当前位置:文档之家› 冻融循环对黄土物理力学性质影响的试验

冻融循环对黄土物理力学性质影响的试验

冻融循环对黄土物理力学性质影响的试验
冻融循环对黄土物理力学性质影响的试验

文章编号:167325196(2010)022*******

冻融循环对黄土物理力学性质影响的试验

毕贵权1,2,张 侠1,2,李国玉2,马 巍2,毛云程2,3,穆彦虎2

(1.兰州理工大学能源与动力工程学院,甘肃兰州 730050;2.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃兰州 730000;3.甘肃省交通科学研究所有限公司,甘肃兰州 730050)

摘要:通过补水条件下的冻融循环试验,研究冻融循环作用对黄土样的水分分布、变形和干密度的影响.试验结果表明:反复的冻融循环作用使得土样含水量增加,从底板到顶板土样含水量逐渐递增,冻融界面附近含水量变化梯度较大;黄土样在冻融循环初期冻胀变形比较剧烈,之后总体变形趋于稳定,冻融循环后期土样出现较小的沉降变形;冻融循环使得黄土样的干密度逐渐减小,且冻融循环剧烈的上部干密度较下部更小.

关键词:黄土;冻融循环;冻胀;融沉;变形;含水量;干密度

中图分类号:TU1112.5 文献标识码:A

Experiment of impact of freezing2tha wing cycle

on physico2mechanical properties of loess

BI Gui2quan1,2,ZHAN G Xia1,2,L I Guo2yu2,MA Wei2,MAO Yun2cheng2,3,MU Yan2hu2

(1.College of Energy and Power Engineering,Lanzhou Univ.of Tech.,Lanzhou 730050,China;2.State Key Laboratory of Frozen Soil Engineering,CAREERI,CAS,Lanzhou 730000,China;3.Transportation Research Institute of Gansu Province,Lanzhou 730050,China)

Abstract:By means of f reezing2t hawing cyclic test wit h water supplement,t he impact of freezing and t ha2 wing actio ns on deformation,water redist ribution and dry dense of loess samples was st udied.The experi2 mental result showed t hat repeated f reezing and t hawing actions would make t he water content in samples increased gradually from t he bottom to t he top.It changed sharply near t he interface between f rozen and unfrozen areas.At t he starting of f reeze2t haw cycle,t he f ro st heave of loess samples was stronger.Then t he overall deformation became stable,which meant t hat t he deformation induced by f rost heave was equal to t hat inducted by t haw settlement.At t he end of f reeze2t haw cycle,t here was a small settlement in sam2 ples,which resulted p robably from soil particle rearrangement caused by st rong f reezing and t hawing ac2 tion.In additio n,freezing and t hawing actions decreased gradually t he dry density of loess samples.The dry density in upper part was larger t han t hat in bottom part.

K ey w ords:loess;freeze2t haw cycle;f ro st heave;t haw settlement;deformation;water content;dry density

中国黄土分布面积很广,黄土和黄土状土分布面积约70万km2,其中湿陷性黄土约50万km2,约占黄土分布面积的71%.中国大部分黄土分布在季节冻土区,季节性冻土区黄土地基经常发生大量的不均匀沉降、塌陷等病害,其主要原因是地基浸水黄土发生较大湿陷变形,另外一个重要的原因是反复

收稿日期:2009212217

基金项目:国家自然科学基金(40801022,40821001),中国科学院西部行动计划项目(KZCX22XB2210,KZCX22YW2

Q03204)

作者简介:毕贵权(19792),男,吉林九台人,博士生,讲师.冻融循环使得水分重新分布且结构发生弱化,造成黄土强度降低,地基破坏.关于冻融循环引起的土体水盐重分布以及对结构和强度等物理力学性质的影响,研究人员进行了大量的研究.D.Y.Wang等[1]对冻融循环前后的土样的弹性模量、粘聚力和摩擦角等进行了对比研究,发现冻融循环后土样的弹性模量和粘聚力降低,摩擦角增大.杨成松等[2]研究了冻融循环对土体干容重和含水量的影响,结果发现冻融循环后的土体干容重趋于某一定值,且这一定值与土体的种类有关,冻融循环后的土体含水量比初始含水量大.Edwin等[3]和齐吉琳等[4]对细颗粒

第36卷第2期2010年4月

兰 州 理 工 大 学 学 报

Journal of Lanzhou University of Technology

Vol.36No.2

Apr.2010

土进行了室内冻融循环试验,研究发现冻融循环作用强烈地改变了土体的结构.马巍等[5]讨论了冻融循环对石灰粉土剪切强度特性的影响,通过试验研究发现,随冻融循环次数的增加,石灰粉土的剪切强度逐渐衰减.齐吉琳等[6]研究了冻融作用对超固结土强度的影响,发现其强度参数发生了变化;冻融过程会改变土的结构性的两个方面,即土颗粒的排列和联结.李国玉等[7]研究了盐渍土中含盐量对冻胀盐胀特性影响,试验结果发现:含盐量对路基土冻胀、融沉和盐胀等变形过程有明显的影响.Brouchk2 ov[8]对冻土在温度和盐渍化梯度长期影响下进行了长达12年的试验研究,研究发现水分和盐分的迁移只发生在局部,并没有从试样的一端迁移到另一端.徐学祖[9]研究了冻土与盐溶液系统中热质迁移及变形过程,发现水、盐迁移通量及变形量随时间按指数规律衰减并随外载增大和温度降低而减小.邱国庆等[10]探讨了冻结过程中的盐分迁移及其与土壤盐渍化的关系,结果表明:在粘性土开放性及封闭性单向冻结过程中,盐分向土的正冻部分迁移,从而使土柱的冻结部分盐渍化程度较冻前增高.

以上研究对认识冻融循环对土体水分迁移、结构性变化以及物理力学性质的影响具有重要的意义.然而,目前相关的研究还存在一些不足,如有的试验冻融循环次数较少(大部分都是10次以下),有的冻融试验条件简单(单向冻结),且有的试验没有具体的实际应用条件,针对性不强.为了研究G30连霍高速古永段冻融循环对黄土路基湿陷机理的影响以及相应的病害防治,采取该路段典型黄土样,以兰州市1971—2000年平均地表温度为边界条件,进行补水条件下的21次冻融循环试验,研究冻融循环对黄土路基的变形、水分分布和干密度影响,为正在修建的G30连霍高速古永段的施工和维护提供科学依据和技术支持;同时,储备完善冻融循环条件下的水热质迁移试验数据,促进冻土物理和力学的发展.

