初三数学圆的知识点总结及经典例题详解
- 格式:doc
- 大小:406.50 KB
- 文档页数:8
圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2 圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
一.圆的界说及相关概念之羊若含玉创作【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形.经由圆心的每一条直线都是它的对称轴.圆心是它的对称中心.考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:贯穿连接圆上任意两点的线段叫做弦.经由圆心的弦叫做直径.直径是圆中最大的弦.弦心距:圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做弧.弧分为半圆,优弧、劣弧三种.(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所组成的关闭图形.弓高:弓形中弦的中点与弧的中点的连线段.(请务必注意在圆中一条弦将圆朋分为两个弓形,对应两个弓高)固定的已经不克不及再固定的办法:求弦心距,弦长,弓高,半径时通常要做弦心距,并衔接圆心和弦的一个端点,得到直角三角形.如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在. 考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种.①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ; 【典范例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分离与⊙C 有怎样的位置关系,并说明你的来由.例2.已知,如图,CD 是直径,且AB=OC ,求∠A 的度数.例3 ⊙O 平面内一点P 和⊙O 大为8cm ,则这圆的半径是例4 在半径为5cm 的圆中,弦则AB 和CD 的距离是若干?例 5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分离为3,2,求BAC ∠的度数.AB DCO·E例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例8CD =4cm ,那么拱形的半径是__m..思考题如图所示,已知⊙O 的半径为10cm ,P 是直径AB 上一点,弦CD 过点P,CD=16cm,过点A 和B 分离向CD 引垂线AE 和BF,求AE-BF 的值.二.垂径定理及其推论【考点速览】考点1 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤.推论1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤.②弦的垂直平分线经由圆心,并且平分弦所对的两条孤.③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤.推论2.圆的两条平行弦所夹的孤相等.·ABDCE PFO垂径定理及推论1中的三条可归纳综合为:①经由圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点【典范例题】例1 如图AB 、CD 是⊙O 的弦,M 、N 分离是AB 、CD 的中点,且CNMAMN∠=∠.求证:AB=CD .例2已知,不过圆心的直线l 交⊙O 于C 、D两点,AB 是⊙O的直径,AE ⊥l 于E ,BF ⊥l 于F.求证:CE=DF .例3 如图所示,⊙O 的直径AB =15cm ,有一条定长为9cm 的动弦CD 在弧AmB 上滑动(点C 与点A ,点D 与B 不重合),且CE ⊥CD 交AB 于E ,DF ⊥CD 交AB 于F. (1)求证:AE =BF(2)在动弦CD 滑动的进程中,四边形CDEF 的面积是否为请说明来由.例4 如图,在⊙O 内,弦CD 与直径AB CD 交直径AB 于点P ,且⊙O 半径为1否为定值?若是,求出定值;若不是,请说明来由.例5.如图所示,在⊙O 中,弦AB ⊥AC ,弦BD ⊥BA ,AC 、ABCDP O..A BDC O ·NMBD 交直径MN 于E 、F.求证:ME=NF.例6.(思考题)如图,1o Θ与2o Θ交于点A ,B ,过A 的直线分离交1o Θ,2o Θ于M,N ,C 为MN 的中点,P 为21O O 的中点,求证:PA=PC.三.圆周角与圆心角【考点速览】 考点1圆心角:极点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数.Eg: 判别下列各图中的角是不是圆心角,并说明来由. 圆周角:极点在圆周上,角双方和圆相交的角叫圆周角.两个条件缺一不成.Eg: 断定下列图示中,各图形中的角是不是圆周角,并说明来由 考点2定理:一条弧所对的圆周角等于它所对的圆心角的一半. Eg: 如下三图,请证明.13.如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,衔接CD 、AD . (1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.14.