当前位置:文档之家› 第二篇变压器的电磁关系

第二篇变压器的电磁关系

第二篇变压器的电磁关系
第二篇变压器的电磁关系

第二章 变压器的电磁关系

知识点一:变压器空载运行

1、根据变压器内部磁场的实际分布和所起的作用不同,通常把磁通分为 和 ,前者在 闭合,起 作用,后者主要通过 闭合,起 作用。

2、变压器空载电流由 和 两部分组成,前者用来 ,后者用来 。

3、变压器励磁电流的大小受 、 、 、 和 等因素的影响。

4、变压器等效电路中的m x 是对应于 的电抗,m r 是表示 的电阻。

5、变压器的漏抗Ω=04.01x ,铁耗W p Fe 600=,今在一次施加很小的直流电压,二次开路,此时=1x Ω,=Fe p W 。

6、一台已制成的变压器,在忽略漏阻抗压降的条件下,其主磁通的大小主要取决于 和 ,与铁心材质和几何尺寸 (填有关、无关)

7、建立同样的磁场,变压器的铁心截面越小,空载电流 ;一次绕组匝数越多,空载电流 ,铁心材质越好,空载电流 。

8、变压器一次绕组匝数减少,额定电压下,将使铁心饱和程度 ,空载电流 , 铁耗 ,二次空载电压 ,励磁电抗 。

9、变压器一次绕组匝数、铁心截面一定,当电源电压及频率均减半,则铁心磁密 ,空载电流 。

10、变压器空载运行时一次绕组空载电流很小的原因是 。

(A ) 原绕组匝数多电阻大;

(B ) 原绕组漏抗很大;

(C ) 变压器的励磁阻抗很大。

11、一台V U U N N 110/220/21=的单相变压器空载运行,一次侧接220V 时铁心主磁通为0Φ,二次侧接110V 时铁心主磁通为'

0Φ,则 。

(A )'00Φ=Φ;

(B )'00Φ>Φ;

(C )'00Φ<Φ。

12、变压器其他条件不变,若一次侧匝数增加10%,21,x x 及m x 的大小将 。

(A )1x 增加到原来的1.1倍,2x 不变,m x 增大;

(B )1x 增加到原来的1.1倍,2x 不变,m x 减少;

(C )1x 增加到原来的1.21倍,2x 不变,m x 增大;

(D )1x 增加到原来的1.21倍,2x 不变,m x 减少;

13、某三相电力变压器V U U KVA S N N N 400/10000/,50021==,下面数据中有一个是励磁电流的倍数,它应该是 。

(A )28.87A ;

(B )50A ;

(C )2A ;

(D )10A 。

14、三相变压器,()Y Y D KV U U KVA S N N N /,,4.0/10/,10021?==接线,其变比为 。

(A )14.43;

(B )2;

(C )43.3;

(D )25。

15、试比较变压器主磁通和漏磁通的性质、大小和作用。

16、简述变压器空载电流的性质和作用,其大小与哪些因数有关,一般情况下,0I (%)值的范围是多少?

17、变压器的漏抗对应于什么磁通,当电源电压减少一半时,它如何变化?

18、变压器励磁电抗大好,还是小好,为什么?当电源电压减少一半时,它如何变化?

19、写出变压器空载时的电动势平衡方程式,并画出等值电路和向量图。

20、变压器空载运行时,是否要从电网中取得功率,起什么作用?为什么小负荷的用户使用大容量的变压器无论对电网还是对用户都不利?

参考答案:

1、主磁通 漏磁通 铁心内 传递能量 变压器油等 漏抗压降

2、空载电流的有功分量 空载电流的无功分量 供空载损耗(主要是铁耗) 激磁主磁通

3、电源电压 电源频率 一次绕组匝数 铁心材质(含磁路饱和程度) 铁心几何尺寸

4、主磁通 铁损的等效

5、0 0

6、电源电压 频率 无关

7、越大 越小 越小

8、增加 增加 增加 增加 减少

9、不变 不变

10、(C )

11、(A )

12、(C )

13、(C )

14、(C )

15、答:路径:主磁通为铁心;漏磁通为变压器油等;

性质:主磁通与0I 成非线形关系,漏磁通与1I 或2I 成线形关系;

大小:主磁通占总磁通的99%以上;漏磁通不足1%;

作用:主磁通起传递能量的作用;漏磁通只起漏电抗压降作用。

16、答:空载电流分无功分量和有功分量两部分。无功部分激励主磁通;有功部分供给空载

损耗。

大小与电源电压、频率、一次绕组匝数 、铁心材质(含磁路饱和程度)及铁心几何

尺寸等有关。

一般电力变压器0I (%)为(1~8);巨型电力变压器0I (%)小于1。

17、答:变压器的漏抗对应于漏磁通,由于漏磁通磁路不饱和,漏抗是常数,不随电压电压

而变,故电压降低一半时,漏抗不变。

18、答:励磁电抗大好,因为()m m m m x r x U Z U I <<≈=110,故m x 大其空载电流就小。

励磁电抗随磁路饱和而减小,当电源电压降低,磁路饱和程度下降(不饱和),所以m x 增大。

19、略。

20、答:变压器空载运行时,尽管没有有功输出,但它仍需从电网中取得功率,这些功率中既有有功功率,又有无功功率,前者供空载时的损耗(主要是铁损耗),后者供激励磁磁通(亦称励磁功率)。

小负荷用户使用大容量变压器时,在经济技术方面都不利,对电网来说大容量变压器所需励磁功率(无功性质)大,也既所需励磁电流(无功性质)大,而其负载电流又小,从而导致电网的功率因数降低,对电网的经济运行及电压的稳定都不利。

对用户而言增加了一次设备的投资,另变压器长时间处于低负荷情况下运行,变压器运行效率低,同时大容量变压器空载损耗(铁损耗)大,用户负担的电费增大。 知识点二:变压器负载运行

1、变压器带负载()ο02>?运行时,当负载增大(不考虑漏抗压降),则一次电流将 ,空载电流 。

2、变压器带负载运行,当负载增大,则其铜损耗 ,铁损耗 。

3、变压器由空载到满载()