1 试验方案

在原国道G312线K2300+100(36°36′34″N, 103°22′05″E,海拔1917m)附近采集黄土样,采集区在中国湿陷性黄土工程地质分区图中属于陇西黄土区,湿陷性黄土层厚度约为10~15m[11].将现场采集的土样配成最佳含水量逐层放置到有机玻璃筒中,压实至一定的干密度(1.86g/cm3),接近土样的最大干密度1.91g/cm3.土样为高10.13cm,直径10.10cm的圆柱体.试验之前在室温下固结24h,使其含水量均匀,然后利用冻土工程国家重点实验室研制的冻融循环仪(如图1所示)对采取的土样进行室内冻融循环试验,研究压实黄土在冻融循环前后的变形规律、水分重分布规律及其干密度变化.根据G30连霍高速古永段较近的兰州市气象站30a (1971—2000年)平均地表温度资料,确定冻融循环试验顶板温度(如图2所示);底板温度控制在1℃,底边补水;1个冻融循环周期为1d,总共冻融21次.

试样顶板和底板用冷浴降温,箱体温度由低温循环冷浴控温,一般控制在1℃左右.顶板温度在最低温度-6.7℃和最高温度27℃间循环变化,循环周期为

1d,冻融循环共

21次.实验期间装样的有机

(a)冻融循环仪

(b)冻融循环仪简图

图1 冻融循环设备

Fig.1 Diagram of experimental

system for freeze2tha w testing of loess samples

图2 兰州市气象站30a(1971—2000年)平均地表温度Fig.2 Annu al mean ground temperature in30years re2 corded by Lanzhou meteorological station

?

5

1

1

?

第2期 毕贵权等:冻融循环对黄土物理力学性质影响的试验

玻璃筒外围用海绵隔热,以保证样品单向冻结和单向融化.为精确测定土样沿深度方向的热状况,沿垂直方向每1cm布置1支热敏电阻温度计,同时在土样的顶板安装位移传感器,监测垂直方向上土体的变形量.温度参数、变形参数通过数据采集仪记录于其存储器中,并传到计算机,每30min采集一次温度、变形数据.温度控制精度为0.1℃,变形传感器的精度为0.01mm.试样底端连接补水系统,模拟现场的地下水补给,半个周期人工记录一次补水量.

2 试验结果分析

2.1 土样基本特性

在进行冻融循环试验之前,将土样过0.5mm 筛子,各称取适量,用液塑限联合测定仪(T G2321)、分析天平(HQ2421)等按照《土工试验方法标准》上的方法对土样进行颗分、液塑限、比重等进行测试.土样颗分结果如表1所示,土样液限为26.9%,塑限为18.7%,塑性指数为8.2,土样比重为2.704,属于低液限粉土.

表1 土样粒径颗分

T ab.1 Soil particle distribution

粒径/ mm 小于某粒径

的土质量百

分含量/%

粒径/

mm

小于某粒径

的土质量百

分含量/%

0.100~0.074 0.074~0.050 0.050~0.010

0.1

10.2

49.2

0.010~0.005

0.005~0.002

<0.002

37.2

1.2

2.0

2.2 土体变形过程分析

土样经历冻融循环时的变形过程和补水量变化过程曲线如图3所示.从图中可以看出,在冻融开始的12h前,土体的变形量几乎为零,主要原因是冻融循环试验刚开始,土样呈非饱和状态,初始含水量小于起始冻胀含水量.土样在冻结开始时发生明显的冻胀,变形急剧增加,融化时融沉变形较小,冻胀量大于融沉量.经过8次冻融循环(192h)后,土体冻胀量达到最大值19.43mm

,约为原土样的1/5.之后,土样冻胀量和融沉量基本相等,总体处于稳定变化阶段.15次冻融循环后,融沉量大于冻胀量,土样表现为下沉.在冻融初期,补水量较大,大约200 h后,补水量基本稳定在较低的水平.从以上变形过程和补水量曲线可以看出,冻融初期,土样补水量大且冻胀量也较大,后期,变形量和补水量趋于稳定,二者具有很好的一致性.说明冻融初期土体膨胀主要原因是冻融循环条件下水分向土样迁移使得土样含水量增加,冻结时土样体积增加引起冻胀变形.后期土体表现为下沉原因可能是土样在多次冻融循环下,土体结构出现重新排列的现象,水分融化引起的沉降及其水分融化引起的土壤颗粒、空隙重排布,土体自身抗沉降能力减少,相应的冻胀量比沉降量少,导致土样沉降.

图3 冻融循环条件下土体变形和补水量变化过程Fig.3 V ariation process of deform ation of soil settlement and w ater intake into loess sample in case of freez2

ing2th a wing cyclic action

2.3 土体含水量重分布

冻融循环21次后在冻结状态下拆样,快速将土样自上而下按每1cm一层分层取样,用烘干法测出其含水量,分析土样在多次冻融循环下的水分重分布规律.图4是冻融循环前后土样的含水量随深度的变化对比图,从图中可以看出,土样的初始含水量为11.6%,土样在多次冻融循环下含水量均增大,且从底层到顶层依次增加,最低层含水量最小,最小值为17.08%,

但比初始含水量大;顶层含水量最大为31.63%,融化后成泥状.这主要是由于土体顶板温度在0℃下时,土体上部冻结,水分在温度梯度作用下克服重力作用从融区(下部)向冻结区(上部)迁移,当顶板温度变为0℃上时,土体上部开始融化,这时水分在重力作用下又从上向下迁移,但是冻结状态下向上迁移的水量较融化状态下向下迁移的水量多,使得土样顶层含水量逐渐增加.如此反复冻融循环,使得土样形成了水分从下向上逐渐增大的分布规律.就土样含水量增长速率来说,可以看出顶层和底层的增长速率比较接近,土样4~6cm区域增长速率最大.这是因为底板温度保持为1℃,使得土

图4 冻融循环前后土样含水量对比变化

Fig.4 Comparison of w ater content in sample before and after freeze2tha w cycle

?

6

1

1

? 兰州理工大学学报 第36卷

样底部有一段(约在0~4cm 之间)始终处于融化状

态(如图5),而在土样冻融界面(约4cm )附近,含水量变化剧烈

.

图5 顶板温度最低时土样温度分布

Fig.5 T emperature distribution in soil when top tempera 2

ture is low est

2.4 土体干密度变化

冻融循环后快速在土样距顶板和底板约3cm

范围内切下2个环刀,分别测出其含水量和干密度,研究冻融循环对土样干密度的影响.

冻融循环后土样干密度如表2所示,土样顶层干密度从原来的1.86g/cm 3变为1.55g/cm 3,底层变为1.78g/cm 3,顶层干密度较底层小很多.说明冻融循环对土样的结构有弱化作用.这是因为冻融循环促使土体含水量增加,冻结时水变成冰体积增大,使得土样孔隙增大,造成了土体的结构弱化.