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD·OA BDC EF M N1O A B2OMNC P于点E .衔接AC 、OC 、BC . (1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O15.如图,在Rt △ABC 中,∠ACB =90°,,AD 是△ABC 的角平分线,过A 、C 、D 交于点E ,衔接DE. (1)求证:AC =AE ;(2)求△ACD 外接圆的半径.16.已知:如图等边ABC △点(端点除外),延长BP 至D (1)若AP 过圆心O ,如图①,并说明来由.(2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?【考点速览】圆心角, 弧,弦,:推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条B图①图②A BC弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分离相等.(务必注意前提为:在同圆或等圆中)例1.如图所示,点O 是∠EPF 的平分线上一点,以O 为圆心的圆和角的双方分离交于A 、B 和C 、D ,求证:AB=CD . 例2、已知:如图,EF 为⊙O 的直径,过EF 上一点P作弦AB 、CD ,且∠APF=∠CPF. 求证:PA=PC.例3.如图所示,在ABC ∆中,∠A=︒72,⊙O 截ABC ∆的三条边长所得的三条弦等长,求∠BOC.例4.如图,⊙O 的弦CB 、ED BC=DE .求证:AC=AE .例5.如图所示,已知在⊙O ︒,OD ⊥AB 于D ,OE ⊥BC 于E . 求证:ODE ∆是等边三角形.例6.如图所示,已知△ABC ⊙O 分离交AB 、AC 于点D 、E. (1)试说明△ODE 的形状;(2)如图2,若∠A=60º,AB≠AC ,则①的结论是否仍然成立,说明你的来由.例7弦DF ∥AC ,EF ABE FO PC12DA BC(1)求证:△BEF 是等边三角形; (2)BA=4,CG=2,求BF 的长.例8已知:如图,∠AOB=90°,C 、D 是弧AB 的三等分点,AB 分离交OC 、OD 于点E 、F.求证:AE=BF=CD.六.会用切线,能证切线考点速览: 考点1直线与圆的位置关系图形公共点个数 d 与r 的关系 直线与圆的位置关系d>r 相离1d=r 相切2d<r 相交考点2切线:经由半径外端并且垂直于这条半径的直线是圆的切线.符号语言∵ OA ⊥ l 于A , OA 为半径 ∴ l 为⊙O 的切线 考点3断定直线是圆的切线的办法:·A OB E DC G F O①与圆只有一个交点的直线是圆的切线.②圆心到直线距离等于圆的半径的直线是圆的切线. ③经由半径外端,垂直于这条半径的直线是圆的切线. (请务必记住证明切线办法:有交点就连半径证垂直;无交点就做垂直证半径) 考点4切线的性质定理:圆的切线垂直于经由切点的半径.推论1:经由圆心且垂直于切线的直线必经由切点. 推论2:经由切点且垂直于切线的直线必经由圆心.(请务必记住切线重要用法: 见切线就要连圆心和切点得到垂直)1、如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分离交于点E 、F ,且∠ACB=∠DCE .(1)断定直线CE 与⊙O 的位置关系,并证明你的结论; (2)若AB=3,BC=4,DE=DC ,求⊙O 的半径. 2.如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交半圆O于点E ,交AC 于点C ,使BED C ∠=∠.(1)断定直线AC 与圆O 的位置关系,并证明你的结论;3.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,贯穿连接BD .(1)取BC 的中点E ,贯穿连接ED ,试证明ED 与⊙O 相切.(2)在(1)的条件下,若AB =3,AC=5,求DE 的长;CAOBED4.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ;5.如图,在△ABC 中,AB=AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F . (1)求证:BC 与⊙O 相切;(2)当∠BAC=120°时,求∠EFG 的度数6.如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O经由点D ,E 是⊙O 上一点,(1)若∠AED =45º.试断定CD 与⊙O 的关系,并说明来由.(2)若∠AED=60º,AD=4,求⊙O 半径.C B DEO · AB CDEOBACDE G O FE C 7.在Rt △ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D. (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明来由.8.如图,已知△ABC 内接于⊙O ,AC 是⊙O的中点,过点D 作直线BC 延长线E 、F(1)求证:EF ⊙是O 的切线;(2)若AB =8,EB =2,求⊙O 如图,已知⊙O 是△ABC 的外接圆,AB PO 过AC 的中点M ,求证:PC 是⊙O 20.