ο02>?,下列各物理量将如何变化(忽略漏抗压降),m Z , 0I ,Fe p ,Cu p 。

4、变压器一次侧接额定电压,二次侧接纯电阻性负载,则从一次侧输入的功率 。

(A ) 只含有有功功率;

(B ) 只含有感性无功功率;

(C ) 既含有有功功率又含有感性无功功率;

(D ) 既含有有功功率又含有容性无功功率。

5、变压器负载时,一次磁动势为1F ,一次漏磁通为δ1Φ,一次漏抗为1x ;变压器空载时,一次磁动势为10F ,一次漏磁通为01δΦ,一次漏抗为δ1x ,它们的关系是 。

(A )δδδ11011101,,x x F F >Φ>Φ>;

(B )δδδ11011101,,x x F F =Φ>Φ>;

(C )δδδ11011101,,x x F F >Φ=Φ>;

(D )δδδ11011101,,x x F F =Φ=Φ>。

6、变压器负载(ο

02>?)增加时,从理论上讲,其主磁通 。

(A )稍增大;(B )稍减小;(C )增大很多;(D )减小很多。

7、 电源电压一定时,试分析当变压器负载(ο02>?)增加时,k m Z Z I U ,,,022Φ如何变

化?

8、 电源电压降低对变压器铁心饱和程度,励磁电流,励磁阻抗,铁耗和铜耗等有何影响?

9、 简述变压器空载和负载时,励磁磁动势有何不同?

10、画出变压器的“T ”形、近似和简化等效电路。

11、画出变压器简化等效电路和简化向量图ο02>?。

12、画出变压器短路时的等效电路,并画出与之对应的向量图。

参考答案:

1、增大 不变

2、增大 不变

3、不变 不变 不变 增大

4、(C )

5、(B )

6、(B )

7、答:2U 降低。由外特性曲线知,2U 随负载电流2I (ο02>?)增大而下降。 1I 增大。负载越大,2I 越大,由磁动势平衡方程式知,1I 就越大。

0Φ不变。0Φ大小与负载大小基本无关。

m Z 不变。因电源电压不变,磁路饱和情况不变,故m Z 不变。

k Z 不变。因漏磁路不饱和,C Z k =。

8、答:铁心饱和程度降低。11044.4fN U =Φ,1U 降低,0Φ减少,故饱和程度降低。

励磁电流减少。由磁化曲线知,励磁电流随磁通减少而减少。

励磁阻抗增大。励磁阻抗随饱和程度下降而增大。

铜耗减小。电压降低,1I ,2I 减小,故铜耗减小。

铁耗减小。21U p Fe ∝,故铁耗减小。

9、答:?

??+=210F F F ,空载时??? ??=?0I ,??

=10F F ,所以空载时励磁磁动势仅为一次空载磁

动势。

负载时,???+=210F F F ,励磁磁动势为一、二次的合成磁动势。

10、省略。

11、省略。

12、省略。

知识点三:变压器参数的测定

1、变压器空载试验,在高压侧做和在低压侧做进行比较,下列各物理量是否相同(不等时指出哪一侧大),空载电流实际值 ,空载损耗实际值 ,铁心主磁通 。

2、一台单相变压器低压侧加100V ,高压侧开路,测得W P A I 20,200==;当高压侧加400V ,低压侧开路,测得=0I A ,=0P W 。

3、一台V KW 100/400,2单相变压器,高压侧短路,当10V 电压加在低压侧,测得W P A I K K 40,20==;当低压侧短路,高压侧加电压,输入电流为5A 时,外加电压 =K U V ,=K P W 。

4、一台单相变压器进行空载实验,在高压侧加额定电压测量或在低压侧加额定电压测量,所测得的空载功率 。

(A )不相等,且相差较大;

(B )折算后相等;

(C )相等;

5、变压器短路电压*

K u 的大小与 有关。

(A ) 电源电压;(B )电源频率;(C )铁心材质;(D )负载大小。

6、为什么变压器的空载功率可以近似看成铁耗,而短路功率近似看成铜耗?

7、变压器空载实验一般在哪侧进行?将电源加在低压侧或高压侧所测得的空载电流、空载

电流百分值、空载功率及算得的励磁阻抗是否相等?如实验时电源电压不加到额定值,问能否将测得的空载电流和空载功率换算到对应于额定电压时的值?为什么?

8、 变压器短路实验一般在哪侧进行?将电源加在低压侧或高压侧所测得的短路电压、短路

电压百分值、短路功率及算得的短路阻抗是否相等?如实验时电源电压不加到额定值,将对短路实验应测的和应求的哪些量有影响?哪些量无影响?如何将非额定电流时测得的K K P U ,换算到对应于额定电流时的值?

参考答案:

1、低压侧较高压侧时大 相等 相等

2、0.5 20

3、40 40

4、(C )

5、(B )

6、答:

7、答:从安全的角度考虑,空载实验一般希望在低压侧进行。将电源加在或高压侧所测得

的空载功率空载电流百分值相等,而空载电流不等()

高低00KI I =,励磁阻抗不等()高低m m Z K Z 21=。如在实验时,电源电压不加到额定值,不能将测得的空载电流和空载功率换算到对应于额定电压时的值,因为空载时1U 与0I 呈非线形关系。

8、答:从仪表量程选择的角度考虑,短路试验一般希望在高压侧进行(高压侧额定电流下)。

将电源加在高压侧或低压侧所测得的短路电压百分值、短路功率相等,而短路电压不等()低高K K KU U =,短路阻抗不等()

低高K K Z K Z 2=。如在实验时,电流达不到额定值,对短路电压、短路电压百分值有影响,而对短路阻抗无影响。因短路实验时K U 与I 成线形关系,可用下式将非额定电流时测得K U 、K P 换算到对应于额定电流时的值

知识点四:变压器运行特性

1、一台单相变压器其漏抗标幺值02.001.0*2*1j Z Z +==,励磁阻抗标幺值152*j Z m +=,若把该变压器接到具有额定电压的直流电源上,则此时一次侧电流的标幺值=*1I 。

2、变压器电源电压一定,其二次端电压的大小决定于 、 和 。

3、变压器短路阻抗越大,电压变化率 ,稳态短路电流 ,突然短路电流 。

4、变压器在其他条件不变的情况下,电源频率下降,则0Φ ,0I , Fe p ,1x ,u ? 。

5、变压器运行时的效率与 、 和 、 有关,当 变压器的效率最大。

6、一台变压器在 时效率最高。

(A )1=β;(B )常数=K p p /0;(C )Fe Cu p p =;(D )N S S =。

7、某三相电力变压器带阻感性负载运行,在负载电流相同的条件下2cos ?越高,则 。

(A )U ?越大,效率越高;

(B )U ?越大,效率越低;

(C )U ?越小,效率越低;

(D )U ?越小,效率越高;

8、变压器短路电抗对运行性能有何影响?对送电变压器来说希望它大好?还是小好?配电变压器哪?

