差,及相互之间的作用。但相与相之间是不相容的。动量方程及连续方程等中各物性参数采用的是各相体积平均值。主相的体积值不是从体积守恒方程得到的,而是1减去其他离散相的值。

4)Eulerian模型。此模型可以对各相进行单独的计算,每相都有单独的守恒方程。据有很大的适应性。但代价是由于要对各相都要进行独自计算迭代,计算机时是很巨大的。故Mixture是Eulerian 模型的一种折衷.

气浮池中的两相流属于:双组份双相流和绝热两相流(无相变无相间质量交换)

FLUENT中应用DPM模型时的限制

1. 对颗粒体积分数的限制

FLUENT所使用的离散相计算公式假定第二相十分稀薄,这就使得FLUENT忽略了颗粒间的相互作用以及颗粒体积分数对

对气相的作用。这就意味着离散相的体积分数必须是一个相当低的数值,通常这个值小于10%~12%。注意:这里所讲的是体积分数,而不是质量分数,离散相的质量分数是可以大于前面所述的限制的,你甚至可以用它来计算离散相质量分数大于等于连续相质量分数的情况。如果你想使用常规多项留模型,可以参考第22和第24章的内容。

2. 在模拟颗粒持续悬浮时的限制

本章所描述的稳态颗粒Lagrangian离散相模型适合模拟颗粒喷射进入连续相中的时候,连续相流存在明确的入口和出口条件。Lagrangian模型无法有效的模拟颗粒长期悬浮情况下的流动,比如在封闭系统中出现的固体悬浮的情况,像搅拌罐、混合皿还有流化床。

3. 使用DPM模型对使用FLUENT中其它模型的限制

[1] 周期流Streamwise periodic flow(既不能定义质量流率也无法制定压降)

[2] 当使用预混燃烧模型时,只能包含部反应的颗粒。

[3] 对于Surface injections,颗粒入射的面不能是移动网格或变形网格

[4] 颗粒云模型无法用于非稳态的情况或者是并行计算的情况

[5] wall-film model只适用于液体材料,The wall-film model is only valid for liquid materials. If a non-liquid particle interacts with a wall-film boundary, the boundary condition will default to the reflect

boundary condition.

[6] 使用复合参考系时,默认情况下所显示的颗粒轨迹是没有意义的。

颗粒的入射速度是相对于颗粒被跟踪时所在的坐标系的。默认情况下,入射速度是相对于当地坐标系定义的。如果启用了track-in- absolute-frame选项,则入射速度在相对坐标系中定义。Fluent多相流模型

分类

1、气液或液液流动

气泡流动:连续流体中存在离散的气泡或液泡

液滴流动:连续相为气相,其它相为液滴

栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡

分层自由流动:由明显的分界面隔开的非混合流体流动。

2、气固两相流动

粒子负载流动:连续气体流动中有离散的固体粒子

气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流

流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。

3、液固两相流动

泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于

1。大于1是成为流化了的液固流动。

水力运输:在连续流体中密布着固体颗粒

沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。

4、三相流

以上各种情况的组合

多相流动系统的实例

气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。

液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。

栓塞流:管道或容器中有大尺度气泡的流动

分层流:分离器中的晃动、核反应装置沸腾和冷凝

粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动

气力输运:水泥、谷粒和金属粉末的输运

流化床:流化床反应器、循环流化床

泥浆流:泥浆输运、矿物处理

水力输运:矿物处理、生物医学、物理化学中的流体系统

沉降流动:矿物处理。

多相流模型的选择原则

1、基本原则

1) 对于体积分数小于10%的气泡、液滴和粒子负载流

动,采用离散相模型。

2) 对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。

3) 对于栓塞流、泡状流,采用VOF模型

4) 对于分层/自由面流动,采用VOF模型

5) 对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。

6) 对于流化床,采用欧拉模型

7) 泥浆和水力输运,采用混合模型或欧拉模型。

8) 沉降采用欧拉模型

9) 对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。此时由于模型只是对部分流动特征采用了较好的模拟,其精度必然低于只包含单个模式的流动。