已知:AB 是⊙O 的弦,OD ⊥AB 于M 交⊙O 于点D ,CB ⊥AB 交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.20.在Rt △AFD 中,∠F=90°,点B 、C 分离在、上,以AB 为直径的半圆O 过点C ,联络将△AFC 沿AC 翻折得△AEC ,且点E 恰好落在直径AB 上.(1)断定:直线FC 与半圆O 的位置关系是_______________;并证明你的结论.C B AAA(2)若OB=BD=2,求CE 的长.20.如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC=∠ODB .(1)断定直线BD 和⊙O 的位置关系,并给出证明; (2)当AB=10,BC=8时,求BD 的长.20.已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分离交BC 、AC 于点D 、E , 联络EB 交OD 于点F .(1)求证:OD ⊥BE; (2)若AB=5,求AE 的长.20.如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N,交BC 的延长线于点E,直线CF 交EN 于点F,且.ECF E ∠=∠ (1)证明CF 是O 的切线(2) 设⊙O 的半径为1.且AC=CE,求MO 的长. 21.如图,AB BC CD 分离与圆O 切于E F G 且AB//CD ,衔接OB OC ,延长CO 交圆O 于点M ,过点M 作MN//OB 交CD 于N 求证 MN 是圆O 切线当OB=6cm ,OC=8cm 时,求圆O 的半径及MN 的长七.切线长定理考点速览:考点1切线长概念:经由圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不成器量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以器量.考点2切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分离切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝,求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分离切ABC ∆的三边E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当r .例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?例4 如图甲,直线343+-=x y 与x 轴相交于点A ,与y 轴相交于点B ,点C ()n m ,是第二象限内任意一点,以点C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F. (1)当四边形OBCE 是矩形时,求点C 的坐标;(2)如图乙,若⊙C 与y 轴相切于点D ,求⊙C 的半径r ; (3)求m 与n 之间的函数关系式;(4)在⊙C 的移动进程中,可否使OEF ∆是等边三角形(只答复“能”或“不克不及”)?八.三角形内切圆考点速览 考点1概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的心坎,这个三角形叫做圆的外切三角形.概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 考点2三角形外接圆与内切圆比较:外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC ; (2)外心不一定在三角形的内部.心坎(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA 、OB 、OC 分离平分∠BAC、∠ABC、∠ACB;(3)心坎在三角形内部.考点3求三角形的内切圆的半径1、直角三角形△ABC 内切圆⊙O 的半径为2c b a r -+=.2、一般三角形①已知三边,求△ABC 内切圆⊙O 的半径r.(海伦公式S △=)c s )(b s )(a s (s --- , 其中s=2cb a ++) 例1.如图,△ABC 中,∠A=m°.(1)如图(1),当O 是△ABC 的心坎时,求∠BOC 的度数;BO E FD(2)如图(2),当O 是△ABC 的外心时,求∠BOC 的度数;(3)如图(3),当O 是高线BD 与CE 的交点时,求∠BOC 的度数.例2.如图,Rt △ABC 中,AC=8,BC=6,∠C=90°,⊙I 分离切AC ,BC ,AB 于D ,E ,F ,求Rt △ABC 的心坎I 与外心O 之间的距离. 考点速练21.如图,在半径为R 的圆内作一个内接正方形,•然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .(nRB .(12)nR C .(12)n -1R D )n -1R3.如图,已知△ABC 的内切圆⊙O 分离和边BC ,AC ,AB切于D ,E ,F ,•如果AF=2,BD=7,CE=4. (1)求△ABC 的三边长;(2)如果P 为弧DF 上一点,过P 作⊙O 的切线,交AB于M ,交BC 于N ,求△BMN 的周长.十.圆与圆位置的关系考点速览:1圆和圆的位置关系(设两圆半径分离为R和r,圆心距为d)2.有关性质:(1)连心线:通过两圆圆心的直线.