9、变压器电压一定,当负载()

ο02>?电流增大,一次电流如何变化,二次电压如何变化?当二次电压偏低时,降压变压器高如何调节分接头,升压变压器又如何调节?

参考答案:

1、50

2、负载大小 性质 变压器短路阻抗

3、越大 越小 越小

4、增大 增大 增大 减小 减小

5、负载大小 性质 铜耗 铁耗 铜耗=铁耗(KN p p 0=

β) 6、(C )

7、(D )

8、答:

9、答:由相量图()ο02>?及磁动势平衡方程0'21???=+I I I 知,当负载电流'2?I 增大时,一次

电流1?I 随之增大。又由二次电动势方程式及相量图()ο02>?知,由于2?

I 、2Z 的增大,二次电压2?U 将降低。由式2121N N K U U N N ==知,当K U C U N 1,21∝=,故欲增大2U ,需减小变比21N N K =。

不论是降压变压器还是升压变压器,调压的分接头一定在高压侧,对降压变压器,高压侧为一次侧,要减小21N N K =,故需减少一次绕组匝数;而对升压变压器,高压侧为二次侧,要减小21N N K =,故需增加一次绕组匝数。

运行中变压器油质量标准

对应的旧标准:GB 7595-1987 中华人民共和国国家标准 运行中变压器油质量标准 Quality criteria of transformer oils in service GB/T 7595-2000 代替GB 7595-1987 前言 本标准是对GB 7595-1987《运行中变压器油质量标准》进行修订。该标准已经实施了十年,对充油电气设备的安全运行发挥了一定的作用,并积累了许多新的经验。现在500kV超高压充油电气设备愈来愈多,对变压器油质量和性能检验方法都提出了更高的要求,因而有必要对该标准的内容进行相应的修订。 本标准的修订工作主要依据多年实践经验和国产油品质量及运行检验技术水平。 主要修订内容有: 1.保留原有十项指标,其中将机械杂质和游离碳两项合并为一项;对闪点、水分两项指标做了修订;给出了含气量指标(原标准为待定); 2.新增加了三项指标:体积电阻率、油泥与沉淀物和油中溶解气体组分含量色谱分析; 3.将运行中断路器油质量标准单独列出; 4.对补充油和混油规定做了补充和修订;

5.规定了样品的采集方法按GB 7597-1987《电力用油(变压器油、汽轮机油)取样方法》执行; 6.将电力变压器、电抗器、互感器、套管油中溶解气体组分含量色谱分析的周期、要求及说明作为标准的附录列入附录A中; 7.将不同电极形状及操作方法对击穿电压测定值的影响作为标准提示的附录列入附录B中; 8.将运行中变压器油的防劣化措施作为标准提示的附录列入附录C中。 本标准自实施之日起,运行中变压器油的质量监督应符合本标准。同时替代GB 7595-1987。 本标准附录A是标准的附录。 本标准附录B、附录C都是提示的附录。 本标准由国家经贸委电力司提出。 本标准由国家电力公司热工研究院技术归口。 本标准由国家电力公司热工研究院负责起草。 本标准参加起草单位:国家电力公司热工研究院、东北电力试验研究院、湖北电力试验研究院、四川电力试验研究院、西安供电局。 本标准主要起草人:孙桂兰、孟玉蝉、温念珠、郝汉儒、苏富申、崔志强。 中华人民共和国国家标准 运行中变压器油质量标准 GB/T 7595-2000 代替GB 7595-1987 Quality criteria of transformer oils in service

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

电磁装置设计原理变压器设计-华中科技大学原

电磁装置设计原理 变压器设计 专业: 班级: 设计者: 学号: 华中科技大学电气与电子工程学院

一、变压器设计综述及其基本原理 变压器是一种静止电机,由绕在共同铁芯上的两个或者两个以上的绕组通过交变的磁场而联系着。用以把某一种等级的电压与电流转换成另外一种等级的电压与电流。其用途是多方面的,十分广泛的应用在国民经济的各个领域。在电力系统中,通常要将大功率的电能输送到很远的地方去,利用低电压大电流的传输是有困难的,一方面,电流大引起的输电线损耗很大;另一方面,电压的下降也会使电能无法传送出去。因此需要用升压变压器将发电机端电压升高,而经过高压传输线到达用户端所在城市后,再利用降压变压器将电压降低,方便用户使用。 二、设计步骤 1、根据设计仟务书确定各原始技术数据; 2、计算铁心柱直径、铁芯柱和铁轭截面; 3、绕组尺寸计算; 4、绕组的确定及相关计算; 5、绕组的绝缘设计; 6、绝缘半径计算; 7、铁芯重量计算; 8、性能计算; 9、温升计算; 10、主要部件价格计算。

三、设计内容 已知参数有: 额定容量 500n S kVA =; 额定电压 10kV/0.4kV (高压绕组5±%分接头); 额定频率 f =50Hz ; Dy11连接模式; 高压侧:1110N N U U kV ?==; 128.8675()N I A = =线电流; 116.6667()N I ?= =相电流 低压侧:20.4()N U kV =线电压 2230.94()N U V ?= =相电压 22721.6878N N I I A ?== = (1)技术条件 名称:变压器 绝缘材料耐热等级:H 级(145℃) 容量:500kVA 电压比:10±5%/0.4kV 频率:50Hz 硅钢片型号:DQ122G-30 导线材料: 铜导线 连接组:Dy11 短路阻抗:4% 负载损耗(145℃):9350w