2、混合模型和欧拉模型的选择原则

VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。

1) 如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混合模型,反之使用欧拉模型。

2) 如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间曳力规律不明确,最好选用混合模型。

3) 如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收敛困难。

气液两相流

气液两相流流型识别理论的研究进展 摘要:介绍了气液两相流的识别理论,探讨了气液两相流流型的划分方法。叙述了两相流流型软测量方法,并重点介绍了图像处理识别、在线流型技术识别、神经网络、基于压差波动理论、混沌理论等识别流型的新方法。 关键词:气液两相流;流型识别 0 引言 相的概念通常是指某一系统中具有相同成分及相同物理、化学性质的均匀物质成分,各相之间有明显可分的界面。从宏观的角度出发,可以把自然界的物质分为三种,即:气相、液相和固相。单相物质的流动称为单相流,如气体流或液体流。所谓两相流(Two-Phase Flow)或多相流(Multiphase Flow)是指同时存在两种或多种不同相的物质的流动。 近年来随着国内外石油和天然气工业的发展,迫切需要开发出精度较高的油气水三相流量在线测量仪,以便掌握各个油井的生产动态。然而,多年来尽管在这方面进行了大量的研究工作,取得了一些进展,但是仍然没有彻底清晰地认识和了解油气水三相混合物的流动型态。在现今的多相流检测技术领域中,流型的识别问题变得越来越重要。 1 两相流流型 由于存在一个形状和分布在时间和空间里是随机可变的相界面,而相间实际上又存在一个不可忽略的相对速度,致使流经管道的分相流量比和分相所占的管截面比并不相等。这就导致了两相流动结构多种多样,流型十分复杂。流型是影响两相流压力损失和传热特性的重要因素。两相流各种参数的准确测量也往往依赖于对流型的了解。因此为了对两相流的特征参数进行测量,必须了解它们的流型。 1.1垂直上升管中气液两相流流型 (1)、泡状流(Bubbly Flow):气泡以不同尺寸的小气泡形式随机离散分布在流动的液体中。显然,此时气体为离散相,而液体为连续相。随着气速的增加,气泡尺寸会不断增大。 (2)、段塞流(Slug Flow):在气泡流动中当气泡的浓度增高时,气泡聚合为直径接近于管内径的塞状或炮弹状气泡,气泡前端部分呈现为抛物线形状。在这些塞状气泡之间可带有小气泡的液团。当气泡快速上升时,液体在气泡与管内壁间的间隙中流动。 (3)、混状流(Churn Flow):当气泡速度进一步增大时,段塞流中的气泡速度也随之增加并产生破裂、碰撞、聚合和变形,与液体混合成为一种不稳定的上下翻滚的湍动混合物。此时气液两相界为离散相。 (4)、环状流(Annular Flow):液流沿着管道的内壁形成一层液体薄膜,而气流则在管道中央流动。这样,气液两相都变成了连续相。不过,在这种情况下,管道中央的气体通常还夹带着一些液滴一起流动。 (5)、液丝环状流(Wispy-Annular Flow):当气液两相流为环状流时,继续增加液相流量,管壁的液膜将加厚且含有小气泡,中心的液滴浓度增加,被中心

FLUENT中两相流多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;← 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;←应用范←围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;← 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”← 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model)←

混合模型(Mixture Model)← 欧拉模型(Eulerian Model)← 1.VOF模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0←<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。← 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型;← 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;← 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;← 缺点:界面特性包括不全,扩散和脉动特性难于处理。← 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型;← 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;←颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用;← 各颗粒相在空间中有连续的速度、温度及体积分数分布。← 怎样选择? 1. VOF模型适合于分层流动或自由表面流; Mixture和Eulerian模型适合于流动

油-水两相管流流动规律研究

学校代码:11414 学号:B0202080 油-水两相管流流动规律研究(申请中国石油大学工学博士学位论文) 学科专业:油气储运工程 研究方向:多相管流及油气田集输技术 研究生:姚海元 指导教师:宫敬教授 2005年7月

Study on Oil-Water Two Phase Pipe Flow Dissertation Submitted to China University of Petroleum In partial fulfillment of the requirements For the degree of Doctor of Engineering By Yao,Haiyuan Oil & Gas Storage and Transportation Dissertation Supervisor Gong, Jing (Professor) 2005.7

独创性声明 我呈交的学位论文是在导师指导下个人进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得其他学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。特此声明。 声明人(签名):年月日 关于论文使用授权的说明 本人完全了解中国石油大学有关保留、使用学位论文的规定,即:学校有权保留送交学位论文的复印件,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存学位论文。特此说明。 说明人(签名):指导教师(签名): 年月日

气液两相流

热物理量测试技术1 概述 两相流广泛应用于热能动力工程、核能工程、低温工程以及航天领域等许多领域。所谓两相流,广义上讲是指一种物质或两种物质在不同状态下的流动,其中气体和液体一起流动称为气液两相流。对于两相流中的气液混合物,它们可以是同一种物质,即汽—液(如水和水蒸气),也可以是两种不同的物质,即气—液(如水和空气混合物)。气液两相流是一个相当复杂的问题,。在单相流中,经过一段距离之后,就会建立一个稳定的速度场。但对于两相流,例如蒸汽和水,则很难建立一个稳定的流动,因为在管道流动中有压降产生,由于此压降作用会产生液体的蒸发,所以在研究气液两相流时必须考虑两相间的传热与传质问题。 两相流学科还处于半经验半理论阶段,对于两相流的流动和传热规律进行研究时,除了依靠各种数学物理模型外,还要依靠实验,这就需要两者相结合从而更好地进行研究。 2 两相流压降测量[1] 压降,即两相流通过系统时产生的压力变化,是两相流体流动过程中的一个重要参数。保持两相流体流动所需的动力以及动力系统的容量和功率就取决于压降的大小。一般说来,两相流体流动时产生的压降一般由三部分组成,即摩擦阻力压降、重位压降、加速压降,管道系统出现阀门、孔板等管件时,还需测量局部压降。目前,常用差压计或传感器来测量两相流压降。 2.1 利用差压计测量压降 应用差压计测量气液两相流压降的测量原理图如图1所示。所测压降为下部抽头的压力与上部抽头压力之差。在差压计的Z1截面上可列出压力平衡式如下: (2.1)式中,为取压管中的流体密度;为差压计的流体密度。 由(2.1)可得: (2.2)由上式可知,要算出压降的值,必须知道取压管中的流体密度和差压计读数。 当管中流体不流动时:

气液两相流 整理

第一章概论 相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开 两相流动的处理方法:双流体瞬态模拟方法和精确描述物理现象的稳态机理模型是多相管流研究的主要方法 目前研究存在的问题:1、多相流问题未得到解析解;2、油气水三相流的研究不够深入;3、水平井段变质量流动研究较少;4、缺乏向下流动的综合机理模型;5、缺乏专用研究仪器 气液两相流的分类:1、细分散体系:细小的液滴或气泡均匀分散在连续相中 2、粗分散体系:较大的气泡或液滴分散在连续相中 3、混合流动型:两相均非连续相 4、分层流动:两相均为连续相 气液两相流的基本特征: 1、体系中存在相界面:两相之间也存在力的作用,出现质量和能量的交换时伴随着机械能的损失 2、两相的分布情况多种多样:两相流动中两相介质的分布称为流型 3、两相流动中存在滑脱现象:相间速度的差异称为滑脱,滑脱将产生附加的能量损失 4、沿程流体体积流量有很大变化,质量流量不变 气液两相流研究方法: 1、经验方法:从气液两相流动的物理概念出发,或者使用因次分析法,或者根据流动的基本微分方程式,得到反映某一特定的两相流动过程的一些无因次参数,然后依据实验数据整理出描述这一流动过程的经验关系式。 优点:使用方便,在一定条件下能取得好的结果 缺点:使用有局限性,且很难从其中得出更深层次的关系 2、半经验方法:根据所研究的气液两相流动过程的特点,采用适当的假设和简化,再从两相流动的基本方程式出发,求得描述这一流动过程的函数关系式,最后用实验方法确定出函数关系式中的经验系数。 优点:有一定的理论基础,应用广泛 缺点:存在简化和假设,具有不准确性 3、理论分析方法:针对各种流动过程的特点,应用流体力学方法对其流动特性进行分析,进而建立起描述这一流动过程的解析关系式。 优点:以理论分析为基础,可以得到解析关系式 缺点:建立关系式困难,求解复杂 研究气液两相流应考虑的几个问题: 1、不能简单地用层流或紊流来描述气液两相流 2、水平或倾斜流动是轴不对称的 3、由于相界面的存在增加了研究的复杂性 4、总能量方程中应考虑与表面形成的能量问题 5、多相流动中各相的温度、组分的浓度都不是均匀的,相之间有传热和传质 6、各相流速不同,出现滑脱问题,是多相流研究的核心与重点 流动型态:相流动中两相介质的分布状况称为流型或两相流动结构 流型图:描述流型变化及其界限的图。把流型变换的实验数据加以总结归纳后,按照两个或多个主要的流动参数绘成曲线,便可以得到流型图。 影响流型的因素:1、各相介质的体积比例2、介质的流速3、各相的物理及化学性质(密度、粘度界面张力等)4、流道的几何形状5、壁面特性6、管道的安装方式 流型分类:1、根据两相介质分布的外形划分;垂直气液两相流:泡状流、弹状流、段塞流、环状流、雾状流。水平气液两相流:泡状流、团状流、层状流、波状流、冲击流、环状流、雾状流。 2、按流动的数学模型或流体的分散程度划分为:分散流、间歇流、分离流。 两种分类方法的比较:第一类划分方法较为直观;第二类划分方法便于进行数学处理 气液两相流的特性参数: 质量流量:单位时间内流过过流断面的流体质量,kg/s, 气相质量流量:单位时间内流过过流断面的气体质量,kg/s, l g G G G+ =

fluent实例-油水两相管内流动模拟

油水两相流弯管流动模拟 弯管被广泛应用于石化、热能动力、给排水、钢铁冶金等工程领域的流体输送,其内部流体与管壁的相对运动将产生一定程度的振动而使管道系统动力失稳,严重时会给系统运行带来灾难性的毁坏。而现今原油集输管线中普遍为油水两相流,较单相流动复杂,且通过弯管时由于固壁的突变,使得流动特性更为繁杂。因此,研究水平弯管内油水两相流的速度、压力分布等流动特性,不仅能够为安全输运、流动参数控制等提供参考,还可为管线防腐、节能降耗措施选取等提供依据。 一、实例概述 选取某输油管道工程管径600mm的90°水平弯管道,弯径比为3,并在弯管前后各取5m直管段进行建模,其几何模型如图所示。为精确比较流体流经弯管过程中的流场变化,截取了图所示的5个截面进行辅助分析。弯管进出口的压差为800Pa,油流含水率为20%。 二、模型建立 1.启动GAMBIT,选择圆面生成面板的Plane为ZX,输入半径Radius为0.3,生成圆面, 如图所示。

2.选择圆面,保持Move被选中,在Global下的x栏输入1.8,完成该面的移动操作。 3.选取面,Angle栏输入-90,Axis选择为(0,0,0)→(0,0,1),生成弯管主体,如图所 示。

4.在Create Real Cylinder面板的Height栏输入5,在Radius1栏输入0.3,选择Axis Location 为Positive X,生成沿x方向的5m直管段,如图所示。 5.同方法,改变Axis Location为Positive Y生成沿y方向的5m直管段,如图所示。

