当前位置:文档之家› 灰色模型算法文档

灰色模型算法文档

灰色模型算法文档
灰色模型算法文档

灰色预测算法及相关程序

1 引言 (3)

2算法的基本原理 (3)

2.1 GM(1,1)模型: (3)

2.2生成数 (4)

2.2.1累加生成 (4)

2.2.2累减生成 (5)

3算法的具体实现流程 (6)

3.1 算法流程图 (6)

3.2 实现步骤 (8)

3.3 数据准备与预处理 (10)

4 算法程序实现 (10)

4.1 程序使用说明 (10)

4.2 程序源代码 (11)

4.3 程序运行 (16)

4.3.1程序运行及运行环境说明 (16)

4.3.2 输入数据 (16)

4.3.3 输出数据 (16)

5 参考文献 (16)

灰色预测算法

1 引言

灰色预测(grey prediction)是利用灰色系统理论就灰色系统所作的预测.灰色系统理论认为,尽管系统表象复杂,数据散乱,信息不充分,但作为系统,它必然有整体功能和内在规律,必然是有序的.现有的分析方法大多依据过去的大量数据,按照统计方法分析其规律,这样不仅受数据量的限制,而且准确程度不高.而灰色系统理论把随机量看作是在一定范围内变化的灰色量,对灰色量的处理不是寻求它的统计规律和概率分布,而是对原始数据加以处理,将杂乱无章的原始数据变为规律性较强的生成数据,通过对生成数据建立动态模型,来挖掘系统内部信息并充分利用信息进行分析预测.

目前,灰色系统理论用于预测主要通过GM(m,n)模型,该模型是灰色系统理论的量化体现,可用于以下几个方面的预测:

(1)数列预测:对某个事物发展变化的大小与时间进行预测.

(2)灾变预测:预测灾变发生的时间或者说是异常值出现时区的分布.如人体的血压过高或过低的时间预测.

(3)季节性灾变预测:对发生在每年特定时区的事件和命题作预测.

(4)拓扑预测:即事物整体的预测,亦称波形预测.其特点是对于预先给定的多组数值建立GM(1,1)模型群,根据预测结果构造出整个波形.(5)系统预测:对系统中众多变量间相互协调关系的发展变化所进行的预测.

2算法的基本原理

2.1 GM(1,1)模型:

灰色模型GM(1,1) GM(1,1)的含义为1阶,1个变量的灰色模型,它是在数据生成的基础上建立如下灰微分方程:

)0(

(

)

+)

()1(

k

b

az

k

x=

式中)()0(k x 为原始序列,)0()1(AGOx x =,)1(5.0)(5.0)()1()1()1(-+=k x k x k z .a 称为发展系数,它反映)1(x 和)

0(x 的发展态势;b 称为灰作用量,它的大小反映数据

变化的关系.对序列})(,),3(),2({)1()1()1()1(n z z z z =,因为)()1(k z 为

)()1(k x 与)1()1(-k x 的平均值,故记)1(z 为MEAN )1(x ,即

=)1(z MEAN )

1(x

b k az k x =+)()()1()0(的白化型为:

b ax dt dx =+)1()

1(

初始值用

)1()1()

0()1(x x =,则其解为: a b e a b x t x t a +

??? ?

?

-=--)1()0()1()1()( 该式用于预测时称为时间响应函数,表示为

a b e a b x k x

k a +??? ?

?

-=+-)1()1(?)0()1( 累减还原:

)(?)1(?)1(?)1()1()0(k x k x k x

-+=+ 其中(a,b )可通过最小二乘求解。

2.2生成数

灰色模型是将随机数经生成后变为有序的生成数据,然后建立微分方程,寻找生成数据的规

律,再将运算结果还原的一种方法,其基础是数据的生成.常用的生成方式有累加生成和累减生成.

2.2.1累加生成

累加生成是将原始数据通过累加以生成新的数列.记原始数列为)

0(x

:

)}(,),2(),1({},,2,1|)({)0()0()0()0()0(n x x x n k k x x ===

记)

0(x

的生成数列AGO )

0(x

为)

1(x

)}(,),2(),1({},,2,1|)({)1()1()1()1()1(n x x x n k k x x ===

其中

n k k x k x k x x x ,,3,2),()1()(),1()1()0()1()1()0()1( =+-==. 称)

1(x

为)

0(x

的一次累加生成,记为1—AGO .

定义)

0(x 的2—AGO 为)

2(x

:)

2(x

=AGO )

1(x .

一般定义)

0(x 的r 次AGO 为)

(r x

:)

(r x

=AGO )

1(-r x

原始数据经累加生成后,其随机性明显减小,而规律性将增加.对于非负的数据序列,累加生成的是一个递增的序列.

2.2.2累减生成

累减生成是累加生成的逆运算,它是通过将原始序列前后两个数据相减生成新的数据序列.累减生成可将累加生成还原为非生成数列,在建模中获得增量信息.即:

IAGO )0()

1(x x

=

3算法的具体实现流程3.1算法流程图

3.2 实现步骤

(1)数据检验与处理:

具体算法:根据原始序列)0(x 的级比)()0(k σ的大小,判断GM (1,1)建模的可行性.)()0(k σ的定义为:

3,)

()1()()

0()0()

0(≥-=k k x k x k σ

)()0(k σ可揭示数列)0(x 的平滑情况或指数律的符合情况,若)()0(k σ为常数,则

)0(x 具有白指数律(即确切的指数律)

,当然,此时无建立GM (1,1)模型的价值.GM (1,1)建模希望的是)()0(k σ的取值区间长度(覆盖的测度)接近于零而不等于零,其可容区为(0.1353,7.389),即

)389.7,1353.0()()0(∈k σ

参数或级比的可容区是GM (1,1)建模的基本条件,但不是实用条件,要想建立满意有效的GM (1,1)模型,参数或级比应落于界区内.设n 是原始数据的个数,则我们有:

a 的界区:??

?

??++-∈12,12

n n a ; )()0(k σ的界区:???? ??∈++-1212)0(,)(n n e e k σ,若???

? ??

∈++-1212)0(,)(n n e e k σ,则认为)

0(x 是可作GM (1,1)建模的. (2)建立模型GM(1,1)

具体算法:利用算法思想的介绍建立模型,则可得累加预测值和预测值: 模型的白化型为:

b ax dt

dx =+)1()

1( 初始值用)1()1()0()1(x x =,则其解为:

a b e a b x t x t a +??? ?