变压器油的标准

变压器油的标准: 变压器绝缘油的常规试验项目(物理--化学性质的项目) 1》在20/40℃时℃比重不超过0.895(新油)。 2》在50℃时粘度(思格勒)不超过1.8(新油)。 3》闪光点(℃)不低于135(运行中的油不比新油降低5℃以上)。 4》凝固点(℃)不高于-25(在月平均最低气温不低于-10℃的地区,如无凝固点为-25℃的绝缘油时,允许使用凝固点为-10℃的油)。 5》机械混合物无。 6》游离碳无。 7》灰分不超过(%)0.005(运行中的油0.01)。 8》活性硫无。 9》酸价(KOH毫克/克油)不超过0.05(运行中的油0.4)。 10》钠试验的等级为2。 11》安定性:<1>氧化后的酸价不大于0.35。<2>氧化后沉淀物含量(%)0.1。12》电气绝缘强度(标准间隙的击穿电压)不低于(KV):<1>用于35KV及以上的变压器(40)。<2>用于6~35KV的变压器(30)。<3>用于6KV以下的变压器(25)。13》溶解于水的酸或殓无。 14》水分无。 15》在+5℃时的透明度(盛于试管内)透明。 16》tgδ和体积电阻(如果浸油后的变压器tgδ和C2/C50值增高则应进行测量)tgδ不超过(%)在20℃时为1(运行中为2),在70℃时为4(运行中为7),体积电阻(无规定值但应与最低值进行比较)。 绝缘油和SF6 气体gb50150 20.0.1 绝缘油的试验项目及标准,应符合表20.0.1 的规定。

20.0.2 新油验收及充油电气设备的绝缘油试验分类,应符合表20.0.2 的规定。 表20.0.2 电气设备绝缘油试验分类

20.0.3 绝缘油当需要进行混合时,在混合前,应按混油的实际使用比例先取混油样进行分析,其结果应符合表 20.0.1 中第8、11项的规定。混油后还应按表20.0.2 中的规定进行绝缘油的试验。 20.0.4 SF6新气到货后,充入设备前应按国家标准《工业六氟化硫》GB12022 验收,对气瓶的抽检率为10%,其他每瓶只测定含水量。 20.0.5 SF6气体在充入电气设备24h后方可进行试验。

电磁装置设计原理变压器设计-华中科技大学原

电磁装置设计原理变压器设计-华中科技大学原

————————————————————————————————作者:————————————————————————————————日期:

电磁装置设计原理变压器设计 专业: 班级: 设计者: 学号:

华中科技大学电气与电子工程学院 一、变压器设计综述及其基本原理 变压器是一种静止电机,由绕在共同铁芯上的两个或者两个以上的绕组通过交变的磁场而联系着。用以把某一种等级的电压与电流转换成另外一种等级的电压与电流。其用途是多方面的,十分广泛的应用在国民经济的各个领域。在电力系统中,通常要将大功率的电能输送到很远的地方去,利用低电压大电流的传输是有困难的,一方面,电流大引起的输电线损耗很大;另一方面,电压的下降也会使电能无法传送出去。因此需要用升压变压器将发电机端电压升高,而经过高压传输线到达用户端所在城市后,再利用降压变压器将电压降低,方便用户使用。 二、设计步骤 1、根据设计仟务书确定各原始技术数据; 2、计算铁心柱直径、铁芯柱和铁轭截面; 3、绕组尺寸计算; 4、绕组的确定及相关计算; 5、绕组的绝缘设计; 6、绝缘半径计算; 7、铁芯重量计算;

8、性能计算; 9、温升计算; 10、主要部件价格计算。 三、设计内容 已知参数有: 额定容量 500n S kVA =; 额定电压 10kV/0.4kV (高压绕组5±%分接头); 额定频率 f =50Hz ; Dy11连接模式; 高压侧:1110N N U U kV ?==; 150028.8675()103 N I A ==?线电流; 1116.6667()3 N N I I ?==相电流 低压侧:20.4()N U kV =线电压 22230.94()3 N N U U V ?==相电压 22500721.687830.4N N I I A ?== =? (1)技术条件 名称:变压器 绝缘材料耐热等级:H 级(145℃) 容量:500kVA 电压比:10±5%/0.4kV

运行中变压器油质量标准 GB7595—87

中华人民共和国国家标准 UDC621.892.098 ∶543.06 运行中变压器油质量标准GB7595—87 Quality criteria of transformer oils in service 国家标准局1987-03-26批准1988-01-01实施 本标准适用于充油电气设备所用各种牌号矿物变压器油在运行中的质量监督;对上述油品规定了常规检验项目、检验周期及必须达到的质量标准。 1 引用标准 GB 261 石油产品闪点测定法(闭口杯法) GB 264 石油产品酸值测定法 GB 507 电气用油绝缘强度测定法 GB 2536 变压器油 GB 5654 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的试验方法 GB 6541 石油产品油对水界面张力测定法(圆环法) GB 7598 运行中变压器油、汽轮机油水溶性酸测定法(比色法) GB 7599 运行中变压器油、汽轮机油酸值测定法(BTB法) GB 7600 运行中变压器油水分含量测定法(库仑法) GB 7601 运行中变压器油水分测定法(气相色谱法) YS-6-1界面张力测定法 YS-27-1 油泥析出测定法 YS-30-1 介质损耗因数和体积电阻率测定法 YS-C-3-1 气体含量测定法(真空脱气法) YS-C-3-2 气体含量测定法(二氧化碳洗脱法) 2 技术要求 2.1 新变压器油的验收,应按GB 2536的规定进行。 2.2 运行中变压器油应达到的常规检验质量标准列于表1。 2.3 当主要变压器用油的pH值接近4.4或颜色骤然变深时,应加强监督; 若其他某项指标亦接近允许值或不合格时,则应立即采取措施。 2.4 发现闪点下降时,应按YS—C—3—1分析油中溶解气体,以查明原因。 表 1 运行中变压器油质量标准