6.将直管段移动至正确位置,执行Volume面板中的Move/Copy命令,选中沿y轴的直管 段,在x栏输入1.8,即向x轴正向平移1.8。然后选中沿x轴的直管段,在x栏输入-5,在y栏输入-1.8,最后的模型如图所示。 7.将3个体合并成一个,弹出Unite Real Volumes面板,选中生成的3个体,视图窗口 如图所示。

浅析气液两相流及其应用

浅析气液两相流及其应用 浅析气液两相流及其应用 摘要:气液两相流存在于石油、天然气、动力、化工、水利、航天、环境保护等工业中,其研究已成为国内外学者广泛关注前沿学科。本文概要性的描述了气液两相流的应用背景、流动型式,并介绍了气液两相流参数检测的手段和两相流计算的基本方法。 关键词:气液两相流流动型式参数检测计算方法 1.气液两相流的应用背景 近些年来,石油、天然气、动力、化工、水利、航天、环境保护等工业的迅速发展促进了气液两相流的研究和应用。在实际应用中可以将凝析天然气简化的看作气相为甲烷,液相为水的气液两相流[3]。为了在实现天然气井口对凝析天然气气、液两相流量的实时在线测量,需要对其进行相应研究。再如,火力发电厂中锅炉的汽水分离、蒸发管中的汽水混合物的流动都属于气液两相流问题[1]。 2.气液两相流的流动型式 气液两相流中气液两相的分界面多变,其流动结构受各相的物理特性、各相流量、压力、受热、管道布置等影响。在不同的流型下,两相流的流体力学特性不同,因此为了研究两相流的运动规律,必须研究其运动型式。 在水平管道中,气液两相流常见流动形态如图1所示。 图1 水平管道中气液两相流流型 水平管中,气泡流的特征为液相中带有散布的细小气泡,由于受到重力的影响,气泡多位于管子上部。随着泡状流中的气相流量的增加,气泡聚结成为气塞,气塞一般较长,且多沿管子上部流动。当气、液两相流速均较小,会受到重力分离效应产生分层流,而当分层流动中气相速度较大时,气液的交界面将产生扰动波形成波状流。若气相速度再增大,则气液分界面由于剧烈波动将有一部分与管道顶部接触,分隔气相成为气弹,从而形成弹状流,大气弹则将在管道上部高速运动。

FLUENT中两相流多相流中模型的的选择问题

F L U E N T中两相流多相流中模型的的选择问题 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;? 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;? 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;? 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”?

实验三气液两相流实验

气液两相流实验 实验1 垂直上升管中气液两相流特性实验 一、实验目的 1. 在大型电站锅炉中垂直布置的锅炉水冷壁管被广泛应用,本实验将模拟其两相流现象和水动力特性; 2. 通过观察垂直上升管中气液两相流的流型,进一步加深了解垂直上升管中气液两相流型的特点; 3. 对垂直上升管中气液两相流的压力降有比较直观的认识,并掌握垂直上升管中气液两相流的压力降的计算方法。 二、实验仪器 仪器名称型号参数范围 水泵FS40 11m3/h 气泵HG-1100 180m3/h 电磁流量计DXLD-25 0.53-21m3/h 转子气体流量计LZB-4 0-400L/h 转子气体流量计LZB-15 0-4m3/h 转子气体流量计LZB-25 0-50m3/h 三、实验原理图 1 水箱 2 空气压缩机 3 磁力泵 4 转子流量计 5电磁流量计 6 气液混合器 7 减压阀 8 调节阀 9截止阀 10球阀 11 水集箱 12 针阀 13 过滤器 四、实验任务 1.观察垂直上升管中气液两相流的流型:

(1)打开系统电源,使气体、液体流量计预热2分钟;然后打开采集程序,记下采集程序上显示的气路 和水路温度(根据此温度查出水和空气的密度); (2)打开磁力泵,将主路的调节阀开度调小和旁路的调节阀开度调大,同时将垂直上升管实验段水路的球 阀开启,使水缓慢地流过实验段,直到取压管内大体上充满水为止; (3)关闭磁力泵和水路的球阀,打开空气压缩机和气路的球阀,将50-500L/min转子流量计一路的针阀开 启,调节针阀开度,使转子气体流量计所测得的体积流量保持在300L/min;打开磁力泵,调节主路和旁路的调节阀开度,将主路阀门开度达到最小,旁路阀门开度达到最大。按下表调节气量和水量,观察并记录垂直上升管中气液两相流的流型的变化; 水流量(L/min)0.6-1.6(96L/h,LZB-10)0.7-1.4 空气(L/min)160-220(13.2m3/h,LZB-25) 18-36 流型环状流块状流 水流量(L/min)0.65-1.5 3.6-5.6 空气(L/min)5-158.6-15.6 流型弹状流泡状流 (4)实验完毕时,先关闭磁力泵,然后关闭实验段水路的球阀,再关闭气路的球阀,最后关闭空气压缩机同时关闭气路的针阀。