表2 冻融循环前后密度变化对比

T ab.2 Change in dry dense after freeze 2tha w cycles 取样位置/

cm 初始干密度/

(g ?cm -3)

冻融后密度/

(g ?cm -3)

干密度/

(g ?cm -3)

10~11 1.86 2.02 1.552~3

1.86

2.09

1.78

3 结论

通过对黄土样进行补水条件下的多次冻融循环

试验,研究冻融循环作用对黄土样变形、水分分布、干密度的影响规律,得出以下主要结论.

1)反复冻融循环作用使得补水条件下的土样含水量增加,从底板到顶板土样含水量逐渐递增,冻融界面附近含水量变化梯度较大.

2)在补水条件下,黄土样在冻融循环初期冻胀变形比较剧烈,在第8个周期,土样达到变形的最大

值19.43mm ,之后总体变形趋于稳定.在15次冻融循环后,土样出现较小的沉降变形.

3)补水条件下的冻融循环使得黄土样的干密度减小,冻融循环剧烈的上部土样干密度较下部更小.

致谢:本文得到中国博士后科学基金资助项目(200902312,20080430110),冻土工程国家重点实验室研究项目(S KL FSE 2ZQ 202,S K L FSE 2ZY 203),中科院百人计划项目“气候变化条件下高温冻土区线性工程基础稳定性研究”和“多年冻土区路基变形和稳定性研究”,西部交通建设科技项目(200831800025),中国科学院西部之光人才培养计划西部博士资助项目的资助,在此表示感谢.

参考文献:

[1] WAN G D Y ,MA W ,NIU Y H ,et al.Effect of cyclic freezing

and t hawing on mechanical properties of Qinghai 2Tibet clay [J ].Cold Regions Science and Technology Engineering Geolo 2gy ,2007,48(1):34243.

[2] 杨成松,何 平,程国栋,等.冻融作用对土体干容重和含水量

影响的试验研究[J ].岩土力学与工程学报,2003,22(增2):

269522699.

[3] EDWIN J C ,AN T HON Y J G.Effect of freezing and t hawing

on t he permeability and structure of soils[J ].Engineering Ge 2ology ,1979,13(1/4):73292.

[4] 齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意

义[J ].岩石力学与工程学报,2003,22(增2):269022694.

[5] 马 巍,徐学祖,张立新.冻融循环对石灰粉土剪切强度特性的

影响[J ].岩土工程学报,1999,21(2):1582160.

[6] 齐吉琳,马 巍.冻融作用对超固结土强度的影响[J ].岩土工

程学报,2006,28(6):208222086.

[7] 李国玉,喻文兵,马 巍,等.甘肃省公路沿线典型地段含盐量

对冻胀盐胀特性影响的试验研究[J ].岩土力学,2009,30(8):

227622280.

[8] BROUCH KOV A.Salt and water transfer in frozen soils in 2

duced by gradient s of temperature and salt content [J ].Perma 2frost and Periglacial Processes ,2000,11(2):1532160.

[9] 徐学祖,L EBEDEN KO P ,CHUVIL IN E M ,等.冻土与盐溶液

系统中热质迁移及变形过程试验研究[J ].冰川冻土,1992,14

(4):2892295.

[10] 邱国庆,王雅碾,王淑娟.冻结过程中的盐分迁移及其与土壤

盐渍化的关系[J ].土壤肥料,1992(5):15218.

[11] 中华人民共和国建设部.G B 20025—2004湿陷性黄土地区建

筑规范[S].北京:中国建筑工业出版社,2004.

?711?第2期 毕贵权等:冻融循环对黄土物理力学性质影响的试验

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

水泥物理力学性能试验试题

工程质量检测人员考核参考题 水泥物理力学性能部分 姓名:单位:准考证号: 一、名词解释 1.什么是普通硅酸盐水泥和矿渣硅酸盐水泥? 2.什么是水泥的比表面积?它的单位如何表示? 二、填空题 1、硅酸盐水泥的基本组成材料包括水泥熟料、( 石膏 )、混合材料等。 2、硅酸盐水泥分两种类型,不掺加混合材料的称Ⅰ类硅酸盐水泥,代号P·I。在硅酸盐水泥粉磨时掺加不超过水泥质量5%的石灰石或粒化高炉矿渣混合材料的称为( Ⅱ型 )硅酸盐水泥,代号( P·Ⅱ)。 3、硅酸盐系的水泥根据掺加混合材料的数量和种类不同。主要分为以下六个品种,分别是:硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、(火山灰)硅酸盐水泥、粉煤灰硅酸盐水泥、(复合)硅酸盐水泥。 4.水泥取样要有代表性,可连续取,亦可从( 20 )个以上不同部位取等量样品。 5. 水泥试验筛必须经常保持洁净、筛孔畅通,使用( 10 )次后要进行清洗。 6. 水泥的比表面积试样准备要求为:将110±5℃下烘干并在干燥器中冷却到室温的标准试样,倒入100ml的密闭瓶中,用力摇动 ( 2 ) min, 将结块成团的试样震碎,使试样松散。静置( 2 ) min后, 打开瓶盖,轻轻搅拌,使在松散过程中落到表面的细粉分布到整个试样中。 7. 标准稠度用水量测定有两种方法:(标准)法、代用法。 8. 水泥试体成型试验室的温度应保持在( 20±2 )℃,相对湿度应不低于( 50 )%。试体带模养护的养护箱或雾室温度应保持在( 20±1 )℃,相对湿度应不低于( 90 )%。试体养护池水温度应保持在( 20±1 )℃范围内。 9. 水泥抗压试体的六个测定值中,如有一个超出六个平均值的(±10 )%,就应剔除这个结果,而以剩下五个的平均数为结果。如果五个测定值中再有超过它们平均数(±10 )%的,则此组结果作废。 10. 胶砂搅拌机的叶片与锅之间的间隙,是指叶片与锅壁(最近)的距离,应(每月)检查一次。 三、选择题 1.普通硅酸盐水泥中掺加非活性混合材料的最大掺量不得超过水泥的质量( B )。 A. 5% B.10% C.12% 2、代号为P·C的硅酸盐水泥是( B )。 A.矿渣硅酸盐水泥 B复合硅酸盐水泥C火山灰硅酸盐水泥 3. 金属框筛、铜丝网筛清洗时应用( C )。 A. 弱酸浸泡 B. 肥皂液 C. 专用清洗剂 4. 水泥细度测定的结果发生争议时,以( C )为准。 A. 水筛法 B. 手工筛法 C. 负压筛法 5. 下列哪条中的任一项指标不符合标准规定时为废品水泥( C )? A. 安定性、初凝时间、强度、氧化镁 B. 安定性、初凝时间、强度、三氧化硫 C. 安定性、初凝时间、氧化镁、三氧化硫 6. 下列哪条中的任一项指标不符合标准规定时为不合格水泥( B )? A. 细度、终凝时间、强度、氧化镁 B. 细度、终凝时间、强度、混合物掺加量