?

-=--)1()0()1()1()(

该式用于预测时称为时间响应函数,表示为

a b e a b x k x

k a +??? ?

?

-=+-)1()1(?)0()1( 累减还原

)(?)1(?)1(?)1()1()0(k x k x k x

-+=+; (3)检验预测值:

①残差检验:设)0(x 为原始数列

)}(,),2(),1({)0()0()0()0(n x x x x =

设)0(?x

为通过模型(11-52)和(11-53)得到的预测数据列 })(?,),3(?),2(?{?)0()0()0()0(n x x x x

= 则称)(?)()()0()0(k x

k x k -=?为残差,称 %100)

()(?)()()

0()0()0(k x k x

k x k -=ε 为GM (1,1)的残差相对值,若残差小于0.1,则称精度达到较高要求;若残差介于0.1与0.2之间,则称精度达到一般要求;若残差大于0.2,则模型不可靠。

②级比偏差值检验:与原始数列级比

3,)

()

1()()

0()0()

0(≥-=k k x k x k σ

一样,我们定义模型级比

3,

)(?)1(?)(?)0()0()

0(≥-=k k x

k x k σ

推导可知,模型级比与k 无关(因为)}(?{)0(k x

符合指数律) 3,

5.015.01?)(?)0()0(≥-+==k a

a

k σσ

其中a 为发展系数.定义级比偏差

)()

1(5.015.011%100?)(?)()

0()0()

0()0()0(k x k x a a k k -?+--=-=σ

σσρ 一般要求%20|)(|

(4)由模型GM(1,1)作相应的预测。

3.3 数据准备与预处理

1)输入原始数据列。

2)对原始数据做级比检验,若不满足要求,需要对原始数据作平移变换,直到满足要求为止。

4 算法程序实现

4.1 程序使用说明

1.程序采用Matlab语言

2.平移量由预测的人自行输入,输入值应逐渐增大

3.Matlab函数:

GM(A)——灰色预测函数;

A——初始输入数据向量

n——A的长度

lamda——级比向量

P——需要做平移的常数

B——一次累加向量

alpha——为分辨率系数,一般取0.5

D——B的灰导数

a——发展系统

b——灰作用量,且u=(a,b)

Y——提取A第2列后的所有值所构成的向量

Z——B的加权均值,也称为均值数列Z(白化背景值)

T——由Y扩展得到

C——原始累加数据预测值,且满足C(1)=A(1)

C1——原始数据(A)预测值,且满足C1(1)=A(1)

C(i+1) ——累加数据第i次预测值

C1(j)——原始数据第j次预测值

eps(i) ——预测值C1(i)与原始数据A(i)的相对误差,即残差

ruo(i) ——关于lamda的级比检验表达式

m——输入的值

t——预测天数,且t=m-n

Ct——第t次累加数据预测值

Ct_1——第t-1次累加数据预测值

pre_Ct——第t次原始数据预测值,且pre_Ct=Ct-Ct_1

4.2 程序源代码

function GM(A)

%数据检验与处理

n=l ength(A);

%lamda为级比向量

a=A(1);

for j=1:n-1

lamda(j)=A(j)/A(j+1);

%判断能否通过级比检验

if exp(-2/(n+1))

disp('可通过级比检验');

continue;

else

disp('需要做平移变换,自行决定平移系数,这里的P为任意选取的平移常数');

end

whil e exp(-2/(n+1))>lamda(j) || lamda(j)>exp(2/(n+1))

P=input('平移系数c=');

for i=1:n

A(i)=A(i)+P;

end

for j=1:n-1

lamda(j)=A(j)/A(j+1);

end

end

P=A(1)-a;

end

A;

lamda;

%对处理后的数据做一次累加,B为累加数列

B=zeros(1,n);

B(1)=A(1);

for i=2:n

j=i-1;

B(i)=A(i)+B(j);

end

B;

%求B的加权均值,即得均值数列Z(白化背景值)

%alpha为分辨率系数,一般取0.5

alpha=0.5;

for i=1:n-1

Z(i)=alpha*B(i+1)+(1-alpha)*B(i);

end

%求B的灰导数D,由B数列做差可得

D=A;

%求发展系统a与灰作用量b,建立方程化简可得

%提取A第2列后的所有值,称为数据向量Y

Y=A(2:n);

%将Y扩展为数据矩阵T

T=(cat(1,-Z,ones(1,n-1)))';

%由最小二乘法可得u=(a,b)

u=(inv(T'*T))*T'*Y';

%建立GM(1,1)模型求预测值

%C是原始累加模型预测值,C1是原始数据预测值(均从原始数据第二项开始比较),可计算误差

C(1)=A(1);

for i=1:n-1

C(i+1)=(A(1)-u(2,1)/u(1,1))*exp(-u(1,1)*i)+u(2,1)/u(1,1);

end

C1(1)=A(1);

for j=1:n-1

C1(j+1)=C(j+1)-C(j);

end

C;

C1;

%残差检验

disp('以下为残差检验');

for i=1:n

eps(i)=(A(i)-C1(i))/A(i);

if eps(i)<0.1

disp('精度达到较高要求');

elseif eps(i)<0.2&&eps(i)>0.1

disp('精度达到一般要求');

elseif eps(i)>0.2

disp('不能通过检验');

end

end

%级比偏差检验

disp('以下为级比偏差检验');

for i=1:n-1

ruo(i)=1-(1-0.5*u(1,1))/(1+0.5*u(1,1))*lamda(i);

if ruo(i)<0.1

disp('精度达到较高要求');

elseif ruo(i)<0.2&&ruo(i)>0.1

disp('精度达到一般要求');

elseif ruo(i)>0.2

disp('不能通过检验');

end

end

%数据检验到此结束****************************************

%*******************************************************

%*******************************************************

%改进预测算法———等位新信息递补法,用于中长期动态预测%预测其后第t天

%Ct为累加数列的预测值

%pre_Ct为原始数据的预测值

m=input('请输入x=');

whil e m

disp('请重新输入大于原始数据个数的值:');

m=input('x=');

end

P1=0;

P0=A(1)-a;

for t=1:m-n

Ct=(A(1)-u(2,1)/u(1,1))*exp(-u(1,1)*(n))+u(2,1)/u(1,1);