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

变压器的工作原理及原、副线圈之间的几个关系

变压器的工作原理及原、副线圈之间的几个关系 王其学 一、变压器的工作原理 变压器的工作原理是电磁感应.当原线圈中加交变电压时,原线圈就有交变电流,它在铁芯中产生交变的磁通量,这个交变磁通量既穿过原线圈,也穿过副线圈,在原、副线圈中都要产生感应电动势.如果副线圈电路是闭合的,在副线圈中就产生交变电流,它也在铁芯中产生交变的磁通量,这个交变磁通量既穿过原线圈,也穿过副线圈,在原、副线圈中同样要引起感应电动势.其能量转化的过程为: 例1.一理想变压器的副线圈为200匝,输出电压为10V ,则铁芯内的磁通量变化率的最大值为( ) A. 0.07Wb/s B. 5 Wb/s C. 7.05 Wb/s D.14.1 Wb/s 解析:根据法拉第电磁感应定律知:n 圈线圈的感应电动势的大小等于线圈匝数n 与磁通量的变化率 t ?Φ?的乘积,即 E =n t ?Φ ?,因为 原、副线圈的内阻不计,则有U =E ,200匝线圈输出电压为10V ,每匝为 120V ,此电压为有效值,最大值为20 V =0.07V ,则t ?Φ?=0.07 Wb/s 正确选项为A 评注:变压器原、副线圈的电压值及电流值均指有效值. 例 2.在绕制变压器时,某人误将两个线圈绕在图示变压器铁芯的左右两个臂上,当通以交流电时,每个线圈产生的磁通量都只有一半通过另一个线圈,另一半通过中间的臂,如图1所示,已知线圈1、2的匝数比为n 1:n 2=2:1,在不接负载的情况下( ) A.当线圈1输入电压220V 时,线圈2输出电压为110V B.当线圈1输入电压220V 时,线圈2输出电压为55V C.当线圈2输入电压110V 时,线圈1输出电压为220V D.当线圈2输入电压110V 时,线圈1输出电压为110V 解析:设线圈1两端输入电压为U 1时,线圈2输出 压为 U 2.根据法拉第电磁感应定律有: U 1=n 1 11t ?Φ?,U 2= n 22 t ?Φ? 根据题意,当线圈1输入电压220V 时,Φ1=2Φ2 ,即 12 2t t ?Φ?Φ=??,得:1 1 112222 U 24U 1n n t n n t ?Φ??= ==?Φ? 解得U 2=55V , 图1

浅谈电力变压器继电保护设计 妥志鹏 杜航

浅谈电力变压器继电保护设计妥志鹏杜航 发表时间:2017-07-17T11:41:26.390Z 来源:《电力设备》2017年第8期作者:妥志鹏杜航 [导读] 摘要:电力变压器是主要的电力设施之一,现代电力输送,均需要通过电力变压器对电压进行处理后才能进行使用,但受各种未知因素的影响,电力变压器的故障时有发生,降低了电力输送的效率,影响了电力资源的正常使用。 (国网青海省电力公司检修公司青海省西宁市 810000) 摘要:电力变压器是主要的电力设施之一,现代电力输送,均需要通过电力变压器对电压进行处理后才能进行使用,但受各种未知因素的影响,电力变压器的故障时有发生,降低了电力输送的效率,影响了电力资源的正常使用。继电保护作为变压器的有效保护措施,是提高变压器安全稳定使用的关键所在,优化继电保护的设计,对于提高电力变压器的稳定运行,有着不可替代的重要作用。 关键词:电力变压器;继电保护;设计; 1电力变压器继电保护的工作原理 电力变压器继电保护系统主要是根据电力系统所出现的电力数值的变化情况以实现电力变压器继电系统的自我调节功能。电力变压器继电系统存在的目的是,无论电力变压器继电系统中的电力变压器继电保护系统的工作状态如何,或是处于什么样的情形都要保证整个系统的安全。按照电力变压器继电系统是否处于正常运行的状态,其继电保护的基本原理并不相同。为了确认电力变压器继电系统处于什么样的运行状态,则需要对电力变压器继电系统的运行状态进行测量并进行分析。 2电力变压器继电保护的基本构成 经过长时间的发展与演变,如今电力变压器继电保护系统已逐步发展到了微机型的继电保护系统的状态,该类型的电力变压器继电保护系统主要由3部分组成。①电力系统信号采集部分。其主要功能是收集并整理电力系统内部的电力数值的情况,然后将其收集整理的数据通过有效的传递方式提交给电力系统继电保护部分。②电力系统的信号处理部分。其能够对电力系统信号采集整理的信号进行处理,并以有效的方式对相关问题进行分类与处理。③信号输出部分。该部分是十分重要的一环节,信号输出部分可以有效地将输出信号的指令精准无误地发送给电力系统,从而保障调节工作的顺利进行。 3.电力变压器继电保护系统常见故障类型 3.1电力变压器继电保护系统中电压互感器的二次回路故障 系统的电压互感器部分属于继电保护系统的核心组成部分,是电力变压器继电保护系统的心脏部分,其主要功能是将电力系统中过高的电压排除。在通常情况下,电压互感器在承受相对数值较大的电阻负载的同时,其承受的二次电压数值与其所承受的一次电压数值还以正比的关系存在。因此,在这样的情况下,一旦发生电阻数值减小等相关现象,那么极容易造成电压互感器出现短路现象。在开口三角电压数值不稳定的情况下,通常就会引起以上原因造成的故障与问题。因为在电压互感器内部的铁芯中极易发生由于电压的升高所造成的线性不稳限次,所以在处理这类力变压器继电保护系统故障的时候,应当格外注意电压互感器的短路以及回路等问题。 3.2电力变压器继电保护系统电流互感器的故障 因为电力变压器继电保护系统内的电流互感器是根据电磁感应的相关原理制作设计的,因此,将原有的较大数值电流转换成为较小的数值电流是设计电流互感器的主要功能,也是电流互感器存在的价值。基于以上原因很容易知道,一旦电流互感器内部的绝缘部分发生破裂或类似现象,则极容易引起电流的窜出等系列问题,则给电力系统的安全、稳定、正常运行造成了严重的阻碍,严重时还可能引发安全事故。 3.3计算机型电力变压器继电保护装置的故障 在现代信息技术迅速发展、计算机技术迅速提升的时代背景下,计算机型电力变压器继电保护装置已经逐渐开始运用于继电保护工作。然而,在实际操作、运用的过程中,如果发生了输入功率不足的现象,则极易引起计算机系统控制所输出的电压数值减少等现象,该问题会对电力系统电力数值的正常运行带来十分不利的影响。 4.电力变压器继电保护设计优化方法 4.1差动保护设计 将变压器两侧的电流互感器二次侧按正常时的“环流接线”是变压器差动保护动作电流设计的原则。如果变压器处于正常运行的状态,那么差动继电器中的电流为其两侧电流互感器CT的二次电流之差,其数值趋于0。如果差动继电器不发生任何动作,那么其保护也不会有任何作为。也就是说,如果在电流互感器二次回路端线,并且变压器处于最大负荷的状态下,差动保护是不会产生任何动作的。随着计算机芯片性能的提升,对位于变压器1套保护装置中所具有的主保护以及各侧全部后备保护的两套主变压器微机型保护装置进行了全力开发,其成果已经被广泛应用于实际工程中。所以,在330kV及以上高压侧电压的变压器可以采用安装双重差动保护的方法对电力变压器引出线、套管及其内部短路故障进行反应,从而实现有效反应电力变压器绕组及其引出线的多相短路及绕组匝间短路的纵联差动保护,同时也可以将电流速断保护作为主保护,另外也能达到将瞬时动作于断开各侧断路器的目的。 4.2瓦斯保护设计 除了瓦斯保护可以动作,像差动保护以及其他有关保护设计通常是都不能进行动作的。瓦斯保护主要是依靠气体继电器来实现动作的,其位于变压器油箱和油枕之间的连接导油管中。瓦斯保护主要有两种:①首先轻瓦斯保护动作于信号,然后依照气体的属性,包括:颜色、可燃性、数量以及化学成分来判断保护的理由以及电力变压器继电保护装置故障的性质。根据此有关工作人员则可以及时察觉故障的发生并有针对性地对故障进行相关处理。②首先重瓦斯保护动作于断路器跳闸,然后通过监视确定气体发生的速度,并对气体的不同特征以及相关成分进行剖析,从而根据有关分析间接地推测、判断造成故障发生的原因、故障出现的部位和以及故障的严重程度。 4.3过电流保护设计 ①低压变压器过电流保护设计。三相式三卷变压器通常用于变压器低压侧,而在压侧短路时高、中压侧的阻抗保护通常无法发挥作用,起不到保护功能,因此难以达成作为相邻元件所具有的后备保护需求。在这种情况下可以在低压侧安置复合电压闭锁过流保护,并同时在其高、中压侧都设计并安装复合电压闭锁过流保护以及零序方向过电流保护或间隙保护等。②高压变压器的保护设计。在电力变压器高压侧的过电流保护对低压侧母线规定有灵敏系数的时候,可以在电力变压器低压侧断路器和电力变压器高压侧短路器上设计安装有关的过电流保护装置。如果电力变压器低压侧母差保护发生校验停运现象,或者是因为故障出现拒动问题以及开关与TA间出现不正常现象的时