水泥物理力学性能试题及答案

水泥物理力学性能试验试题 一)填空题 1、水泥取样可连续取,亦可从(20)个以上不同部位取等量样品,总量至少(12Kg) 2、水泥胶砂试块质量比,水泥:ISO标准砂:水等于(1 : 3 : 0.5 ) 3、水泥胶砂强度试验方法采用尺寸(40mm*40mm*160n)m棱柱体试块的水泥抗压强度和抗折强度 4、达到试验龄期时将试块从水中取出用潮湿棉布覆盖先进行(抗折强度)试验,折断后每截再进行(抗压强度)试验 5、试验室室内空气(温度)和(相对湿度)以及养护池水的(水温)在工作期间每天至少记录一次 6、养护箱的温度与相对湿度至少每4h 记录一次,在自动控制的情况下记录次数酌情减至一天记录(二次)。 7、水泥胶砂振实台为了防止外部振动影响振实效果,需要在整个混凝土基座下放一层厚约 (5mm)天然橡胶弹性衬垫。 8、水泥抗折试验以(50±10N/S )的速率均匀加荷,直至破坏。 9、制备胶砂后立即进行成型。用勺子将胶砂分(二层)装入试模,装第一层时,每个槽约放 300g,用大播料器垂直模套顶部沿着每个槽来回一次播平,接着振实(60 )次。再装入第二层,用小播料器播平,再振实(60)次。 10、试体龄期是从(水泥加水搅拌)开始试验时算起。 11、雷氏夹受力弹性应符合要求。当一根指针的根部先悬挂在尼龙丝上,另一根指针的根部再挂上(300g)质量的砝码时,两根指针针尖的距离增加应在(17.5 ± 2.5mm)范围内,并且去掉砝码后针尖的距离能恢复至挂砝码前的状态。 12、由(水泥全部加入水中)至终凝状态的时间为水泥的初凝时间,用什么单位(min )表示。 13、水泥安定性试验每个样品需成型(两)个试件 14、当两个试件煮后增加距离(C-A)的平均值大于(5.0)mm寸,应用同一样品立即重做一次试验,以复检结果为准

土的力学性质

土的力学性质 土的力学性质 土的力学性质是指土在外力作用下所表现的性质,主要包括压应力作用下体积缩小的压缩性和在剪应力作用下抵抗剪切破坏的抗剪性,.其次是在动荷作用下所表现的一些性质。第一节土的压缩性. 一、土压缩变形的特点与机理 土的压缩性指土在压力作用下体积压缩变小的性能。土受压后体积缩小是土中固、液、气三相组成部分中的各部分体积减小的结果(主要是气体、水分挤出、土粒相互移动靠拢的结果)。 二、压缩试验压缩定律试验方法 : 室内现场据压缩条件: 无侧向膨胀(有侧限)试验有侧向膨胀(无侧限)试验主要是室内无侧向膨胀压缩试验 土的无侧向膨胀压缩试验是先用金属环刀切取土样,然后将土样连同环刀一起放入压缩仪内,由于土样受环刀和护环等刚性护壁约束,在压缩过程中只能发生竖向压缩,不可能发生侧向膨胀.。 试验时,通过加荷装臵将压力均匀地施加到土样上,压力由小到大逐级增加,每级压力待压缩稳定后,再施加下一级压力,土的压缩量可通过微表观测,并据每级压力下的稳定变形量,计算出与各级压力相应的稳定孔隙比。 若试验前试样的截面积为A,土样原始高度为h0,原始孔隙比e0, 当加压P1后土样压缩量为△h1,土样高度由h0减小到h1=h0-△h ,相应孔隙比由e0变为e1. 由于土样压缩时不可能产生侧向膨胀,故压缩前后横截面积不变,加压过程中土的体积是不变的.即: A h0/(1+e0)=A(h0-△h1)(1+ e1) e1=e0-△h1/h0(H e0) 通过试验,求的各级压力Pi作用下,土样压缩性稳定后相应的孔隙比ei,以纵坐标表示孔隙比e, 横坐标表示压力ρ。据压缩试验数据,可绘制出孔隙比与压力的关系曲线------压缩曲线。

水泥物理力学性能试题及答案

水泥物理力学性能试验试题 (一)填空题 1、水泥取样可连续取,亦可从(20)个以上不同部位取等量样品,总量至少(12Kg) 2、水泥胶砂试块质量比,水泥:ISO标准砂:水等于( 1 : 3 : 0、5 ) 3、水泥胶砂强度试验方法采用尺寸(40mm*40mm*160mm )棱柱体试块的水泥抗压强度与抗折强度 4、达到试验龄期时将试块从水中取出用潮湿棉布覆盖先进行( 抗折强度)试验,折断后每截再进行(抗压强度)试验 5、试验室室内空气( 温度)与( 相对湿度)以及养护池水的( 水温 )在工作期间每天至少记录一次 6、养护箱的温度与相对湿度至少每4h记录一次,在自动控制的情况下记录次数酌情减至一天记录(二次)。 7、水泥胶砂振实台为了防止外部振动影响振实效果,需要在整个混凝土基座下放一层厚约( 5mm)天然橡胶弹性衬垫。 8、水泥抗折试验以( 50±10N/S )的速率均匀加荷,直至破坏。 9、制备胶砂后立即进行成型。用勺子将胶砂分(二层 )装入试模,装第一层时,每个槽约放300g,用大播料器垂直模套顶部沿着每个槽来回一次播平,接着振实(60)次。再装入第二层,用小播料器播平,再振实(60)次。 10、试体龄期就是从( 水泥加水搅拌)开始试验时算起。 11、雷氏夹受力弹性应符合要求。当一根指针的根部先悬挂在尼龙丝上,另一根指针的根部再挂上( 300g)质量的砝码时,两根指针针尖的距离增加应在(17、5±2、5mm)范围内,并且去掉砝码后针尖的距离能恢复至挂砝码前的状态。 12、由( 水泥全部加入水中)至终凝状态的时间为水泥的初凝时间,用什么单位( min)表示。 13、水泥安定性试验每个样品需成型( 两)个试件 14、当两个试件煮后增加距离(C-A)的平均值大于(5、0)mm时,应用同一样品立即重做一次试验,

水泥物理力学性能试验试题(答案)