Ct_1=(A(1)-u(2,1)/u(1,1))*exp(-u(1,1)*(n-1))+u(2,1)/u(1,1);

pre_Ct=Ct-Ct_1;

disp('最终平移量:');

if P1==0

P=P0

else

P=P1+P0

end

%判断预测最终是否应减去平移量

if P>0

disp(['第',num2str(t),'天的预测值为:']);

pre_Ct=pre_Ct-P

elseif P==0

disp(['第',num2str(t),'天的预测值为:']);

pre_Ct

end

%等位新信息递补,即除去第一个元素,引入一个预测的新元素for i=1:n-1

A(i)=A(i+1);

end

A(n)=pre_Ct+P;

%判断是否结束预测

if t==m-n

break;

else

%未结束,继续检验新得到的数据

%判断能否通过级比检验

a=A(1);

for j=1:n-1

lamda(j)=A(j)/A(j+1);

if exp(-2/(n+1))

disp('可通过级比检验');

continue;

else

disp('需要做平移变换,自行决定平移系数,这里的P为任意选取的平移常数');

end

whil e exp(-2/(n+1))>lamda(j) || lamda(j)>exp(2/(n+1))

P1=input('平移系数c=');

for i=1:n

A(i)=A(i)+P1;

end

%计算级比

for j=1:n-1

lamda(j)=A(j)/A(j+1);

end

end

%此循环所得到的平移总量

P1=A(1)-a;

P1;

end

end

%对处理后的数据做一次累加,B为累加数列B(1)=A(1);

for i=2:n

j=i-1;

B(i)=A(i)+B(j);

end

B;

%求B的加权均值,即得均值数列Z(白化背景值)%alpha为分辨率系数,一般取0.5

alpha=0.5;

for i=1:n-1

Z(i)=alpha*B(i+1)+(1-alpha)*B(i);

end

%求B的灰导数D,由B数列做差可得

D=A;

%求发展系统a与灰作用量b,建立方程化简可得

%提取A第2列后的所有值,称为数据向量Y Y=A(2:n);

%将Y扩展为数据矩阵T

T=(cat(1,-Z,ones(1,n-1)))';

%由最小二乘法可得u=(a,b)

u=(inv(T'*T))*T'*Y';

end

4.3 程序运行

4.3.1程序运行及运行环境说明

运行环境:windows操作系统

运行软件:MATLAB

适用范围:只能进行短期或中期的预测

4.3.2 输入数据

输入实际数据向量:a=[2.28,2.98,3.39,4.24,6.86,8.64,11.85,12.15,12.71];

输入平移量:c1=3,c2=4,c3=5;

4.3.3 输出数据

由以上两表可见,残差值均小于0.1,模型精度较高;级比偏差值小于0.1,达到较高要求下面运用此模型预测并输出其后两天的值。

第1天的预测值为:pre_Ct =16.4247,最终平移量:P = 7;

第2天的预测值为:pre_Ct =18.7873,最终平移量:P =12。

实际数据值为:17.82和20.76,误差在0.1之内,模型可靠。

5 参考文献

[1] 韩中庚.数学建模方法及其应用.高等教育出版社,2005

[2] 张大海,江世芳等.灰色预测公式的理论缺陷及改进.编号1000-6788(2002)08-0140-03

[3] 罗荣桂, 陈炜等. 灰色系统模型的一点改进及应用[J ]. 系统工程理论与实践, 1988, 8 (2) : 46- 52.

[4] 邓聚龙.灰预测与灰决策.武汉:华中科技大学出版社,2002

路由算法分类比较

路由算法是路由协议必须高效地提供其功能,尽量减少软件和应用的开销。 路由器使用路由算法来找到到达目的地的最佳路由。 关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息——而没有网络中的每个路由器的信息。这些算法也被称为DV(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为LS(链路状态)算法。 收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。 路由算法的核心是路由选择算法,设计路由算法时要考虑的技术要素有: 1、选择最短路由还是最佳路由; 2、通信子网是采用虚电路操作方式还是采用数据报的操作方式; 3、采用分布式路由算法还是采用集中式路由算法; 4、考虑关于网络拓扑、流量和延迟等网络信息的来源; 5、确定采用静态路由还是动态路由。 各路由算法的区别点包括:静态与动态、单路径与多路径、平坦与分层、主机智能与路由器智能、域内与域间、链接状态与距离向量。 链接状态算法(也叫做短路径优先算法)把路由信息散布到网络的每个节点,不过每个路由器只发送路由表中描述其自己链接状态的部分。 距离向量算法(也叫做 Bellman-Ford算法)中每个路由器发送路由表的全部或部分,但只发给其邻居。 也就是说,链接状态算法到处发送较少的更新信息,而距离向量算法只向相邻的路由器发送较多的更新信息。 metric是路由算法用以确定到达目的地的最佳路径的计量标准,如路径长度。

灰色模型应用举例

灰色系统模型的应用 灰色系统理论对中国50年人口发展预测 一、中国人口发展概况 中国是世界上人口最多的发展中国家,人口多、底子薄、耕地少、人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。新中国成立60年,我国人口发展经历了前30年高速增长和后20多年低速增长两大阶段:从建国初期到上世纪70年代初,中国人口由旧中国的高出生、高死亡率进入高出生、低死亡率的人口高增长时期,1950-1975年人口出生率始终保持在30‰以上, 最高达到37‰(表3.2.1)。70年代以后,人口过快增长的势头得到迅速扭转,人口出生率、自然增长率、妇女总和生育率有了明显下降,人口出生率由70年代初的33‰大幅度下降到80年代的21‰, 妇女总和生育率也由6下降到2.3左右。90年代以来,随着我国经济高速发展,人民文化和健康水平逐步提高,计划生育工作不断深入,在20-29岁生育旺盛人数年均超过1亿的情况下, 人口出生率依然呈现大幅下降的趋势,到2000年底人口出生率从1990年的21.06‰下降到14.03‰,自然增长率由1990年的14.39‰下降到7.58‰, 妇女总和生育率也下降到2以下。进入90年代末期, 我国人口实现了低出生、低死亡、低增长的历史性转变。到2000年底全国总人口为12.6743亿, 成功实现了“九五”计划将人口控制在13亿的奋斗目标。 中国政府自1980年在全国城乡实行计划生育以来成果卓著,据国家计生委“计划生育投入与效益研究”课题组的研究成果,20年共少生2.5亿个孩子,有效地控制了人口的快速增长,为中国现代化建设、全面实现小康打下了坚实的基础, 同时也为世界人口的增长和控制做出了杰出贡献。但是由于中国人口基数大,人口增长问题依然十分严峻,1990-1999年每年平均净增人口约1300万,这仍然对我国社会和经济产生巨大的压力。因此,准确预测未来50年人口数量及其增长,为中国经济和社会发展决策提供科学依据,对于加速推进我国现代化