两相流整理

1、 扩散速度:相速度与混合物质心速度之差,kcm k cm v v v =- v =k k g g g l l l v cm k v v dv v V v V m dv ρρρρ+= ?? 2、 表观摩擦压降:就是按折算介质流速来计算的摩擦压降。 3、 真实密度:两相流场中单位体积的质量成为真实密度。 4、 面积质量流速:单位流通截面的质量流量。 5、 质量含气率:流场中某一控制单元内气相所占的质量份额,称为质量含气率。 6、 滑速比:气液两相速度的比值。 7、说明均相模型、分相模型、二流体模型的优缺点、适应性和局限性. 答:见下表: 8.给出水平管气液两相流型分类,并绘制Baker 流型图 答:水平管气液两相流型分类:1) 泡状流;2)团状流;3)层状流;4) 波状流;5) 冲击流;6) 环状流;7) 雾状流。 9、请写出垂直和水平倾斜气液两相管流的压降计算的相关式模型方法名称各4种共8种。 答:水平倾斜气液两相管流的压降计算的相关式模型:洛克哈特蒂内利(Lockhart -Martinelli )、杜克勒(Dukler )?、杜克勒(Dukler )??、贝克(Baker )、杜克勒-埃顿-弗莱尼根(Dukler-Eaton-Flanigan )、埃顿(Eaton)、贝格斯-布里尔(Beggs-Brill )、弗莱尼根(Flanigan )、奥维德·巴克尔(Ovid Buckle )。 垂直气液两相管流的压降计算的相关式模型:Orkiszewski 法、 Hagedorn-Brown 法、Beggs-Brill 法、Hasan-Kabir 法、Duns-Ros 法和Cornish 法、 Aziz-Govier-Fogaras 法、 Ansari 法。

高粘油水两相水平管流的压降研究

油 气 储 运2004年 实验研究 高粘油水两相水平管流的压降研究 宫 敬* 穆 虹 (石油大学(北京)石油与天然气工程学院) 宫 敬 穆 虹:高粘油水两相水平管流的压降研究,油气储运,2004,23(6)38~41。 摘 要 通过三种高粘度油品的油水水平管流试验,对各种流型的压降规律进行了研究,以试验数据和理论分析为基础,建立了有效粘度的经验相关式,并通过含有有效粘度与混合流速的压降公式估算各流型的管路压降。采用的方法适用于稠油和水的两相流研究。提出应建立有效粘度的理论预测模型,使高粘油与水的两相流的研究更具有实用性。 主题词 高粘油 水 水平管 两相流 压降 研究 一、前 言 油水两相管流的压降及试验研究是油水两相流和油气水多相流研究的重要内容,其最终目标是将 研究成果用于实际的多相流管道的设计和运行管理中。由于油水混输的乳化和反相流动特性,尤其是高粘油与水的两相流动,在不同的流动状况下,即使流量基本不变,管道压降可能相差很大。例如,在设计绥中36 1油田油水混输管道时,同种原油相同含水率的油水混合液,由于制备条件不同,所提供的表观粘度实测数据相差甚远,选择不同粘度的设计方案,其投资费用可相差1000 104元以上 1 。油水两相流流型的研究,对压降研究的影响至关重要,研究结果可以为合理建立和选择油水两相流的压降模型提供依据。然而,我国油水两相流流型的研究比较落后,两相流压降研究的进展相对较慢,稠油与水两相流的压降试验研究起步较晚,除了受油水两相流研究滞后的影响外,稠油与水的两相流试验研究本身还存在许多问题,有待更加先进、科学的研究手段和方法来解决。 油水两相流动规律的研究工作起源于20世纪初石油工业中稠油的减阻输送研究,但受检测手段的限制,研究进展一直比较缓慢。20世纪90年代 后,世界一些发达国家利用先进的流型检测手段,又 一次掀起了油水两相流研究的高潮。1996年,美国TULSA 大学的Trallero 对水平管内轻质油和水的两相流流型作了较为全面的研究 2 ;1997年,OHIO 大学的Jepson 研究小组研究了油水两相分离流型中水层的高度,并提出了用油、混合液、水的三层物理模型描述油水两相流的油水分布 3 ;1998年,挪威NORSK HYDRO ASA 研究中心在北海油田现场进行了油水两相流试验研究 4 ;1998年和1999年,英国理工大学的He witt 研究小组分别对油水两相流的分散流动和分离流动进行了研究 5 ;2000年,加拿大萨斯喀大学Mc Kibben J 、Gillies G 等学者在室内试验环道上进行了超稠油(5000~100000mPa s)的水包油核试验研究 6,7 。国内石油大学一直在从事这方面的研究工作 8~10 ,西安交通大学曾进行过机油与水的两相流试验研究 11,12 。石油大学(北京)宫敬等人使用粘度较大的3种油品进行了油水水平管流试验研究,可为高粘度油品的油水压降研究提供借鉴和参考。 二、试验装置及试验流程 1、 试验装置 试验介质采用粘度为112.3mPa s 、137.8 *102249,北京市昌平区府学路18号;电话:(010)89733804。 38