广西永正工程质量检测有限公司 一、水泥物理力学性能试验试题 姓名:员工编号:成绩: (一)填空题 1、六大通用水泥:硅酸盐水泥代号P·Ⅰ和 P·Ⅱ;普通硅酸盐水泥代号P·O;矿渣硅酸盐水泥代号P·S;火山灰质硅酸盐水泥代号P·P;粉煤灰硅酸盐水泥代号P·F;复合硅酸盐水泥代号P·C。 2、目前应用最新水泥细度检验方法国家标准号为GB/T1345-2005。 3、水泥试验筛每使用100次后需重新标定,水泥细度试验使用的天平最小分度值应不大于。 4、水泥细度试验时,80μm筛析试验称取试样25g,45μm筛析试验称取试样10g,筛析试验是负压范围4000~6000Pa,开动筛析仪连续筛析2min。 5、试验筛的清洗,每使用10次要进行清洗。 6、当SO2、MgO、初凝时间,安定性中有一项不符合要求,判定该批水泥为废品。不合格品包括:细度、终凝时间、混合掺量超标、强度不够、包装标志中水泥品种、强度等级生产者名称和出厂编号不全,还包括不溶物和烧失量。 7、细度:硅酸盐水泥比表面积>300m2/㎏,普通水泥80um方孔筛余不得超过%。凝结时间:六类水泥初凝都不得早于45min,终凝除硅酸盐水泥不得迟于,其他水泥不得迟于10h。 8、水泥物检(软炼)常规项目:标准稠度用水量、细度、安定性、凝结时间、胶砂强度。 9、试验室温温度(20±2)℃相对湿度≥50% 每一天记一次。每个养护池只养护同类型的水泥试件,不允许养护期间全部换水。 10、凝结时间:初凝时间判定(4±1)㎜,终凝时间㎜没有留下痕迹,临近初凝每隔5min测定一次临近终凝每隔15min测定一次。 11、安定性:雷氏夹法(标准法),雷氏夹安定性检验时应采用宽约10mm的小刀捣插,试件养护时间为24h±2h,沸煮时间为30min±5min ,恒沸时间为3h±5min。 12、安定性用试饼法试验时,以试饼无裂无弯曲判定是否合格,一个不合格则全部不合格。试件养

水泥土物理力学性质试验研究

水泥土物理力学性质试验研究 Water soil physical and mechanical properties of the experimental research 摘要:基于山东省济菏高速公路软基加固试验资料的分析,探讨了水泥土的物理力学性能及其变化规律。结果表明,影响水泥土抗压强度的主要因素有水泥掺量、龄期和含水率,水泥土抗压强度随水泥掺量的增大而增大,两者呈幂函数关系,随龄期的增长而增大,随土样含水率的增加而迅速降低。其应力-应变关系呈非线性关系,表现为弹塑性材料的性质。另外水泥土的压缩系数随水泥掺量的增加而减小,变形模量、抗拉强度和抗剪强度都随抗压强度的增大而增大。 关键词:水泥土;强度;变形;水泥掺量;龄期;含水率 Abstract: based on the shandong province He highway has soft foundation reinforcement test data analysis, probes into the soil water of physical and mechanical performance and the changing laws. The results showed that soil water influence the compressive strength of cement content is the main factors, and moisture content of cement, water the compressive strength of the cement soil with the mixed quantity increases, both a power function relation between, along with the growth of the age increases with the increase of the moisture content of the soil sample lowers quickly. The nonlinear stress-strain relationship, for the performance of the elastic-plastic material properties. In addition of cement-treated soil cement mixed quantity compression coefficient with the increase and decrease, elastic modulus, tensile strength and shear strength as the compressive strength increases. Keywords: water soil; Strength; Deformation; Cement mixed quantity; ); Moisture content 1引言 济菏高速公路地处黄河下游东部黄泛冲积平原,沿线为第四纪覆盖区,出露地层主要为第四纪粉土、粘性土、砂土等,厚度150m-400m。根据野外地质钻探及室内土工试验等勘察资料综合分析,部分路段属于软土地基需进行加固处理,经多方案比较,决定采用水泥土搅拌法。水泥土搅拌法是加固软弱地基的一种新型技术,是以水泥作为固化剂,通过特制的深层搅拌机械,在地基深处就地将软土和水泥强制搅拌,利用水泥和软土之间所产生的一系列物理化学反应,使软土硬结成具有整体性、水稳定性和一定强度的优质地基[1]。目前这项技术的发展仅经历三十年,无论从加固机理到设计计算方法或者施工工艺均存在有待完善的地方,有些还处于半理论半经验的状态,再加上施工的隐蔽性,因此对水泥土进行室内试验研究是保证地基加固效果的重要途径。本文结合济菏高速公路工程水泥土搅拌法软基加固实例,通过室内试验,探讨水泥土的物理力学性能及其变化规律,为高速公路软土地基加固提供理论依据。 1、Introduction

江苏省建设工程检测人员上岗证考试水泥物理力学性能B卷.doc

江苏省建设工程质量检测人员岗位合格证考核试卷 水泥物理力学性能 B 卷 (满分 100 分,时间 80 分钟) 姓名考试号单位 一、单项选择题(每题 1 分,共计 40 分) 1. 在进行水泥胶砂制备的各个搅拌阶段,时间误差应控制在内。 A、± 10s B、± 2s C、± 5s D、± 1s 2. 复合硅酸盐水泥的代号为。 A、P·O B、P·F C、P·P D、P·C 3. 测定水泥标准稠度用量水器精度为。 A、,精度为 1% B、,精度为 1% C、± D、,精度为 % 4. 水泥取样应具有代表性,可连续取样,亦可从20 个以上不同部位取等量样品。取样 品宜用取样器,总量不少于。 A、6kg B、12kg C、10kg D、20kg 5. 水泥抗压强度的计算应精确至。 A、1MPa B、 MPa C、 MPa D、5 MPa 6. 水泥胶砂流动度测定,应在内,完成跳动。 A、30s±1s、 25 次 B、25s±1s、 25 次 C、30s±1s、 30 次 D、25s±1s、 30 次 7. 普通硅酸盐水泥终凝时间不大于min 。 A、300 B、360 C、390 D、600 8. 标准法维卡仪,在测定水泥标准稠度、初凝、终凝时其滑动部分的总质量为。 A、280g±1g B、300g±1g C、320g±1g D、350g±1g 9. 硅酸盐水泥分个强度等级。 A、4 B、5 C、6 D、7