浅谈变压器油的物理质量指标

浅谈变压器油的物理质量指标 无论是我国变压器油的标准,还是国际上的变压器油标准,虽然标准数量很多,但其基本要求还是一致的,其质量标准分为物理指标、化学指标和电气指标三类。油的质量指标与其各项测定方法是密切相关的。我国的变压器油标准共有8个,国外1个。以下浅谈我国变压器油的物理质量指标。 1.凝固点或倾点 油品刚好能够流动发的最低温度称为油品的倾点,而油品不能流动的最高温度称之为凝固点(简称凝点)。两者均是衡量油品低温流动性能的指标,前者为西方国家广泛采用,而后者主要为我国和俄罗斯及前苏联国家使用。油品的凝点是指在规定的试验条件下,将试油逐渐冷却,并将液面倾斜45°,凝固1min 后油品不再移动的最高温度。油品的倾点是指油品在规定的试验条件下,凝为固体后,在室温下放置5s,又熔为液体,发生流动的最低温度。倾点又称流动点,一般比凝点高2~6℃。 处于凝点的油品其化学组分不可能都凝固了,而只能是部分凝固。一般说来,变压器油的凝固只是油品中占百分之几石蜡的凝固,大部分的其他组分仍是液体或凝胶体。因而,凝点下外观为国体的油品,实际上并非真正的固体,可称之为“视固体”。如油品中很少或几乎不含石蜡,油品的凝点将是很低的,石蜡基变压器油的凝点之所以远高于环烷基油的凝点,其道理也正在于此。 变压器油的凝点或倾点是一项相当重要的指标,对于气候寒冷

的地区,低倾点或凝点具有特别重要的意义,直接关系到极端条件下变压器油能否正常流动,能否确保变压器安全。变压器油的倾点或凝点是用户根据变压器使用的气候条件选用变压器油的重要依据,国际变压器油标准中一般要求倾点不高于-40℃(ASTMD3487),这是充分考虑到变压器使用的通用性。 2 闪点 变压器油虽不是易燃油,但也是可燃液体,在遇到明火时存在着着火爆炸的危险。为此需要测定闪点。由于变压器油在密封的油箱中使用,所以一般规定测闭口闪点。所谓闪点,就是将变压器油加热到某一温度时,油蒸汽与空气的混合物,靠近明火则能着火时,这一温度称为变压器油的闪点。闪点越高表明油中易挥发组分越少,油使用时越安全。在变压器油的其他性能得到保证的前提下,希望其闪点高一些,国内一般要求不低于140℃,对此炼油厂是能控制的。 变压器油的闪点也是一项与安全有关的指标。根据所使用的仪器和方法分为闭口闪点和开口闪点。同一油品所测的开口闪点一般较闭口闪点高3~9℃,为保证变压器的运行安全,IEC60296标准要求闪点不低于130℃(闭口),变压器油闪点高于此值就足以保证安全,因为变压器油运行一般不会超过100℃,过分追求高闪点对实际使用并无意义。变压器油闪点还作为检验油品在贮存和使用过程中有无污染、是否混油的参考依据。 闪点降低,一般是由于设备局部过热造成油热裂解油中的可燃