气液两相流传热实验

气液两相流传热实验 一、实验目的 1、通过测定换热器冷、热流体的流量,测定换热器的进、出口温度,熟悉换热器性能的测试方法; 2、了解套管换热器的结构特点及性能。 3、通过测定参数计算换热器流体的热量;计算换热器的传热系数;并整理成准数关联式形式。 二、基本原理 1、概述 本换热器性能测试实验装置,主要对应用较广的套管式换热器进行其性能的测试。其中,对套管式换热器可以进行顺流和逆流两种方式的性能测试。 换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡误差等,并对实验数据进行整理,分析流体无相变时的对流传热系数与Dittus-Boelter 关联式。 2、实验装置参数 本实验所用的热水加热采用电加热方式,采用热水加热常温空气。冷—热流体的进出口温度采用pt100加智能多路液晶巡检仪表进行测量显示,实验台参数如下: (1)电加热管总功率:3KW (2)冷热流体风机:允许工作温度:<80℃,额定流量:76 m 3/h 电机电压:220V 电机功率:750W (3)孔板流量计: 流量:8-30m 3/h 允许工作温度:0-80℃ 3、对流传热系数α的测定: 根据传热总方程,用实验测定。 m Q S t α= ? 式中:α-管内流体对流传热系数,W/(m 2·℃); Q -传热速率W ;

S -管内换热面积, m 2 ; ?t m -对数平均温度差,℃。 本实验中,具体的计算过程如下: ,,56()m h p h Q q c t t =-,热水的物性数据取定性温度 56 2 t t +下的数值,计算质量流量, /m c V t q q kg s ρ=。 换热面积2 o S d l m π=,此处管内径0.016m ,壁厚0.0015m ,管长1.3m 。 {}()2121/ln /T T T T t m ???-?=? 851t T T -=? 762t T T -=? t 5,t 6为热流体进出口温度, T 7,T 8为冷流体进出口温度。 依次可以求出对流传热系数α。 4.关联式的整理 求出努塞尔准数i u d N αλ=,普朗特准数p r c P μλ=,雷诺准数i e ud R ρμ =。准数关联式为0.3m u e r N AR P =,其中的A ,m 可以用图解法得到。具体做法是:先把关联式变换成 0.3m u e r N AR P =,然后两边取对数0.3 ln ln ln u e r N m R A P =+,求出m 和A 。 三、实验装置与流程 1.实验装置流程: 本实验装置采用空气和用阀门换向进行并逆流实验;工作流程如图2-1所示,换 热形式为热水—冷空气换热式。

井筒气液两相流基本概念

第二节井筒气液两相流基本概念 一、教学目的 掌握井筒气液两相流动的特点、流态及其特征;井筒气液两相流动中能量平衡方程的推导以及压力分布计算的方法(按压力增量迭代和按深度增量迭代方法)。 二、教学重点、难点 教学重点: 1、气液两相流的特性; 2、井筒气液两相流动的能量平衡方程。 教学难点: 1、滑脱及其特征; 2、气液两相流动的能量平衡方程。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关流态图形。 四、教学内容 本节主要介绍两个方面的问题: 1.井筒气液两相流动的特性. 2.井筒气液两相流能量平衡方程及压力分布计算步骤. (一) 井筒气液两相流动的特性 相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开。 例如:水--冰系统、泥浆、油--气--水等均是多相体系

油气是深埋于地下的流体矿藏。随压力的降低,溶解气将不断从原油中逸出,因此,井筒中将不可避免地出现气液两相流动。采油设备的优化设计和工况分析、油气集输设计等都离不开气液两相流的理论与计算方法。 2、气液混合物在垂直管中的流动结构——流动型态的变化 流动型态(流动结构、流型): 流动过程中油、气的分布状态。 影响流型的因素:

气液体积比、流速、气液界面性质等。 ①纯液流 当井筒压力大于饱和压力时,天然气溶解在原油中,产液呈单相液流。 ②泡流 井筒压力稍低于饱和压力时,溶解气开始从油中分离出来,气体都以小气泡分散在液相中。 滑脱现象: 混合流体流动过程中,由于流体间的密度差异,引起的小密度流体流速大于大密度流体流速的现象。 如:油气滑脱、气液滑脱、油水滑脱等。 特点:气体是分散相,液体是连续相; 气体主要影响混合物密度,对摩擦阻力影响不大; 滑脱现象比较严重。 ③段塞流 当混合物继续向上流动,压力逐渐降低,气体不断膨胀,小气泡

气液两相流流型实验报告

气液两相流流型实验报告 实验名称:气液两相流流型 实验目的: 1. 熟悉台架,掌握流量测量仪表的使用; 2. 掌握常见两相流流型的划分方法及相关规律,观察水平管中不同流型的特点; 3. 根据各工况点实验数据绘制两相流流型图,并与典型流型图做比较。 实验任务: 实验测量数据: ,,,. (1) 测取不同情况下气相,液相流量;记录P P t t w 气减室 (2) 判别流型 要求: (1) 实验数据汇总表; (2) 绘制αβ -曲线 (3) 根据实验数据用Weisman图判别流型 实验原理 1、水平管道中气液两相流流型的划分及各流型特征 在水平管道中的气液两相流,由于重力影响使流型结构呈现不对称性,因而水平管中的流型特征变得较为复杂。Oshinowo流型划分原理使流型变得相对简单,根据Oshinowo的划分原则,一般把水平管道中的流型划分为六种,泡状流、塞状流、层状流、波状流、弹状流、环状流。 (1)泡状流 在泡状流中,气相是以分离的气泡散布在连续的液相内,气泡趋向于沿管道上半部流动,这种流型在含气率低时出现。 (2)塞状流 在塞状流中,小气泡结合大气泡,如栓塞状,分布在连续的液相内,大气泡也是趋向于沿管道上部流动,并且在大气泡之间还存在一些小气泡。 (3)层状流 在层状流中,两个相的波动被一层较光滑的分界面隔开,由于重力和密度不同,气相在上部液相在下部分开流动。层状流只有在气相和液相的速度都很低时才出现。 (4)波状流