灰色预测模型的Matlab程序及检验程序(精)

灰色预测模型的Matlab 程序及检验程序 %灰色预测模型程序 clear syms a b; c=[a b]'; A=[46.2 32.6 26.7 23.0 20.0 18.9 17.5 16.3];% 原始序列 B=cumsum(A);%累加n=length(A); for i=1:(n-1) C(i)=(B(i)+B(i+1))/2; end %计算待定参数 D=A; D(1)=[]; D=D'; E=[-C; ones(1,n-1)]; c=inv(E*E')*E*D; c=c'; a=c(1); b=c(2); %预测往后预测5个数据 F=[];F(1)=A(1); for i=2:(n+5) F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a; end G=[];G(1)=A(1); for i=2:(n+5) G(i)=F(i)-F(i-1); end t1=2002:2009; t2=2002:2014; G plot(t1,A,'o',t2,G) %灰色预测模型检验程序 function [ q,c,p ] = checkgm( x0,x1 ) %GM 检验函数 %x0 原始序列

%x1 预测序列 %·返回值 % q –- 相对误差 % c -- ·方差比 % p -- 小误差概率 e0=x0-x1; q=e0/x0; s1=var(x0); %qpa=mean(e0); s2=var(e0); c=s2/s1; len=length(e0); p=0; for i=1:len if(abs(e0(i)) < 0.6745*s1) p=p+1; end end p=p/len; end

灰色模型应用举例

灰色系统模型的应用 第一节灰色系统模型在现金流量预测中的应用 一、灰色理论应用在现金流量预测中 我们选取伊利集团的2000—2007年财务报表的现金流量表中的“经营活动产生的净现金流”作为分析预测的对象。伊利集团是我国著名的奶业生产集团,知名度较高,且长期以来生产经营较为规范,其报表可信度较高,所以,用该公司的财务报表的数据,可以较好的反映实际情况,有利于我们进行分析和验证。而2008年出现的儿童奶粉事件,给乳制品产业带来了致命的打击,所以不采用2008年的财务报表。 在使用GM(1,1)时,首先要对实际的原始数据进行一定的处理或假设: 1.企业在长期来看,不存在负现金流。尽管企业在短期,例如月现金流无法避免存在负现金流,但对于一个持续经营的企业来说,尽量保持正的现金流,是大多数的企业理财所应达到的目标。当然,当企业的实际数据出现负现金流时,也可用第二章第八节五中提到的办法进行处理。 2.企业在一定时期内的经营条件和外部环境不存在大的波动。即企业在相似的外部环境和促销手段下进行。这种假设避免了现金流大的波动,从而避免预测失真。由于对于一般的销售型企业来说,经营活动的现金流量是主要的资金来源,筹资活动和投资活动并不是经常发生的项目。而且,经营活动产生的现金流量通常情况下较稳定,不会产生大的波动,也很少有负值的出现,即使在短时期内可能出现应收账款较多,资金周转不开的情况,但从一年时间来看,在一年内的现金收入通常会大于现金流出。对于一个健康的正在成长的企业来说,经营活动现金流量应该是正数,投资活动是负数,筹资活动是正负相间的。 所以,以下选择的伊利集团现金流量表中2000-2007的数据符合前述假设和模型的要求,见表1。

【CN110060308A】一种基于光源颜色分布限制的颜色恒常性方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910242770.X (22)申请日 2019.03.28 (71)申请人 杭州电子科技大学 地址 310018 浙江省杭州市下沙高教园区2 号大街 (72)发明人 张显斗 刘硕 李倩  (74)专利代理机构 杭州君度专利代理事务所 (特殊普通合伙) 33240 代理人 朱月芬 (51)Int.Cl. G06T 7/90(2017.01) (54)发明名称 一种基于光源颜色分布限制的颜色恒常性 方法 (57)摘要 本发明公开了一种基于光源颜色分布限制 的颜色恒常性方法。本发明步骤如下:步骤(1)为 不同相机构建精准的色域范围,计算相机空间的 黑体轨迹;步骤(2)依托黑体轨迹构建光源颜色 分布的色域范围;步骤(3)利用已有颜色恒常性 方法估计图像的光源颜色;步骤(4)对光源估计 结果进行判断,若处于色域范围内则不作处理, 若不在色域范围内则通过色域映射法将该光源 估计结果映射到色域边界内;步骤(5)将校正后 的色度点变换到RGB空间,色域映射得到的点是 估计光源校正后的色度点。本发明将已有颜色恒 常性方法光源估计不在色域内的结果映射在色 域边界内,从而降低光源估计误差,以达到对各 种不同颜色恒常性方法鲁棒性的提升。权利要求书2页 说明书6页 附图2页CN 110060308 A 2019.07.26 C N 110060308 A