如果两个圆相切,那么切点一定在连心线上.(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦.(3)公切线:和两个圆都相切的直线,叫做两圆的公切线.两个圆在公切线同旁两个圆在公切线两旁34.相切两圆的性质定理:相切两圆的连心线经由切点经典例题:例1、如图,已知⊙1O 与⊙2O 相交于A 、B 两点,P 是⊙1O 上一点,PB 的延长线交⊙2O 于点C ,PA 交⊙2O 于点D ,CD 的延长线交⊙1O 于为N.(1)过点A 作AE//CN 交⊙1O 于点E.求证:PA=PE. (2)衔接PN ,若PB=4,BC=2,求PN 的长. 例2 如图,在ABC ∆中,22,90===∠AC AB BAC,圆A 的半径为1,若点O 在BC 边上运动(与点B 、C 不重合),设AOC x BO ∆=,的面积为y.(1)求y 关于x 的函数关系式,并写出x 的取值规模; (2)以点O 为圆心,BO 长为半径作⊙O ,当圆⊙O 与⊙A 相切时,求AOC ∆的面积.教室演习:1.已知⊙O1与⊙O2的半径分离为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为A .外离B .外切C .相交D .内切2.已知两圆半径分离为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >P2OABC· EN ·1OD OBCA3.大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为()A.外离B.外切C.相交D.内含5.若两圆的半径分离是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离6.外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是A.11B.7C.4D.3考点速览:【例题经典】有关弧长公式的应用例 1 如图,Rt△ABC的斜边AB=35,AC=21,点O在AB边上,OB=20,一个以O为圆心的圆,分离切两直角边边BC、AC于D、E两点,求弧DE的长度.有关阴影部分面积的求法例2 如图所示,等腰直角三角形ABC的斜边4AB ,O是AB的中点,以O为圆心的半圆分离与两腰相切于D、E.求圆中阴影部分的面积.B求曲面上最短距离例3如图,底面半径为1,母线长为4的圆锥, 一只小蚂蚁若从A 点出发,绕正面一周又回到A 点,它爬行的最短路线长是() A .2 B .42 C .43 D .5求圆锥的正面积例4如图10,这是一个由圆柱体资料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm ,高BC=8cm ,求这个零件的概况积.(成果保存根号) 三、应用与探究:1.如图所示,A 是半径为1的⊙O 外一点,OA=2,AB 是⊙O的切线,B 为切点,弦BC ∥OA ,贯穿连接AC ,求阴影部分的面积.2.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .求证:(1)AD =BD ;(2)DF 是⊙O 的切线.AOCBFEDCBAO3.如图,在Rt △ABC 中,∠B =90°,∠A 的平分线与BC 相交于点D,点E 在AB 上,DE=DC,以D 为圆心,DB 长为半径作⊙D .(1)AC 与⊙D 相切吗?并说明来由.(2)你能找到AB 、BE 、AC 之间的数量关系吗?为什么?4、如图,已知:ABC △内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,30D ∠=.(1)求证:AD 是⊙O 的切线; (2)若6AC =,求AD 的长.圆的综合测试一:选择题1.有下列四个命题:①直径是弦;②经由三个点一定可以作圆;③三角形的外心到三角形各极点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )2.下列断定中正确的是( )3.如上图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC等于( )A.60°B.100°C.80°D.130°4.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2:3:6,则∠D 的度数是( )A.67.5°B.135°C.112.5°D.110°5.过⊙O 内一点M 的最长弦长为6cm,最短的弦长为4cm,则OM 的长为( ).A 、cm 3B 、cm 5C 、cm 2D 、cm 36.两个圆是同心圆,大、小圆的半径分离为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( )7.△ABC 的三边长分离为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )A.21(a +b +c )rB.2(a +b +c )C.31(a +b +c )r D.(a +b +c )r8.已知半径分离为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值规模是( )A.0<d <3rB.r <d <3rC.r≤d <3rD.r≤d≤3r9.将一块弧长为的半圆形铁皮围成一个圆锥(接头疏忽不计),则围成的圆锥的高为()A .3B .23C .5D .25 10.