当气流速度增大时,在气、液分界面上掀起了扰动的波浪,分界面由于受到沿流动方向的波浪作用而变得波动不止。 (5)弹状流 当气体流速更高时,分界面处的波浪被激起与管道上部管壁接触,并形成以高速沿管道向前推进的弹状块。 (6)环状流 当气体流速进一步增高时,就形成气核和环绕管周的一层液膜,液膜不一定连续均匀的环绕整个管周,管子的下部液膜较厚,在气芯中也夹带有液滴。 表1水平绝热管中的流型变化 A表示环状流(annular);B表示气泡(bubble); BTS表示中空气弹(blow through slug);D表示液滴(droplet); F表示液膜(film);IW表示平缓波(inertial wave); LRW表示大翻卷波(large roll wave);PB表示气栓加气泡(plug&bubble);PF 表示气栓加泡沫(plug&froth);R表示涟漪波(ripple); RW表示翻卷波(roll wave);S表示气弹(slug);ST表示层状流(stratified)。

多相流检测技术

天津大学本科课程描述 学院:电气与自动化工程学院专业名称:自动化 本科课程信息 课程名称:多相流检测技术课程编号:2030412 学分: 1 学时:16 课程描述: 本课程首先介绍多相流基本流动现象及流动模型,然后,重点讲授多相流流动参数传感器设计及其流量测量模型建立。授课内容包括:1). 两相流流型及流动模型;2). 两相流相含率测量方法; 3). 两相流差压式流量测量方法;4). 两相流速度式流量测量方法; 5). 两相流相关流量测量方法;6). 两相流流动参数软测量方法。 教材与主要参考资料: [1].《多相流检测技术》,金宁德编著,自编讲义,2011年。 [2].《两相流参数检测及应用》,李海青等编著,浙江大学出版社, 1991年。 [3].《Handbook of Multiphase Systems》, Hetsroni. G, Hemisphere-McGraw Hill, 1982.

Course Description School: School of Electrical Engineering and Automation Major:Automation Information of undergraduate courses: Title: Measurement Techniques for Multiphase Flow Code: 2030412 Credit points: 1 Hours: 16 Course Description: We first in this course introduce the basic flow phenomena and flow model of multiphase flow, then we emphasize on the probe design and flow measurement model used for measuring multiphase flow parameters. The teaching contents include as follows: 1).flow pattern and flow model of two-phase flow; 2). p hase volume fraction measurement of two-phase flow; 3).t wo-phase flow measurement by using differential pressure method; 4). t wo-phase flow measurement by using velocity type method; 5). two-phase flow measurement by using cross-correlation method; 6). soft-measurement of two-phase flow parameter. Text-Book & Additional Readings: [1]. Measurement Techniques for Multiphase Flow, Jin Ningde, Lecture notes, 2011. [2]. Measurements & Applications of Two-phase Flow Parameters, Li Haiqing, Zhejiang University Press, 1991. [3].Handbook of Multiphase Systems, Hetsroni. G, Hemisphere McGraw Hill, 1982.

fluent油水两相流动数值模拟

Fluent油水两相流弯管流动模拟 一、实例概述 选取某输油管道工程管径600mm的90°水平弯管道,弯径比为3,并在弯管前后各取5m直管段进行建模,其几何模型如图所示。为精确比较流体流经弯管过程中的流场变化,截取了图所示的5个截面进行辅助分析。弯管进出口的压差为800Pa,油流含水率为20%。 二、模型建立 1.启动GAMBIT,选择圆面生成面板的Plane为ZX,输入半径Radius为0.3,生成圆面, 如图所示。

2.选择圆面,保持Move被选中,在Global下的x栏输入1.8,完成该面的移动操作。 3.选取面,Angle栏输入-90,Axis选择为(0,0,0)→(0,0,1),生成弯管主体,如图所 示。

4.在Create Real Cylinder面板的Height栏输入5,在Radius1栏输入0.3,选择Axis Location 为Positive X,生成沿x方向的5m直管段,如图所示。 5.同方法,改变Axis Location为Positive Y生成沿y方向的5m直管段,如图所示。

6.将直管段移动至正确位置,执行Volume面板中的Move/Copy命令,选中沿y轴的直管 段,在x栏输入1.8,即向x轴正向平移1.8。然后选中沿x轴的直管段,在x栏输入-5,在y栏输入-1.8,最后的模型如图所示。 7.将3个体合并成一个,弹出Unite Real Volumes面板,选中生成的3个体,视图窗口 如图所示。

三、网格划分 1.打开Create Boundary Layer面板,在Edges黄色输入栏中选取线3。选中1:1的边界 层生成方式,并设置第一个点距壁面距离为0.001m,递增比例因子为1.2,边界层为4层。绘制完边界层网格,如图所示。 2.打开Mesh Faces面板,运用Quad单元与Pave方法对该圆面进行划分,在Interval size 栏输入0.05,生成的面网格如图所示。