1.一种基于光源颜色分布限制的颜色恒常性方法,其特征在于包括如下步骤: 步骤(1)为不同相机构建精准的色域范围,计算相机空间的黑体轨迹; 步骤(2)依托黑体轨迹构建光源颜色分布的色域范围; 步骤(3)利用已有颜色恒常性方法估计图像的光源颜色; 步骤(4)对光源估计结果进行判断,若处于色域范围内则不作处理,若不在色域范围内则通过色域映射法将该光源估计结果映射到色域边界内; 步骤(5)将校正后的色度点变换到RGB空间,色域映射得到的点是估计光源校正后的色度点。 2.根据权利要求1所述的一种基于光源颜色分布限制的颜色恒常性方法,其特征在于:步骤(1)中对于待估计光源颜色的图像,首先预测采集该图像的相机灵敏度曲线,并将黑体的光谱辐射应用到该相机灵敏度曲线上得到黑体轨迹; 步骤(2)中依托黑体轨迹构建光源颜色分布的色域范围;在黑体轨迹上找到三个点;分别位于黑体轨迹的高色温处对应的色度点m 1,低色温处对应的色度点m 2,以及在低色温和高色温中间处找到对应的色度点m 0;并在m 0处上下找到两个点m H 和m L 来扩展色域的范围;利用m 1,m H ,m 2三个点计算二次多项式来拟合色域的上边界,并用m 1,m L ,m 2计算二次多项式来拟合色域的下边界。 3.根据权利要求2所述的一种基于光源颜色分布限制的颜色恒常性方法,其特征在于:步骤(3)中利用各种已有颜色恒常性方法估计图像的光源颜色,估计的光源颜色和真 实光源颜色变换到rg空间; 4.根据权利要求3所述的一种基于光源颜色分布限制的颜色恒常性方法,其特征在于:步骤(4)中对于步骤(3)的方法估计的光源颜色结果,判断是否存在于构建的色域范围内,若处于色域范围内则不作处理,若不在色域范围内则通过色域映射法将该光源估计结果映射到色域边界来降低误差,从而提高已有颜色恒常性方法光源估计的准确性; 两种色域映射方法: 记待映射点为P(r ,g),即颜色恒常性方法估计的光源颜色结果,假设P不在构建的色域内; 通过最小距离法或基于中心点法进行色域映射; 步骤(5)中色域映射得到的点是估计光源校正后的色度点,将其变换到RGB空间,即为校正后的光源颜色;rg转RGB的方法如下:假设B为1,b=1-r -g,则 权 利 要 求 书1/2页2CN 110060308 A

经典路由算法

经典路由算法 一、先验式路由协议(DSDV) 先验式路由协议是一种基于表格的路由协议。在这种协议中,每个节点维护一张或多张表格,这些表格包含到达网络中其它所有节点的路由信息。当检测到网络拓扑结构发生变化时,节点在网络中发送路由更新信息。收到更新信息的节点更新自己的表格,以维护一致的、及时的、准确的路由信息。 不同的先验式路由协议的区别在于拓扑更新信息在网络中传输的方式和需要存储的表的类型。先验式路由协议不断的检测网络拓扑和链路质量的变化,根据变化更新路由表,所以路由表可以准确地反映网络的拓扑结构。源节点一旦需要发送报文,可以立即得到到达目的节点的路由。 (DSDV、OLSR路由协议等很多普通的因特网路由协议)它们查找路由是不依赖于路径上的节点是否要发包,而是每个节点维护一张包含到达其它节点的路由信息的路由表。节点间通过周期性的交换路由信息来不断更新自身的路由表,以便能够及时的反映网络拓扑结构和变化,以维护一致的、及时的、准确的路由信息。

DSDV:目的节点序列距离矢量协议(待补充) 可以解决路由成环问题,每一个节点维持一个到其它节点的路由表,表的内容为路由的“下一跳”节点。 1)给每条路径增加了一个序列号码 2)每个目的节点会定期广播一个单调递增的偶数序列号号码 3)当一个节点发现它到某个目的节点的路径断开时,它把到这个节点的距离 设为无穷大。并且将这条路径的序列号加1(此时为奇数),然后向网络中 广播这个更新包。当这条路径修复时,它又将序列号加1然后广播出去。 换另一种方式来说,每个节点都保持着一张路由表,路由表中的每一项记录了 它到目的节点的距离和序列号,也就是(s,d)。我们假设有一目的节点为D, 当以下任何一情况发生时,都会发送更新: 1)D定期将自己的序列号加2并广播出去,即(S,0) 2)如果节点X要通过Y到达节点D,当X和Y之间的连接断开后,X将到D的路径的序列号加1,同时将路径值设为∞,然后将信息发送给邻居。 参考资料:https://www.doczj.com/doc/529965817.html,/candycat1992/article/details/8100146CSDN博客DSDV协议 DSDV创新之处是为每一条路由设置一个序列号,序列号大的路由为优选路由,序列号相同时,跳数少的路由为优选路由。正常情况下,节点广播的序列号是单调递增的偶数,当节点B发现到节点D的路由(路由序列号为s)中断后,节点B 就广播一个路由信息,告知该路由的序列号变为s+l,并把跳数设置为无穷大,这样,任何一个通过B发送信息的节点A的路由表中就包括一个无穷大的距离,这一过程直到A收到一个到达D的有效路由(路由序列号为s+1-1)为止。 在此方案中,网络内所有的移动终端都建立一个路由表,包括所有的目的节点到达各个目标节点的跳跃次数(或标识距离矢量的路径矩阵)。每个路由记录都有一个由目标节点设定的序列号。序列号使移动终端可以区分当前有效路由路径和已过时的路由路径。路由表周期性地做全网更新以维护全网的通信有效性。通常,为了减少由于路由表更新而产生的大量路由信息传递,减少网络路由开销,可以采用两种路由更新方式。 1)第一种是全清除方式: 即通过多个网络协议数据单元将路由更新信息在全网中传输。如果网络内终端出现移动,则产生的新路由分组信息不定期的传达至网络内所有终端。 2)第二种是部分更新方式: 或称为增量更新方式,即在最后一次全清除传输后,只传递那些涉及变化了的路

灰色模型介绍及应用

第十章灰色模型介绍及应用(徐利艳天津农学院 2.4万字) 10.1灰色理论基本知识 10.1.1概言 10.1.2有关名词概念 10.1.3GM建模机理 10.2灰色理论模型应用 10.2.1GM(1,1)模型的应用——污染物浓度问题 10.2.2 GM(1,1)残差模型的应用——油菜发病率问题 10.2.3GM模型在复杂问题中的应用——SARS 疫情问题 10.2.4 GM(1,n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目

第十章灰色模型介绍及应用 10.1灰色理论基本知识 10.1.1概言 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 10.1.2有关名词概念 灰数:一个信息不完全的数,称为灰数。 灰元:信息不完全或内容难以穷尽的元素,称为灰元。 灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。

灰色模型介绍及应用

第十章灰色模型介绍及应用(徐利艳天津农学院2.4万字) 10.1灰色理论基本知识 10.1.3GM建模机理 10.2灰色理论模型应用 ——污染物浓度问题 10.2.2 GM(1,1)残差模型的应用——油菜发病率问题 10.2.3GM模型在复杂问题中的应用——SARS 疫情问题 10.2.4 GM(1,n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目 第十章灰色模型介绍及应用 10.1灰色理论基本知识 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在