10. 标准稠度用水量和安定性按照进行检验。 A、GB/T1345-2011 B、GB/T1345-2005 C、GB/T1346-2011 D、GB/T1346-2005 11. 水泥试体成型试验室的温度应保持在,相对湿度应不低于 50%。 A、20℃± 2℃ B、20℃± 1℃ C、23℃± 2℃ D、23℃± 1℃ 12. 水泥试体带模养护的养护箱或雾室相对湿度不低于。 A、95% B、90% C、80% D、80% 13. 胶砂试件脱模后,养护期间,试体间距不得小于。 A、5mm B、10mm C、20mm D、50mm 14. 水泥凝结时间测定时,临近初凝时,每隔测定一次,临近终凝时间时,每隔 ________测定一次。 A、15min 30min B、10min 20min C、5min 15min D、5min 10min 15.GB/T 208-1994 中水泥密度两次测定结果之差不得超过g/cm 3。 A、B、 C、D、 16. P·Ⅰ型水泥的空隙率采用,P·Ⅱ型水泥的空隙率采用。 A、±,± B、±,± C、±,± D、±,± 17.GB/T 17671-1999 中规定,水泥:标准砂:水的比例为。 A、1:2: B、1:2:1 C、1:3: D、1:3:1 18. 对行星式水泥胶砂搅拌机描述错误的是。 A、应符合 JC/T 681-1997 的要求 B、搅拌锅和搅拌叶片应配对使用 C、叶片与锅之间的间隙为 3±1mm D、叶片与锅之间的间隙应每年检查一 次 19. 水泥胶砂成型时,金属模套壁与模型内壁应该重叠,超出内壁不应大于mm 。 A、B、1 C、D、2 20. 水泥胶砂抗压强度试验机的最大荷载以kN 为佳。 A、200~300 B、300~600 C、20~30 D、30~60 21. 当试验水泥取样至试验要保持以上时,应把它贮存在基本装满和密闭的容器 里,这个容器应不与水泥起反应。 A、24h B、48h C、72h D、8h

水泥物理力学性能-复习资料

水泥物理力学性能-复习资料 1、水泥成型室温度应保持在20±2℃,相对湿度应为不低于50% ,养护箱或雾室温度应保持在 20±1℃,相对湿度应为不低于90% ,养护水温度(水泥胶砂强度试验中试体养池水温度)应为20±1℃。 2、水泥代号与名称:硅酸盐水泥——P2I(不掺加混合材料)、P2Ⅱ(加量不超过水泥质量5%石灰 石或粒化高炉矿渣混合材料);普通硅酸盐水泥——P2O;矿渣硅酸可卡因水泥——P2s;火山灰质硅酸盐水泥——P2P;粉煤灰硅酸盐水泥——P2F;复合硅酸盐水泥——P2C。 3、硅酸盐水泥细度检验结果以比表面积表示,标准指标要求为大于300m/kg ,普通水泥细度检验 结果以筛网上所得筛余物的质量占试样原始质量的百分数(筛余百分数)表示,标准指标要求为不超过10.0% 。 4、氧化镁、三氧化硫、初凝时间、安定性中任一项不符合标准规定时,均为废品。 5、细度、终凝时间、不溶物和烧失量不符合标准规定,或混合材料掺加量超过最大限量和强度超过 低于商品强度等级指标,水泥包装标志中水泥品种、强度等级、生产省名称和出厂编号不全时,为不合格品。 6、试验室温湿度及养护水温度至少每1d 记录一次,养护箱温湿度至少每4h 记录一次,且每个养 护池只能养护同类型的水泥试件,水泥净浆量水器最小刻度为0.1ml ,精度1% ,水泥胶砂强度试验中,称量用天平精度为±1g ,用自动滴管加225ml水时,滴管精度应达到±1ml 。 7、24h龄期的试件,应在破型试验前20min 内脱模,24h 以上龄期的,在成型后20~24h 之间 脱模。 8、试件破型前15min 从水中取出,不同龄期强度试验时间允许偏差范围:24h±15min ; 48h±30min ;72h±45min ;7d±2h ;28d±8h . 9、水泥胶砂强度检验时,标准砂为中国ISO标准砂,配合比为:一份水泥、三份标准砂、半份水(灰 砂比:1:3 ,水灰比:0.5 )。 10、用标准法测定标准稠度用水量时,以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度 净浆;当试针沉至距底板4mm±1mm 时,为水泥达到初凝状态;当试针沉入试体0.5mm 时,为水泥达到终凝状态。由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用min 表示。 11、采用负压筛法测定水泥细度时,水泥应通过0.9mm方孔筛,用最大称量为100g ,分度值不 大于0.05g 的天平称取25g 试样,在负压为4000~6000Pa 条件下连续筛析2min 。 12、胶砂搅拌机叶与片与锅底,锅壁间的间隙为3±1mm 。 13、抗折强度试验加荷速度:50N/s±10N/s ;抗压强度试验加荷速度:2400N/s±200N/s 。 14、抗折强度以一组三个试件结果平均值作为试验结果,当三个强度值中,有超出平均值±10% 时, 应剔除后再取平均值作为试验结果。 15、抗压强度以一组三个棱柱体上得到的六个抗压强度测定值的算术平均值为试验结果,如其中六个 测定值中有一个超过平均值的±10% ,应剔除,取余下五个的平均值作为结果。如果余下五个测定值中,再有超过平均值的±10% ,结果作废。 16、各类水泥的技术要求。(GB175-1999,GB1344-1999) 17、用雷氏法(标准法)进行安定性试验时,应将净浆一次装满雷氏夹,用宽约10mm 的小刀插捣 数次,抹平,盖上玻璃板,立即移到养护箱养护24h±2h 。之后,取出试件测量雷氏夹指针 尖端间距离(精确到0.5mm),将试件放入沸煮箱水中试件架上,指针朝上,在30min±5min 内加热至沸,并恒沸180min±5min 。两个试件煮后增加的距离(C-A)平均值不大于 5.0mm 为合格。 当两个试件的(C-A)值相差超过 4.0mm 时,同一样品重做试验。再如此,则该水泥安定性不合格。