气液两相流

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 气液两相流 气液两相流流型识别理论的研究进展摘要:介绍了气液两相流的识别理论,探讨了气液两相流流型的划分方法。 叙述了两相流流型软测量方法,并重点介绍了图像处理识别、在线流型技术识别、神经网络、基于压差波动理论、混沌理论等识别流型的新方法。 关键词:气液两相流;流型识别0 引言相的概念通常是指某一系统中具有相同成分及相同物理、化学性质的均匀物质成分,各相之间有明显可分的界面。 从宏观的角度出发,可以把自然界的物质分为三种,即:气相、液相和固相。 单相物质的流动称为单相流,如气体流或液体流。 所谓两相流(Two-Phase Flow)或多相流(Multiphase Flow)是指同时存在两种或多种不同相的物质的流动。 近年来随着国内外石油和天然气工业的发展,迫切需要开发出精度较高的油气水三相流量在线测量仪,以便掌握各个油井的生产动态。 然而,多年来尽管在这方面进行了大量的研究工作,取得了一些进展,但是仍然没有彻底清晰地认识和了解油气水三相混合物的流动型态。 在现今的多相流检测技术领域中,流型的识别问题变得越来越重 1/ 10

要。 1 两相流流型由于存在一个形状和分布在时间和空间里是随机可变的相界面,而相间实际上又存在一个不可忽略的相对速度,致使流经管道的分相流量比和分相所占的管截面比并不相等。 这就导致了两相流动结构多种多样,流型十分复杂。 流型是影响两相流压力损失和传热特性的重要因素。 两相流各种参数的准确测量也往往依赖于对流型的了解。 因此为了对两相流的特征参数进行测量,必须了解它们的流型。 1.1 垂直上升管中气液两相流流型(1)、泡状流(Bubbly Flow):气泡以不同尺寸的小气泡形式随机离散分布在流动的液体中。 显然,此时气体为离散相,而液体为连续相。 随着气速的增加,气泡尺寸会不断增大。 (2)、段塞流(Slug Flow):在气泡流动中当气泡的浓度增高时,气泡聚合为直径接近于管内径的塞状或炮弹状气泡,气泡前端部分呈现为抛物线形状。 在这些塞状气泡之间可带有小气泡的液团。 当气泡快速上升时,液体在气泡与管内壁间的间隙中流动。 (3)、混状流(Churn Flow):当气泡速度进一步增大时,段塞流中的气泡速度也随之增加并产生破裂、碰撞、聚合和变形,与液体混合成为一种不稳定的上下翻滚的湍动混合物。 此时气液两相界为离散相。

流体力学多相流自学作业

多相流及其应用 1.两相与多相流的定义与分类 在物理学中物质有固、液、气和等离子四态或四相。单相物质的流动称为单相流,两种混合均匀的气体或液体的流动也属于单相流。同时存在两种及两种以上相态的物质混合体的流动就是两相或多相流。在多相流动力学中,所谓的相不仅按物质的状态,而且按化学组成、尺寸和形状等来区分,即不同的化学组成、不同尺寸和不同形状的物质都可能归属不同的相。在两相流研究中,把物质分为连续介质和离散介质。气体和液体属于连续介质,也称连续相或流体相。固体颗粒、液滴和气泡属于离散介质,也称分散相或颗粒相。流体相和颗粒相组成的流动叫做两相流动。 自然界和工业过程中常见的两相及多相流主要有如下几种,其中以两相流最为普遍。(1) 气液两相流 气体和液体物质混合在一起共同流动称为气液两相流。它又可以分单组分工质如水—水蒸气的汽液两相流和双组分工质如空气—水气液两相流两类,前者汽、液两相都具有相同的化学成分,后者则是两相各具有不同的化学成分。单组分的汽液两相流在流动时根据压力和温度的变化会发生相变。双组分气液两相流则一般在流动中不会发生相变。 自然界中如下雨时的风雨交加,湖面和海面上带雾的上升气流、山区大气中的云遮雾罩。生活中沸腾的水壶中的循环,啤酒及汽水等夹带着气泡从瓶中注人杯子的流动等都属于气液两相流。现代工业设备中广泛应用着气液两相流与传热的原理和技术,如锅炉、核反应堆蒸汽发生器等汽化装置,石油、天然气的管道输送,大量传热传质与化学反应工程设备中的各种蒸发器、冷凝器、反应器、蒸馏塔、汽提塔,各式气液混合器、气液分离器和热交换器等,都广泛存在气液两相流与传热现象。 (2) 气固两相流 气体和固体颗粒混合在一起共同流动称为气固两相流。 空气中夹带灰粒与尘土、沙漠风沙、飞雪、冰雹,在动力、能源、冶金、建材、粮食加工和化工工业中广泛应用的气力输送、气流千燥、煤粉燃烧、石油的催化裂化、矿物的流态化焙烧、气力浮选、流态化等过程或技术,都是气固两相流的具体实例。 严格地说,固体颗粒没有流动性,不能作流体处理。但当流体中存在大量固体小粒子流

相关主题
文本预览
相关文档 最新文档