某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 灰数:一个信息不完全的数,称为灰数。 灰元:信息不完全或内容难以穷尽的元素,称为灰元。 灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。 灰色系统:含灰数、灰元或灰关系的系统称为信息不完全系统。如果按照灰色理论去研究它。则称此系统为灰色系统。 累加生成:由于灰系统对一切随机量都可看作是在一定范围内变化的灰色量,因此,为适应灰系统建模需要,提出“生成”的概念,“生成”即指对原始数据做累加(或累减)处理。累加生成一般可写成AGO 。若计(0) x 为原始数列,() r x 为r 次累加生成后数列,即 则r 次累加生成算式为 ()(1) (1) (1) (1)1 (1)(1)(1)(1)()(1)()(1)(2)()() [(1)(2)(1)]()(1)() k r r r r r i r r r r r r x k x x x k x i x x x k x k x k x k ----=-----=++==++ -+=-+∑ 一般常用的是一次累加生成,即 10.1.3GM 建模机理 建立GM 模型,实际就是将原始数列经过累加生成后,建立具有微分、差分近似指数规律兼容的方程,成为灰色建模,所建模型称为灰色模型,简记为GM (Grey Model )。如GM (m,n )称为m 阶n 个变量的灰色模型,其中GM (1,1)模型是GM (1,n )模型的特例,是灰色系统最基本的模型,也是常用的预测模型,因此本章重点介绍几种GM (1,1)模型的建模过程和计算方法,并简单介绍GM (1,n )建模过程。 GM (1,1)的建模机理 GM (1,1)模型是GM (1,N )模型的特例,其简单的微分方程形式(白化形式的微分方程)是 利用常数变易法解得,通解为

MATLAB典型去雾算法代码

本节主要介绍基于Retinex理论的雾霭天气图像增强及其实现。 1.3.1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图1.3-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 1.3.2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y): G(x,y)=S'(x, y)-log(D(x, y)) ; 步骤四:对G(x,y)取反对数,得到增强后的图像R(x, y):

灰色预测模型理论及其应用

灰色预测模型理论及其应用 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测. 灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。 一、灰色系统及灰色预测的概念 灰色系统 灰色系统产生于控制理论的研究中。 若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。 若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。 灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。 特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。 灰色预测 灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或

车载网络概述及相关路由算法分析

车载网络综述及相关路由算法分析 Overview of V ANET and analysis of relevant routing algorithm 软网1301 王建帮 201192181 软网1301 张凯源 1车载网络综述 1.1相关概念 随着相关技术的发展,越来越多的无线设备开始被应用在汽车上,如远程钥匙、PDAs、 智能手机等,车载网络(英文术语为Vehicular Ad hoc Network,即VANET)的概念因而被 提出。在Vehicular ad hoc networks(VANETS):status, results, and challenges一文中,作者从 以下四个方面对VANET作出了较为全面的阐述: 1)Intelligent transportation systems (ITSs) VANET中节点可分为vehicles和Roadside Units(RSUs), 它们各自都有接收,存储,转发数据 以及路由的功能。两者区别在于,vehicles代表着移动的车辆,其位置是不断变化的,而 RSUs则是固定在路边的节点。 Fig. 1 Inter-vehicle communication

Fig. 2 Vehicle-to-roadside communication Fig. 3 Routing-based communication 由于实际应用的需要,在ITSs中存在三种可能的通信结构(communication configure-tion):inter-vehicle, vehicle-to-roadside, and routing-based communication。这三者的实现都依赖于有关周围环境的精确且即时的信息,而要获取这样的信息,则需要精确的定位系统(如Bluetooth, Ultra-wide Band, ZigBee等)以及智能的通信协议(如GPS, DGPS)来提供支持。 2)Inter-vehicle communication The inter-vehicle communication configuration (Fig. 1) uses multi-hop multicast/broadcast to transmit traffic related in- formation over multiple hops to a group of receivers. 3)Vehicle-to-roadside communication The vehicle-to-roadside communication configuration (Fig. 2) represents a single hop broadcast where the road- side unit sends a broadcast message to all equipped vehicles in the vicinity. 4)Routing-based communication