如图,圆 O 中弦AB 、CD 相交于点F ,AB=10,AF=2,若CF:DF=1:4,则CF的长等于( ). C A DFOA .2B .2C .3D .2211.有一张矩形纸片ABCD ,其中AD=4cm ,上面有一个以AD 为直径的 半圆,正好与对边BC 相切,如图(甲),将它沿DE 折叠,使A 点落在BC 上,如图(乙),这时,半圆还露在外面的部分(阴影部分)的面积是( )A.2)32(cm -π B .2)321(cm +π C .2)334(cm -π D .2)332(cm +π 12.如图,两同心圆间的圆环(即图中阴影部分)的面积为16π,过小 圆上任一点P 作 大圆的弦AB ,则PA PB ⋅的值是( )A .16B .16πC .4D .4π二、填空题13.Rt △ABC 中,∠C =90°,AC=5,BC=12,则△ABC 的内切圆半径为 .14.如图,圆O 是ABC △的外接圆,30C ∠=,2cm AB =,则圆O 的半径为cm .15.(1)已知圆的面积为281cm π,其圆周上一段弧长为3cm π,那么这段弧所对圆心角的度数是.(2)如图13所示,AB 、CD 是⊙O 的直径,⊙O 的半径B O CAD A B C A B CC为R ,AB ⊥CD ,以B 为圆心, 以BC 为半径作弧CED ,则弧CED 与弧CAD 围成的新月形ACED 的面积为.(3)如图14,某学校建一个喷泉水池,设计的底面边长为4m 的正六边形,池底是水磨石地面,现用的磨光机的磨头是半径为2dm 的圆形砂轮,磨池底时磨头磨不到的部分的面积为. 16.如图2,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的正面积是.cm2.17.如图,有一个圆锥,它的底面半径是2cm母线长是8cm ,在点A 处有一只蚂蚁,它想吃到与A 点相对且离圆锥极点23cm 的点B 处的食物,蚂蚁爬行的最短旅程是. 18、如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于E ,AE=2、ED=6,则AB=.19.已知矩形ABCD ,AB=8,AD=9,工人师傅在铁皮上剪去一个和三边都相切的⊙P 后,在剩余部分废料上再剪去一个最大的⊙Q ,那么⊙Q 的直径是. 20.如图所示,AB 是⊙1O 的直径,1AO 是⊙2O 的直径,弦MN ∥AB ,且MN 与⊙2O 相切于点C .若⊙1O 的半径为2,则由1O B 、弧BN 、NC 、弧CO 1围成图形的面积等于.21.如图,已知半圆O 的直径为AB ,半径长为·· A C B D E O · A B CD ·Q · P · M A O 1 O 2 C N B AC D O E B 图13图14 · · B O A·· · A B O C425,点C 在AB 上,CD AB CD OC ,,47⊥=交半圆O 于D ,那么与半圆相切,且与BC ,CD 相切的圆O '的半径长是 .三、综合题22.以Rt △ABC 的直角边AC 为直径作⊙O ,交斜边AB 于点D ,E 为BC 边的中点,连DE.⑴请断定DE 是否为⊙O 的切线,并证明你的结论.⑵当AD :DB=9:16时,DE=8cm 时,求⊙O 的半径R.23. 如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠.(1)求证:PC 是O ⊙的切线;(2)求证:12BC AB =; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若4AB =,求MN*MC 的值.。
九年级数学圆知识点汇总在九年级数学学习中,圆是一个重要的概念,它涉及到很多数学知识和技巧。
本文将对九年级数学课程中的圆相关知识点进行汇总,并提供一些有助于理解和掌握这些知识的例子和解析。
一、圆的定义和性质圆是平面上的一个几何图形,由与一个固定点的距离相等的所有点组成。
圆的性质有以下几点:1. 圆的半径:圆心到圆上任一点的距离都相等,这个距离称为圆的半径。
2. 圆的直径:通过圆心的一条线段,它的两个端点都在圆上,这个线段叫做圆的直径。
直径是圆的长的两倍。
3. 圆的周长:圆的周长是圆的一条边上的长度,也可以说是一条线段围绕圆的一周所走的距离。
周长的计算公式是C=2πr,其中r是圆的半径,π是一个常数,约等于3.14。
4. 圆的面积:圆的面积是指圆内部的部分,计算圆的面积可以使用公式A=πr^2,其中A表示面积,r表示半径。
二、圆的相关定理和公式1. 弧与圆心角的关系:圆上的任意两点确定一个弧,对应的圆心角的大小等于弧所对的圆弧的一半。
2. 弧长和圆周角的关系:弧长是圆周的一部分,弧长和圆周角的关系可以使用公式L=2πr(θ/360),其中L表示弧长,θ表示圆周角的度数。
3. 弦和弦长的关系:弦是圆上的两个点之间所确定的线段,而弦长则是这个弦的长度。
在同一个圆中,等长的弦所对应的圆周角是相等的。
4. 切线和切点的关系:切线是与圆只有一个交点的直线,这个交点叫做切点。
切线与半径垂直。
三、九年级数学例题解析例题一:已知半径为6 cm 的圆,求其周长和面积。
解析:根据圆的周长公式C=2πr,将半径r=6 cm代入,可以计算出周长C=2π(6)=12π≈37.7 cm。
再根据圆的面积公式A=πr^2,将半径r=6 cm代入,可以计算出面积A=π(6)^2=36π≈113.1 cm^2。
例题二:在半径为8 cm 的圆中,一条弦的长度为10 cm,求此弦所对应的圆周角的度数。