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

10kV电力变压器设计资料

( 二 〇 一五 年 六 月 本科毕业设计说明书 学校代码: 10128 学 号: 201111202005 题 目:10kV 电力变压器的电磁计算与分析 学生姓名:朱 磊 学 院:电力学院 系 别:电力系 专 业:电气工程及其自动化 班 级:电气11-2 指导教师:陈艳宁 讲师

摘要 电力变压器在电力系统中占有重要的地位,其发展趋势是安全可靠、节省生产资本、低损耗运行。因此,进行电力电压器的电磁计算与分析就显得非常重要。 本文早参考了大量文献的基础上,根据变压器设计的基本思路,按照一般压器设计的基本步骤,完成了一台1600kV A/10kV的电力变压器设计。本文章根据一般变压器设计方法针对给定的的电力变压器做了详细的设计。根据所设计变压器的技术参数选用合理的导线和铁心,使其能够安全可靠的运行。通过计算高、低压绕组匝数,对高、低压绕组进行了设计。计算出每匝电动势,进而计算获得低压绕组的匝数,通过变比可得到高压绕组的匝数。高低压绕组的设计包括设计绝缘结构,绕组材料,绕组结构阻抗与负载损耗计算等。计算空载特性是计算空载损耗和空载电流,进而判断所设计的变压器是否合理。计算短路特性是计算变压器的短路电压百分数、铜耗和短路阻抗,若短路阻抗太大则会产生很大的附加损耗,也会使变压器局部过热。变压器温升计算值不仅关系到变压器的安全性、可靠性、使用寿命,也关系到变压器的制造成本。所以本文对温升做了详细的计算。最后则对变压器的结构改进做了详细的介绍。 关键词:电力变压器;电磁计算;结构改进

Abstract Power transformers plays an important role in the power system, and its development trend is safe and reliable, saving production capital, low-loss run, trying to improve the quality of the product. Therefore, it is very important to calculate and analyze the electromagnetic power voltage device. This article reference to the vast literatures on the basis in early, according to the basic idea of transformer design, in accordance with the basic steps of the general press is designed to complete the design of a power transformer 1600kVA / 10kV . This design transformer design according to the general method for the design of power transformers made a detailed design. A reasonable choice of wire and an iron core transformer according to the design specifications to enable safe and reliable operation. High and low voltage windings are designed By calculating the high and low voltage winding turns. Calculating the quantity per turn, and then calculating the number of turns of the low voltage winding can be obtained through high voltage winding turns ratio. Design of high and low voltage winding insulation structure including design, winding material, winding structure impedance and load loss calculation. Computing load characteristic is to calculate load loss and no-load current, and then to determine the design of the transformer is reasonable. Calculating short-circuit characteristic is to calculate the percentage of the transformer short-circuit voltage, short-circuit impedance copper consumption and, if too short-circuit impedance will have a huge additional losses, but also make local overheating transformer. Calculating transformer temperature rise is not only related to the transformer of safety, reliability, service life, but also to the manufacturing cost of the transformer. Therefore, this essay have made a detailed calculation of the temperature rise. Finally, I made a detailed presentation to improve the structure of the transformer. Keywords: power transformer; electromagnetic calculation; structure improvement

YD变压器电流谐波分析

Y/Δ接线变压器一次电流波形分析 Y/Δ接线的变压器有Y/Δ1和Y/Δ11两种接法,接线图如图6-2所示。工程应用中一般采用Y/Δ11接法。 (a )Y/Δ1接线 (b )Y/Δ11接线 图6-2 Y/Δ1和Y/Δ11的换流变压器接线图(描图注意:图中的空心小圆点不画出来) Y/Δ变压器的接线特点: Y/Δ1:a 尾接b 头(绕组a 的尾与绕组b 的头相接), b 尾接c 头,c 尾接a 头; Y/Δ11:a 尾接c 头, c 尾接b 头,b 尾接a 头; 由图6-2可以写出Y/Δ1接线和Y/Δ11接线变压器二次侧线电流与三角形绕组电流之间的关系式。 设绕组电流为:a b c i i i ???,,,参考方向流向同名端;变压器引出端的线电流为 a b c i i i ,,,参考方向为流出,Y/Δ1接线变压器的电流关系如图6-3所示。 图6-3 Y/Δ1接线变压器的电流关系(描图注意:图中的空心小圆点不画出来) 由图6-3可见,Y/Δ1接线变压器的电流有如下关系: Y/Δ1: a a c b b a c c b a a a i =i -i a i =i -i b i =i -i c i i i =0 d ?????????++ () () ()() (6-12)

(a )-(b ):a b a c b a a a a i-i=i -i -i i i -i =3i ?? ????? ++ (b )-(c ):b c b a c b b b b i-i=i -i -i i i -i =3i ????? ?? ++ (c )-(a ):c a c b a c c c c i-i=i -i -i i i -i =3i ??????? ++ 因此得:a a b b b c c c a 1 i =i -i e 31 i =i -i f 31 i =i -i g 3 ???() () () ()() () (6-13) Y/Δ11接线变压器的二次电流关系如图6-4所示。 图6-4 Y/Δ11接线变压器的二次电流关系(描图注意:图中的空心小圆点不画出来) 由图6-4可见,Y/Δ11接线变压器的二次电流有如下关系: Y/Δ11: a a b b b c c c a a a a i =i -i a i =i -i b i =i -i c i i i =0 d ?????????++ () () () () (6-14) (a )-(c ):a c a b c a a a a i-i=i -i -i i i -i =3i ??????? ++ (b )-(a ):b a b c a b b b b i-i=i -i -i i i -i =3i ??????? ++ (c )-(b ):c b c a b c c c c i-i=i -i -i i i -i =3i ?? ????? ++