视觉心理学的物体大小恒常性计算

视觉心理学的物体大小恒常性计算 摘要: 知觉恒常性是人类感知世界最重要、最突出的方面,它为解决计算机图像理解和物体识别等经典计算机视觉难题提供了新的思路.大小恒常性是最重要的知觉恒常性之一.正确的图像物体大小恒常性感知的关键在于准确计算物体在图像中的感知深度.本文总结了人眼使用的各种图像深度线索,提出了这些线索融合与冲突的解决方案,然后用数学方法建立了图像物体大小恒常性计算模型.实验结果表明该模型是有效的.本文是应用视觉心理学来解决计算机视觉问题的一次成功而有益的探索. 关键词: 大小恒常性;视觉心理学;图像理解;图像深度线索 1引言 根据几何光学知识,物体在视网膜的映像轮廓不同于物体的轮廓,会随着人和环境不断变化,而且几乎每时每刻都在发生变化.但是对我们而言,外界的物体看上去都是一样的,有着标准的形状、大小、颜色、明度和位置关系.例如,随着观察者与桌子的相对运动或照明的变化,桌子的视网膜映像发生了很大的变化,但我们对它的感知却基本上没有变化.这种现象称作知觉恒常性(Perception constancy),它是人类感知世界最重要、最突出的方面.知觉恒常性使人类视觉系统能超越不完全的、易于失真的、模糊的、二维视网膜映像,而建立起丰富的、稳定的、通常正确的、三维的客观世界表象?从光学成像的角度,人眼和照相机有着几乎完全相同的成像机制(初始状态相同).根据Marr的观点,计算机视觉问题与人类视觉问题几乎完全相同,两者都是从图像中发现客观世界有什么事物,这些事物在什么地方(目的状态相同).不同的是,人类视觉能轻易地完成计算机视觉中的许多经典难题,如边缘检测、图像分割、物体识别等等.目前,大多数研究者认为,无论在生物社区还是在机器人社区,人类视觉系统都是最好的、最通用的,而且绝大多数计算机视觉算法的参考标准要靠人眼标定.不难想象,在计算机求解视觉问题的中间状态时,如果能完全共享人类视觉的计算理论与算法,从理论上讲计算机视觉的性能就有可能与人类视觉系统相媲美悼1.知觉恒常性是人类感知世界的基本方式,所以计算机视觉也应充分利用人类知觉恒常性的有关理论与算法.恒常性理论对图像物体识别有着特别重要的意义.因为随着成像视点的变化,客观世界中的任一物体都可以产生无限多个二维图像投影,所以从二维图像出发,识别出对应的客观世界物体是一对多的数学问题,也是计算机视觉中的经典难题.恒常性理论最吸引人的地方是:面对连续变化的刺激特征,物体能被稳定、唯一地感知.所以恒常性理论特别有助于解决物体识别中的视点不变 (Viewpointinvariant)难题H。.恒常性主要包含如下种类:大小恒常性、形状恒常性、明度恒常性及颜色恒常性等.文献[5]指出: 除了有了颜色恒常性的报告外,没有发现计算机视觉学者对其他恒常性的研究文献.我们通过对国内外的中、英文文献资料的检索,也得出了同样的结论.故本文将对大小恒常性进行计算研究.大小是标识物体的一个重要属性.例如,在日常生活中,矮个子被感知为小孩的概率较大,高个子被感知为成年人的概率较大.而且,正确感知物体的大小具有重要的生物学意义.对许多食肉动物而言,小老虎是它们可能的美餐,而大老虎则是它们的杀手.故自动计算图像物体的正常大小对于图像物体识别无疑是十分重要的,这也正是图像物体大小恒常性计算的意义及应用所在. 2大小恒常性心理学基础视觉心理学的研究表明:尽管物体视网膜映像的大小在变,但看上去它的大小基本不变.心理学家称这一现象为大小恒常性(Size constancy).图1显示了一些大小恒常性的例子.视觉心理学已经揭示了大小恒常性的计算理论u1,用公式表示为: S=B木A半D (1)s为物体的感知大小,A为物体的成像视角,D为物体的感知深度(也称感知距离),即人类视觉系统感知到的图像上物体在成像时离照相机的距离,曰为与眼睛(相机)有关的成像缩放系数(对于同一次成像,曰值对所有物体都是相同的).物体的成像视角A可用物体在图像中的一维大小来表示.图2演示了一个实例.棒1和棒2分别放在离观察者10个单位、30个单位远的位置上,即D棒l=1/3 D棒2.根据几何光学知识,物体成像视角的大小与物体离眼睛的距离成反比,故两棒成像视角的关系为A棒。=3A棒2.如果能正确感知两棒的实际深度(距离)D棒。,D棒2,应用式(1)就能实现大小恒常性,即S棒。=S棒2.视觉心理学还揭示了人眼使用的各种图像深度线索(Image depth cues),主要包括:物体在图像中的高度(Elevation of object in the image)、线性透视(Line perspective)、纹理梯度(Texturegradient)、大气透视(Aerial perspecfive)等.下面对它们分别介绍,主要参考资料见文献[1,6,7].(1)物体在图像中的高度室外深度图像一般同时包含低处的地面部分与高处的天空部分,如图l(a)一(c)、图3(c)~(d).室内深度图像一般也同时包含低处地板部分与高处的天花板部分,如图3(a).我们分别统称室外图像的天空部分与室内图像的天花板部分为图像天空,地面部分与地板部分为图像地面,并称图像天空与图像地面的分界线为中间线.处于中间线附近的图像物体在图像中具有最大的感知深度.在图像地面部分,图像物体离中间线越近,即离图像底端越远,感知深度越大,反之越小;在图像天空部分,图像物体离中间线越近,即离图像顶端越远,感知深度越大,反之越小.物体在图像中的高度是一种最重要的图像深度线索.图像有时也没有中间线,此时只有地面部分,线性透视客观世界中向远处延伸的平行线,在图像平面中将靠得越来越近,甚至会聚(Converge).这样一组线称为会聚线(Converging line),它们的会聚点称为灭点(Vanishing point).在图像中,平行线指示平坦的表面,会聚线指示向远处延伸的表面.对于室外图像,线性透视效果一般仅出现在图像地面部分,但对于室内图像,同时作用于地面部分与天空部分,如图3(n).线性透视的深度感知规律是:图像中的物体离灭点越近,感知深度越大,反之越小.同时,会聚线的中心线也能给出图像感知深度变化最快的方向.如图l(a)两铁轨的中心线(与图像底端边线夹角约45℃)指示感知深度变化最快的方向;而图l(b)小径的中心线(与图像底端边线夹角约900c)为感知深度变化最快的方向.(3)纹理梯度(纹理密度) 许多表面如墙面、路面及田野里的花朵都有纹理.当这些纹理表面向远处延伸时,表面离观察者越远,分辨率越小、纹理也变得越来越小.所以,对于图像中的同质纹理区域,分辨率越小,纹理越小,感知深度越大;纹理越大,分辨率越大,感知深度越小.纹理梯度方向可用来指示感知深度变化最快的方向,大气透视大气散射来自各个方向的光线.来自远处物体的光线也应被大气散射.因蓝光更容易被散射,所以物体距观察者越远,物体附着的蓝色越深.又因并不是所有的光都以直线进入观察者的眼睛,所以物体距观察者越远,物体看上去越模糊.这种自然现象称大气透视,它也是一种图像深度线索:图像中的物体越模糊,附着的蓝色越深,感知深度越大,反之越小.(d)是一张大峡谷的照片.照片中间靠近右侧(如箭头所示)的部分清晰、带蓝色较浅,感知深度较小;而同一高度靠近左侧的部分模

灰色预测模型matlab程序精确版

灰色预测模型matlab程序 %下面程序是灰色模型GM(1,1)程序二次拟合和等维新陈代谢改进预测程序,mat lab6.5 ,使用本程序请注明,程序存储为gm1.m %x = [5999,5903,5848,5700,7884];gm1(x); 测试数据 %二次拟合预测GM(1,1)模型 function gmcal=gm1(x) sizexd2 = size(x,2); %求数组长度 k=0; for y1=x k=k+1; if k>1 x1(k)=x1(k-1)+x(k); %累加生成 z1(k-1)=-0.5*(x1(k)+x1(k-1)); %z1维数减1,用于计算B yn1(k-1)=x(k); else x1(k)=x(k); end end %x1,z1,k,yn1 sizez1=size(z1,2); %size(yn1); z2 = z1'; z3 = ones(1,sizez1)'; YN = yn1'; %转置 %YN B=[z2 z3]; au0=inv(B'*B)*B'*YN; au = au0'; %B,au0,au

ufor = au(2); ua = au(2)./au(1); %afor,ufor,ua %输出预测的 a u 和 u/a的值 constant1 = x(1)-ua; afor1 = -afor; x1t1 = 'x1(t+1)'; estr = 'exp'; tstr = 't'; leftbra = '('; rightbra = ')'; %constant1,afor1,x1t1,estr,tstr,leftbra,rightbra strcat(x1t1,'=',num2str(constant1),estr,leftbra,num2str(afor1),tstr,r ightbra,'+',leftbra,num2str(ua),rightbra) %输出时间响应方程 %****************************************************** %二次拟合 k2 = 0; for y2 = x1 k2 = k2 + 1; if k2 > k else ze1(k2) = exp(-(k2-1)*afor); end end %ze1 sizeze1 = size(ze1,2); z4 = ones(1,sizeze1)'; G=[ze1' z4]; X1 = x1'; au20=inv(G'*G)*G'*X1; au2 = au20'; %z4,X1,G,au20