解析:根据弦长和圆周角的关系公式L=2πr(θ/360),将弦长L=10 cm和半径r=8 cm代入,可以计算出θ=360*(L/2πr)=360*(10/2π*8)≈142.9°。
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
九年级数学圆知识点及例题圆是初中数学中非常重要的一个几何概念,它与我们日常生活息息相关。
本文将带领大家系统地了解九年级数学中与圆相关的知识点,并提供一些例题进行辅助学习。
一、圆的基本概念1. 圆的定义:圆是平面上到一个定点(圆心)距离相等的所有点的集合。
2. 圆的要素:圆心、半径、直径、弧、弦、切线等。
二、圆的基本性质1. 圆的半径与直径的关系:直径是半径的两倍。
2. 圆的周长:圆的周长是其直径的倍数,即周长等于直径乘以π(π≈3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
三、圆的判定1. 距离判定定理:给定一定距离,平面上到该距离相等的点构成的图形是圆。
2. 切线定理:过圆外一点有且仅有一条切线,该切线与半径垂直。
四、圆的位置关系1. 同圆:拥有相同半径的两个圆。
2. 内切和外切:一个圆与另一个圆内部的一个点或外部的一个点相切。
3. 相交与相离:两个圆相交的情况包括相切和交叉,而相离则是两个圆不相交。
五、圆的综合应用1. 圆和三角形的关系:圆内切于一个三角形的关系、圆外接于一个三角形的关系等。
2. 圆和正多边形的关系:正n边形的内切和外切圆等。
3. 圆和椭圆、抛物线、双曲线的关系。
下面我们来看一些九年级数学中与圆相关的例题。
例题1:已知一个圆的半径是5cm,求其周长和面积。
解:根据圆的周长公式,周长等于直径乘以π。
我们已知半径是5cm,则直径是半径的两倍,即10cm。
所以,圆的周长为10cm × π ≈ 10 × 3.14 ≈ 31.4cm。
另外,根据圆的面积公式,面积等于半径的平方乘以π。
所以,圆的面积为5cm × 5cm × π ≈ 25 × 3.14 ≈ 78.5cm²。
例题2:已知圆A的半径是8cm,圆B的直径是12cm,判断这两个圆的位置关系。
解:首先,我们通过直径的关系得知,圆B的直径是圆A的直径的1.5倍,即12cm = 8cm × 1.5。
1圆的对称性主要内容:(一)圆的定义及相关概念1. 圆是到一定点的距离等于定长的所有点组成的图形。
这个定点叫做圆心,定长叫做半径。
圆也可以看作是一个动点绕一个定点旋转一周所形成的图形。
同一圆的半径相等,直径相等,直径等于半径的2倍。
2. 圆的基本元素:(1)弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫直径。
(如图)(2)弧:圆上任意两点间的部分叫做弧。
简称弧,弧用符号表示。
(3)半圆、劣弧、优弧圆的任意一条直径的两个端点分圆成两条弧。
每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
CD* EC.大于半圆的弧叫做优孤-用三个字母表示:嬴(4)圆心角顶点在圆心的角,叫做圆心角。
/ COD(5)同心圆、等圆、等弧同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
等圆:能够重合的两个圆叫等圆。
半径相等的两个圆也叫等圆。
等弧:在同圆与等圆中,能够互相重合的弧叫等弧。
3. 圆是轴对称图形,也是中心对称图形。
经过圆心的直线是对称轴。
圆心是它的对称中心。
4. 圆心角、弧、弦之间的关系定理:在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。
推论:在同一个圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
(2)T金=后二N盘0B = ZA'OB'5 AB=A'B l如图,用几何语言表示如下:O O 中,(1)vZ AOB =Z A'OB'(3)v AB = A'B'/. ZAOB= ZA'OB1, 恳=品例3.在O O 中,弦AB = 12cm ,点O 到AB 的距离等于 圆的半径。
分析:根据O 到AB 的距离,可利用垂径定理解决。
解:过O 点作OE 丄AB 于E •/ AB = 12丄直 B = -xl2 = 62 2由垂径定理知:虹二 BE 二丄AB 二 625.直径垂直于弦的性质(垂径定理)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
九年级圆章节知识点总结圆是中学数学中一个重要的几何概念,它的相关知识点在九年级的数学学习中经常出现。
本文将对九年级圆章节的知识点进行总结和梳理,帮助同学们更好地掌握圆的相关知识。
一、圆的定义和性质1. 定义:圆是由平面上到一个确定点的距离都相等的所有点的集合。
2. 圆心和半径:圆心是圆的中心点,用O表示;半径是圆心到圆上任一点的距离,用r表示。
3. 直径和弦:直径是通过圆心的一条线段,用d表示;弦是圆上的一条线段,连接两点,用AB表示。
4. 弧和弧长:弧是圆上的一段弯曲部分,用AB表示;弧长是弧所占据的圆的周长的长度比例。
二、圆的相关定理1. 相等定理:圆心角相等的弧相等;等弧对应的弧相等。
2. 弧度:圆周角为360°,对应的弧长为2πr。
3. 同圆弧:如果两个弧在同一个圆上,则这两个弧叫做同圆弧,且它们的弧长相等。
4. 弧的夹角公式:夹在同一弧上的圆心角相等。
5. 锐角和钝角:圆心角小于180°则为锐角,大于180°则为钝角。