岩块和岩体的地质特征概述岩体与岩块本质的区别

第二章岩块和岩体的地质特征 第一节概述 岩体与岩块本质的区别: ①岩体中存在有各种各样的结构面; ②不同于自重应力(场)的天然应力场和地下水。 第二节岩块 一、岩块的物质组成(substance composition) 1.岩块(rock or rock block) 指不含显著结构面的岩石块体,是构成岩体的最小岩石单元。 国内外,有些学者又称为结构体(structural element)、岩石材料(rock material)及完整岩石(intact rock)等等。 2.岩石(rock) 具有一定结构构造的矿物(含结晶和非结晶的)集合体。 3.岩块的力学性质 一般取决于组成岩块的矿物成分及其相对含量。 造岩矿物五大类:含氧盐、氧化物及氢氧化物、卤化物、硫化物、自然元素。 其中,含氧盐中的硅酸盐、碳酸盐及氧化物类矿物最常见,构成99.9%的岩石。 (1)硅酸盐类矿物:长石、辉石、角闪石、橄榄石及云母和粘土矿物等。 ①长石、辉石、角闪石和橄榄石,硬度大,呈粒、柱状晶形,如含此类矿物多的岩石:花岗岩、闪长岩及玄武岩等,强度高,抗变形性能好。多生成于高温环境,易风化成高岭石、水云母等,无以橄榄石的基性斜长石等抗风化能力最差,长石、角闪石次之。 ②粘土矿物:属层状硅酸盐类矿物,主要有高岭石、水云母(伊利石)和蒙脱石三类,具薄片状或鳞片状构造,硬度小。含此类矿物多的岩石如粘土岩、粘土质岩,物理力学性质差,并具有不同程度的胀缩性。(2)碳酸盐类矿物 是石灰岩和白云岩类的主要造岩矿物。岩石的物理力学性质取决于岩石中CaCO3及酸不溶物的含量。CaCO3含量↑,如纯灰岩、白云岩等强度高,抗变形和抗风化性能比较好; 泥质含量↑,如泥质灰岩、泥灰岩等,力学性质较差; 硅质含量↑,岩石性质将娈好。 碳酸盐类岩体中,常发育岩溶现象。 (3)氧化物类矿物 以石英最常见,是地壳岩石的主要造岩矿物。 硬度大,化学性质稳定。石英↑,岩块的强度和抗变形性能明显增强。 4.岩块的矿物组成与岩石的成因及类型密切相关 (1)岩浆岩:多以硬度大的粒柱状硅酸盐、石英等矿物为主,物理力学性质一般很好。 (2)沉积岩:粗碎屑岩如砂砾岩等,力学性质很大程度上取决于胶结物成分及其类型;细碎屑岩如页岩、泥岩等,多以片状的粘土矿物为主,力学性质一般很差。 (3)变质岩:与母岩类型及变质程度有关。 浅变质岩如千枚岩、板岩等,多含片状矿物(如绢云母、绿泥石及粘土矿物等),岩块力学性质较差。 深变质岩如片麻岩、混合岩、石英岩等,多以粒状矿物(如长石、石英、角闪石等)为主,力学性质好。 二、岩块的结构与构造(structure and construct) 1.岩块的结构(岩石结构) 指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、形状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。 二者对岩块(石)的工程性质影响最大。

钙质砂物理力学性质试验中的一些问题

岩石力学与工程学报 CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING 1999年 第18卷 第2期 Volume18 No.2 1999 钙质砂物理力学性质试验中的几个问题* 刘崇权 汪 稔 吴新生 摘要 钙质砂微观结构和变形机理与陆源砂不同,需采用适用于其特征的试验技术。对钙质砂的土粒比重、孔隙比的测量方法、三轴剪切制样技术、颗粒破碎的评价及强度取值方法进行了探讨。 关键词 钙质砂, 物理力学性质试验 分类号 TU411.3 SOME PROBLEMS FOR THE TESTS OF PHYSICO-MECHANICAL PROPERTIES OF CALCAREOUS SAND Liu Chongquan1 Wang Ren1 Wu Xinsheng2 (1Institute of Rock and Soil Mechanics, The Chinese Acad emy of Sciences, Wuhan  430071) (2Long gang Real Estate Compary, Shenzhen 518000) Abstract The micro-structure and mechanism of deformation of calcareous sand are different from that of terrogenious sand. It is necessary to use new experiment technique to fit its characters. The methods are disscussed for measuring grain specific gravity and void ratio, preparing sample for triaxial test, evaluating particle crushing and estimating soil strength. Key words calcareous sand, tests of physico-mechanical properties 1 前 言 钙质砂是一种含CaCo3达50%以上的海洋生物成因的特殊土。钙质砂从微观结构上看,棱角度高,粒间孔隙度大,有内孔隙,这些内孔隙或相互联通,或成为盲孔,使常规试样饱和技术很难达到95%以上的饱和度。又由于矿物硬度低,颗粒粗糙度大,使试样在加载剪切过程中,颗粒破碎与剪胀耦合作用,表现出特殊的应力-应变关系及强度特征。为了对其物理力学性质进行详细的研究,必须有一整套适用于其特性的试验技术。本文对钙质砂的土粒比重、孔隙比的测量方法、三轴剪切制样技术、颗粒破碎的评价及强度取值方法进行了探讨。

水泥物理力学性能

一、水泥物理力学性能 1、水泥成型室温度应保持在 20±2℃,相对湿度应为不低于 50% ,养护箱或雾室温度应保持在 20±1℃,相对湿度应为不低于 90% ,养护水温度(水泥胶砂强度试验中试体养池水温度)应为 20±1℃。 2、水泥代号与名称:硅酸盐水泥——P·I(不掺加混合材料)、P·Ⅱ(加量不超过水泥 质量5%石灰石或粒化高炉矿渣混合材料); 普通硅酸盐水泥——P·O;矿渣硅酸可卡因水泥——P·s; 火山灰质硅酸盐水泥——P·P;粉煤灰硅酸盐水泥——P·F; 复合硅酸盐水泥——P·C。 3、硅酸盐水泥细度检验结果以比表面积表示,标准指标要求为大于300m2/kg ,普通水泥细度检验结果以筛网上所得筛余物的质量占试样原始质量的百分数(筛余百分数)表示,标准指标要求为不超过10.0% 。 4、氧化镁、三氧化硫、初凝时间、安定性中任一项不符合标准规定时,均为废品。 5、细度、终凝时间、不溶物和烧失量不符合标准规定,或混合材料掺加量超过最大限量和强度超过低于商品强度等级指标,水泥包装标志中水泥品种、强度等级、生产省名称和出厂编号不全时,为不合格品。 6、试验室温湿度及养护水温度至少每 1d 记录一次,养护箱温湿度至少每 4h 记录一次,且每个养护池只能养护同类型的水泥试件,水泥净浆量水器最小刻度为 0.1ml ,精度 1% ,水泥胶砂强度试验中,称量用天平精度为±1g ,用自动滴管加225ml水时,滴管精度应达到±1ml 。 7、24h龄期的试件,应在破型试验前 20min 内脱模, 24h 以上龄期的,在成型后 20~24h 之间脱模。 8、试件破型前 15min 从水中取出,不同龄期强度试验时间允许偏差范围: 24h±15min ; 48h±30min ; 72h±45min ; 7d±2h ; 28d±8h . 9、水泥胶砂强度检验时,标准砂为中国ISO标准砂,配合比为:一份水泥、三份标准砂、半份水(灰砂比: 1:3 ,水灰比: 0.5 )。 10、用标准法测定标准稠度用水量时,以试杆沉入净浆并距底板 6mm±1mm的水泥净浆为标准稠度净浆;当试针沉至距底板 4mm±1mm 时,为水泥达到初凝状态;当试针沉入试体0.5mm 时,为水泥达到终凝状态。由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用 min 表示。 11、采用负压筛法测定水泥细度时,水泥应通过 0.9mm方孔筛,用最大称量为 100g ,分度值不大于0.05g 的天平称取 25g 试样,在负压为 4000~6000Pa 条件下连续筛析 2min 。 12、胶砂搅拌机叶与片与锅底,锅壁间的间隙为 3±1mm 。 13、抗折强度试验加荷速度: 50N/s±10N/s ;抗压强度试验加荷速度: 2400N/s±200N/s 。 14、抗折强度以一组三个试件结果平均值作为试验结果,当三个强度值中,有超出平均值±10% 时,应剔除后再取平均值作为试验结果。 15、抗压强度以一组三个棱柱体上得到的六个抗压强度测定值的算术平均值为试验结果,如其中六个测定值中有一个超过平均值的±10% ,应剔除,取余下五个的平均值作为结果。如果余下五个测定值中,再有超过平均值的±10% ,结果作废。 16、各类水泥的技术要求。(GB175-1999,GB1344-1999) 17、用雷氏法(标准法)进行安定性试验时,应将净浆一次装满雷氏夹,用宽约 10mm