关于几种路由算法的比较

第26卷第6期 2008年6月 河南科学HENANSCIENCEVol.26No.6Jun.2008 收稿日期:2008-01-07 基金项目:郑州市技术研究与开发项目(074SCCG38111) 作者简介:曹 敏(1970-),男,山东曹县人,工程师,硕士,主要从事网络技术研究苏玉(1968-),女,河南郑州人,副教授,主要从事网络技术及数据库方向研究. 文章编号:1004-3918(2008)06-0691-04关于几种路由算法的比较 曹敏,苏玉 (中州大学信息工程学院,郑州450044) 摘要:通过几种路由算法在静态和动态的不同模型下的仿真实现,综合对比它们在不同模式下路径选择的差异, 从中选出目前解决网络瓶颈的较理想的流量控制算法. 关键词:实现;路由算法;比较 中图分类号:TN915.01文献标识码:A 近年来Internet不断速度发展,不仅传统业务流量大大增加,而且出现了许多新业务(如语音、数据和多媒体应用等)对网络传输质量的要求差别很大,如果ISP依旧基于传统路由器发展大规模的IP网络,相关问题(如路由器转发部件的软件操作,构造高速路由器组件的开销,传统路由寻径机制在传输时难以预计的网络性能,网络无法提供针对特定业务的QoS等)将变得日益尖锐[1].特别是宽带业务,对网络性能加转发速度、流量控制以及网络的可扩展性等提出了较高的要求、随着主干网链路传输速度的不断提高,IP网络中节点上的包转发成了网络的瓶颈[2].除了开发使用高速ASIC的路由器或采用新的转发模型,人们还提出了新的高效算法,如最小干涉路由算法、流量工程的约束路由算法等.这些算法都是通过提高网络的调节和控制功能使流量分布更加合理,以达到尽可能减少网络阻塞、最小的网络代价(cost)、分布的网络负载等目标[3]. 通过模拟仿真研究几种路由的算法在路径选择上的差异,从中比较它们的不同状态下的优缺点,评估出目前较为理想流量控制算法.这几种算法包括最小干涉路由算法(MinimumInterferenceRoutingAlgorithm,MIRA)、最宽最短路径算法(Widest-ShortestPath,WSP)、最小临界K最短路由算法(LeastCriticalKShortestRoutingAlgorithm,LCKS)和流量工程的的约束路由算法(TrafficEngineeringBandwidthConstrainedRoutingAlgorithm,TE-B). 需要说明的是:文中选路时考虑的QoS约束条件仅为带宽要求,这是由于其他QoS要求(如时延、丢包率等),可以转化为等效带宽的形式. 1几种路由算法 1.1最小干扰路由算法 算法是基于控制的约束路由算法寻址请求根据“最少的干扰”概念,以便网络能接受更多新的请求[3].首先,为了满足所需带宽要求,要检查在每个网络上链路残余的带宽.可利用的带宽比所需的带宽小的链路将被剔出,所有能满足所需带宽的链接将作为候选链路被保留在一个链路集中.接着,优化网络的链路,这种路径选择算法的宗旨是在源和目的节点选择受其它链路流量干扰影响最少链路.通过将链路关键度映射为链路权重,然后用Dijkstra算法实现干扰的最小化.1.2最宽最短路径算法 这是最短的路径算法一种改进算法[4].首先它检查可利用的带宽确定是否能满足新的寻址请求,还有当有一个以上最短路径存在在源和目的节点之间时,根据链接花费,算法会选择可利用带宽最大的链路,而不是像传统最短路径算法任意选择其中的一个. 1.3最小关键链路k最短路由算法 这是对最宽最短路径算法的一种改进算法[5].这种算法不仅能发现SD之间具有相同花费的多个最短

数学建模之灰色预测模型修订稿

数学建模之灰色预测模 型 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 模型的应用 ①销售额预测 ②交通事故次数的预测 ③某地区火灾发生次数的预测 ④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。(百度文库) ⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 步骤 ①级比检验与判断 由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为 (0)(0)(1)(),2,3, ,.() x k k k n x k λ-== 若序列的级比()k λ∈ 221 2 (,)n n e e -++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。 光滑比为 (0)1 (0) 1 () ()() k i x k p k x i -== ∑ 若序列满足 [](1) 1,2,3,,1;() ()0,,3,4, ,;0.5. p k k n p k p k k n ??+<=-∈=<

则序列为准光滑序列。 否则,选取常数c 对序列(0)x 做如下平移变换 (0)(0)()(),1,2, ,,y k x k c k n =+= 序列(0)y 的级比 0(0)(1) (),2,3, ,.() y y k k k n y k λ-=∈Θ= ②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),() 建立模型: (1) (1),dx ax b dt += (1) ③构造数据矩阵B 及数据向量Y (1)(1)(1)(2)1(3)1,()z z B z n ??- ??- ? ?=?? ????- 1??(0)(0)(0)(2)3()x x Y x n ??????=?? ?? ???? () 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=) ④由 1??()?T T a u B B B Y b -??==???? 求得估计值?a = ?b = ⑤由微分方程(1)得生成序列预测值为 ? (1) (0)???(1)(1)k 0,1,,1,,??ak b b x k x e n a a -??+=-+=- ? ??? , 则模型还原值为 (0)(1)(1)???(1)(1),1,2,,1,.x k x k x k n +=+-=- ⑥精度检验和预测 残差 (0)(0)?()()(),1,2,,,k x k x k k n ε=-=

相关主题
文本预览
相关文档 最新文档