三、弦的性质1. 弦分割圆:弦AB分割圆为两个弧,即AB和AB',且它们的圆心角相等。
2. 弦的性质:等长的弦对应的圆心角相等;同一个圆上,离圆心较远的弧所对圆心角较小,离圆心较近的弧所对圆心角较大。
3. 弧与弦的关系:在同一个圆上,对任意弦来说,在此弦上的弧所对的圆心角所对的弧长大于不在此弦上的弧所对的圆心角所对的弧长。
四、切线的性质1. 切线的定义:切线是与圆只有一个交点的线。
2. 切线与半径的关系:过圆外一点做圆的切线,切点与圆心连线是切线的垂线。
3. 切线与弦的关系:圆的切线与弦的切点处的切线相等。
五、定理的应用1. 弦切角定理:圆上的切线和半径所夹的角是直角。
2. 弧切角定理:圆上的切线和此切点处的弧所夹的角是半弧对应的圆心角。
3. 切线定理:两条相交的切线所夹的角等于对角所对的圆心角的一半。
六、九年级圆章节例题练习1. 已知圆的半径为8cm,求其周长和面积。
圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.0.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.圆的基本性质1.如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是.A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O中, 圆周角∠BAD=50°,则圆周角∠BCD的度数是.A.100°B.130°C.80°D.50°3.已知:如图,⊙O中, 圆心角∠BOD=100°,则圆周角∠BCD的度数是.A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD内接于⊙O,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为的圆中,有一条长为的弦,则圆心到此弦的距离为.A B C D6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.507.已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是.A.100°B.130°C.200°D.508. 已知:如图,⊙O中, 圆周角∠BCD=130°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.50°9. 在⊙O中,弦AB的长为,圆心O到AB的距离为,则⊙O的半径为cm.A.3B.5 D. 10点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为.A.相离B.相切C.相交D.相交或相离2.已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交3.已知圆O的半径为,PO=,那么点P和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4.已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 不能确定6.已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7. 已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交8. 已知⊙O的半径为,PO=,则PO的中点和这个圆的位置关系是.A.点在圆上B. 点在圆内C. 点在圆外D.不能确定圆与圆的位置关系1.⊙O1和⊙O2的半径分别为和,若O1O2=,则这两圆的位置关系是.A. 外离B. 外切C. 相交D. 内切2.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙1、⊙O2的半径分别为和,若O1O2==,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切5.已知⊙1、⊙O2的半径分别为和,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为.A. B.cm C D.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A. 2B. . D.4.扇形的面积为,半径为2,那么这个扇形的圆心角为= .A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为.A.RB.RC.RD.6.圆的周长为C,那么这个圆的面积S= .A. B. C. D.7.正三角形内切圆与外接圆的半径之比为.A.1:2B.1:C.:2D.1:8. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.9.已知,正方形的边长为2,那么这个正方形外接圆的直径为.A.2B.2 D.20.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为.A. 3B.C.3D.3。
九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。
3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90° ,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