水泥物理力学性能

水泥物理力学性能 相关标准:GB175-1999《硅酸盐和普通硅酸盐水泥》(P I、PII、PO);GB1344-1999(PC、PP、PF水泥);GB12658-1999(PC水泥);GB/T1346-2001(水泥标准稠度用水量、凝结时间、安定性检验方法);GB1345-2005(水泥细度筛析法)GB/T17671-1999(水泥胶砂强度检验方法) 一、六大通用水泥: 1、硅酸盐水泥:PI无混合材料;PII掺0-15%混合材料,等级:42.5-62.5R 2、普通硅酸盐水泥:PO掺6%-15%混合材料;等级:32.5-52.5R 3、矿渣硅酸盐水泥:PS掺20%-70%粒化高炉矿渣; 4、火山灰硅酸盐水泥:PP掺20%-50%火山灰质混合材料; 5、粉煤灰硅酸相加水泥:PF掺20%-40%粉煤灰; 6、复合硅酸盐水泥:PC掺15%-50%混合材料; 细度:PI及PII为比表面积>300㎡/㎏,其它水泥试验时应取二次平行值,误差为0.5%,45μm筛称10g,80μm称25g,精确到0.01g; 凝结时间:六类水泥初凝都不得早于45min,终凝,PI及PII不得迟于6.5h,其它不得迟于10h; 二、水泥软练常规项目:(各种实验方法、判定规则及其计算方式,仲裁判定以标准法为准)(水泥净浆拌制:先加水再加500g水泥,低速120s,停15s,把水泥净浆刮入锅中,再高速120s,量水器:最小刻度0.1mL、精度1%;天平:≥1000g,分度值不大于1g) 1、标准稠度用水量:标准法为试杆法当试杆下沉到距底板(6±1)㎜的水泥净浆用水量。 代用法为试稚法,调节水量法及不变水量法,试稚下沉到(28±2)㎜。

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩 答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。岩块干

土石坝中土石料的物理力学性质

土石坝中土石料的物理力学性质 摘要 随着筑坝技术的发展,近代的高土石坝大量地使用了当地的粗颗粒土石料(以下简称土石料)。铁路、公路以及一些高层、重型建筑物,目前也遇到了此类材料的问题。“土石料”一词,一般泛指诸如砂卵石、石料、石碴料、风化料、砾质土、冰磺土以至人工掺合土等粗颗粒的土石材料。其最大粒径一般都超过75(60)毫米而达到600甚至800毫米以上。近年来,由于筑坝技术的发展,对筑坝材料的要求已逐渐放宽。土石料中的物理力学性质对土石坝的设计,施工有很大的影响,所以我们要修好土石坝,必须研究清楚土石坝的各种物理力学性质。 关键字 土石料砂卵石石碴料风化料物理力学性质

类型 土石坝常按坝高、施工方法或筑坝材料分类。 土石坝按照坝高分类,土石坝按坝高可分为:低坝、中坝和高坝。我国《碾压式土石坝设计规范》(SL 274-2001)规定:高度在30米以下的为低坝;高度在30米~70米之间的为中坝;高度超过70米的为高坝。 土石坝按其施工方法可分为:碾压式土石坝;冲填式土石坝;水中填土坝和定向爆破堆石坝等。应用最为广泛的是碾压式土石坝。 按照土料在坝身内的配置和防渗体所用的材料种类,碾压式土石坝可分为以下几种主要类型: 1)、均质坝。坝体断面不分防渗体和坝壳,基本上是由均一的黏性土料(壤土、砂壤土)筑成。 2)、土质防渗体分区坝。即用透水性较大的土料作坝的主体,用透水性极小的黏土作防渗体的坝。包括黏土心墙坝和黏土斜墙坝。防渗体设在坝体中央的或稍向上游且略为倾斜的称为黏土心墙坝。防渗体设在坝体上游部位且倾斜的称为黏土斜墙坝,是高、中坝中最常用的坝型。 3)、非土料防渗体坝。防渗体由沥青混凝土、钢筋混凝土

岩石力学性质试验指导书

实验一岩石单轴抗压强度试验 1.1 概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2 试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3 试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4 主要仪器设备 试样加工设备:钻石机、锯石机、磨石机或其他制样设备。 量测工具与有关检查仪器: 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 加载设备: 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。 1.5 试验程序 (1)根据所要求的试样状态准备试样。 (2)将试样置于压力机承压板中心,调整有球形座的承压板,使试样均匀受力。

金属物理力学性能试验方法.

混凝土用热轧钢筋拉伸、冷弯试验 一、钢筋拉伸试验 1. 混凝土用热轧光圆钢筋及带肋钢筋牌号及公称直径、横截面面积 (1)钢筋的牌号及其含义 类别牌号牌号构成英文字母含义 热轧光圆钢筋HPB235由HPB+屈服强度 特征值构成 HPB—热轧光圆钢筋的英文(Hot rolled Plain Bars)缩写。 HPB300 普通热轧带肋钢筋HRB335 由HRB+屈服强度 特征值构成 HRB—热轧带肋钢筋的英文(Hot rolled Ribbed Bars)缩写。 HRB400 HRB500 细晶粒热轧带肋钢 筋HRBF335 由HRBF+屈服强 度特征值构成 HRBF—热轧带肋钢筋的英文缩写后加“细的 英文”(Fine)首位字母。 HRBF400 HRBF500 (2)钢筋的公称直径、横截面面积 类别公称直径/mm公称横截面面积 /mm2公称直径/mm公称横截面面积 /mm2 热轧光圆钢筋5.523.7614153.9 6.533.1816201.1 850.2718254.5 1078.5420314.2 12113.1 热轧带肋钢筋 6 28.2 7 22 380.1 8 50.27 25 490. 9 10 78.54 28 615.8 12 113.1 32 804.2 14 153.9 36 1018 16 201.1 40 1257 18 254.5 50 1964 20 314.2 注:理论重量按密度为7.85 g/cm3计算。 2. 组批规则和取样方法 (1)组批规则 钢筋应按批进行检查和验收,每批由同一牌号、同一炉罐号、同一规格的钢筋组成。 每批重量通常不大于60t。超过60 t的部分,每增加40t(或不足40 t的余数),增加一个拉伸试验试样和一个弯曲试验试样。

相关主题
文本预览
相关文档 最新文档