变压器油的性能指标文档

主要性能指标: ●比重:在20~40℃时比重不超过0.895,由于油的比重小,使油内的杂质和水分容 易沉淀。 ●粘度:油在50℃时的粘度不超过9.6,由于油的粘度小,其对流散热作用好。 ●闪点:油加热后产生的蒸汽与空气混合,遇到明火能发生燃烧的最低温度。油的闪 点越高越好,一般不低于是135℃ ●凝固点:油的粘度随温度而变化,温度越低,粘度越大。当温度低到一定程度,油 不再流动而凝固,这时的温度称为油的凝固点。凝点低,油的对流散热性能好。因 此凝固点越低越好。25号油的凝固点为-25℃,45号油的凝固点为-45℃。 ●酸价:表示油中游离酸的含量。酸价的大小表明油的氧化程度和劣化程度。酸价越 高,氧化越严重,因此,油的酸价越低越好。 ●安定性:由于油和空气长期接触和受热,会氧化成酸、树脂、沉淀物等,称为老化 现象。安定度就是抗拒绝缘老化的能力,安定度越高越好。 由于变压器油的作用及其性能指标的特殊性,新的和运行中的变压器油需要作试验,按变压器运行规程规定,变压器油每年需取样试验。试验项目有:耐压试验、介质损耗试验、简化试验。 变压器油质量的简易鉴别: ●颜色:新油一般为浅黄色、氧化后颜色变深。新油呈深暗色是不允许的。 ●透时度:新油在玻璃瓶中是透明的,并带有蓝紫色的荧光,如果失去荧光和透明度, 说明有机械杂质和游离炭。 ●气味:变压器油应没有气味,或带一点煤油味,如有别的气味,说明油质变坏。 变压器油的运行:

●检查储油柜和充油绝缘套管内油面的高度和封闭处有无渗漏油现象,以及油标内的 油色是否透明。 ●检查变压器上层油温。正常时一般应在85℃以下。 ●呼吸器应畅通,硅胶吸潮不应达到饱和。 ●瓦斯继电器是否动作

小型变压器的简易计算

小型变压器的简易计算: 1,求每伏匝数 每伏匝数=55/铁心截面 例如,铁心截面=3.5╳1.6=5.6平方厘米 故,每伏匝数=55/5.6=9.8匝 2,求线圈匝数 初级线圈n1=220╳9.8=2156匝 次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝 次级线圈匝数计算中的1.05是考虑有负荷时的压降 3,求导线直径 要求输出8伏的电流是多少安?这里我假定为2安。 变压器的输出容量=8╳2=16伏安 变压器的输入容量=变压器的输出容量/0.8=20伏安 初级线圈电流I1=20/220=0.09安 导线直径d=0.8√I 初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米 次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米 经桥式整流电容滤波后的电压是原变压器次级电压的1.4倍。 小型变压器的设计原则与技巧 小型变压器是指2kva以下的电源变压器及音频变压器。下面谈谈小型变压器设计原则与技巧。 1.变压器截面积的确定铁芯截面积a是根据变压器总功率p确定的。设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即a=1.25 。如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。 2.每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。例如一只35w电源变压器,通常计算(中夕片取8500高斯)每伏应绕7.2匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25ma左右。通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。 3.漆包线的线径确定线径应根据负载电流确定,由于漆包线在不同环境下电流差距较大,因此确定线径的幅度也较大。一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2a/mm2(线径)。如果变压器连续工作负载电流基本不变,但本身散热条件较好,再加上环境温度又不高,这样的漆包线取电流密度2 5a/mm2(线径),若变压器工作电流只有最大工作电流的1/2,这样

电力变压器结构设计结构设计说明

电力变压器结构设计结构设计 一、简介 1.为什么要应用变压器 电力系统中发电机输出的电能要经过升压才能远距离输电、网络的连接、配电都需要变压器,因此可以说变压器是电力系统中重要的设备之一,对电力系统的安全运行至关重要。 电力变压器简介 电力变压器按用途可分为以下几种: a.发电机出口或电力网的前端称为升压变压器 b.网络之间联结用称为联络变压器 c.网络末端用于将高压电能降压用称为降压变压器 d.直接连接用户的变压器称为配电变压器 2.变压器的基本概念和基本原理 2.1基本概念:变压器是基于电磁感应原理,通过改变电压来传输电能的一种静止电机。 2.2基本原理:法拉第电磁感应定律 e=-dΦ/dt Φ=Φmsinωt 则E1=-dΦm/dt×N1=-N1Φmωcosωt=-N1Φmωsin(90°-ωt) 即:E1=N1Φmωsin(90°-ωt)(E1落后Φm90°) E1m=N1Φmω E1(rms)= N1Φmω/√2 同理E2(rms)= N1Φmω/√2,即N1/N2=E1/E2 电力变压器简介 3.变压器的分类 从大类上,分为电力变压器和特种变压器。 特种变压器大致有:整流变压器、调相变压器、矿用变压器、试验变压器等。 电力变压器又可分为油浸式电力变压器和干式电力变压器。我们重点学习油

浸式电力变压器。 油浸式电力变压器的分类及型号中各符号代表的意义。 电力变压器简介 a.耦合方式:自耦用“O”表示,其余不标 b.相数:“D”表示单相,“S”表示三相 c.冷却方式:冷却介质为风,即油浸风冷用“F”,水冷用“S”表示 d.循环方式:“P”表示强迫油循环、自然油循环不标 e.绕组数:“S”表示三绕组,双绕组不标,“F”表示双分裂绕组 f.导线材质:铜导线不标,“L”表示铝导线 g.调压方式:“Z”表示有载调压,无载调压不标 h.设计序号:1、2、3… 目前变压器执行的大部分为“9”“10”型产品 i.额定容量:国家规定了R10系列优先容量 j.额定电压:高压绕组额定电压等级 k.防护等级:TH、TA、等。 4.变压器基本参数 4.1 阻抗电压(Zk):由漏磁引起的变压器内部电压降,一侧绕组短路,另一侧施加电压,当加压侧电流达到额定电流时,所施加电压占该侧额定电压的百分数称为短路阻抗用“%”表示。 阻抗电压是变压器订货及设计中最重要的参数之一。(Zk=Zkr+Zkx) 供电质量方面要求Zk小 从安全运行方面要求Zk大些 4.2电压调整率(ε): (U2N-U2)/U2N×100%表示的是变压器带负载后的电压变化 4.3额定容量: 100/100/100 100/50/100 或 100/100/50等,额定容量即为绕组中容量最大的一个。 4.4电压组合: 各绕组的额定电压,指空载电压而非负载条件下的电压组合 4.5联结组别:

相关主题
文本预览
相关文档 最新文档