《圆》经典例题分析总结经典例题透析1.垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸B.13寸C.25寸D.26寸2.圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2.如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°举一反三:【变式1】如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【变式2】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,BC=4cm.(1)说明AC⊥OD;(2)求OD的长.3.切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3.如图所示,直线MN是⊙O的切线,A为切点,过A的作弦交⊙O于B、C,连接BC,证明∠NAC=∠B.举一反三:【变式1】如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.【变式2】如图所示,AB是⊙O的直径,是⊙O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.4.如图所示,EB、BC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.答案:99°.解析:由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.举一反三:【变式1】如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DE∥OC;4.两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5.填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是______.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.【变式2】已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.【变式3】在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线有( )A.1条B.2条C.3条D.4条5.弧长的计算及其应用6.如图所示,在正方形铁皮下剪下一个圆形和扇形,使之恰好围成图中所示的一个圆锥模型,设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之问的关系为( )A. B. C. D.6.图形面积的计算及其应用与圆有关的图形面积计算问题有圆的面积、扇形面积、圆柱及圆锥的侧面积与全面积.考查题型以选择题、填空题、解答题为主,考查重点是对有关公式的灵活运用.其中是不规则图形面积的计算,应首先将其转化为规则图形,然后再进行.7.沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( )A. B.72 C.36 D.727.圆与其他知识的综合运用8.如图所示,已知灯塔A的周围7海里的范围内有暗礁,一艘渔船在B处测得灯塔A在北偏东60°的方向,向正东航行8海里到达C处后,又测得该灯塔在北偏东30°的方向,渔船如果不改变方向,继续向东航行,有没有触的礁危险?思路点拨:若渔船在向东航行的过程中的每一位置到A点的距离都大于7海里,则不会进入危险区域,所以只要计算航线上到A点最近的点与A点的距离.解:过点A作AD⊥BC交直线BC于D,设AD=x海里.∵∠ABD=90°-60°=30°,∠ACD=90°-30°=60°,∴AB=2x,AC=2CD.∴,,∴,.∵,∴,.即.这就是说当渔船航行到点D时,在以A为圆心、以7海里为半径的圆形暗礁内.所以,若不改变航向继续向正东航行,有触礁的危险.总结升华:解这类实际问题,只需求其最小值或最大值,与已知数据进行比较,从而得出正确的结论.9.小明要在半径为1 m、圆心角为60°的扇形铁皮中剪取一块面积尽可能大的正方形铁皮,小明在扇形铁皮上设计如图1和图2所示的甲、乙两种剪取方案,请你帮小明计算一下,按甲、乙两种方案剪取所得的正方形的面积,并估算哪个正方形的面积较大.(估算时取1.73,结果保留两个有效数字).思路点拨:要比较甲、乙两方案剪取的正方形的面积大小,关键在于求出边长.解:方案甲:如图,连接OH,设EF=x,则OE=2OF,,∴.在Rt△OGH中,OH2=GH2+OG2,即,解得.方案乙:如图所示,作于M,交于N,则M、N分别是和的中点,,连接.设,则,在中,,即,∴.若取,则,.∴x2>y2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.思路点拨:如图所示,连接OD,因为DE是⊙O的切线,故∠ODE=90°,又OA=OD,故∠A=∠ODA,∠OAP+∠OPD=90°,∠ODA+∠ADC=90°,故∠OPD=∠ADC=∠EDP,△DEP是等腰三角形.解:(1)在BF上取点P,连AP交⊙O于点D,过D作⊙O切线,交OF于E,如图即为所求.(2)∠EDP=∠DPE,或ED=EP或△PDE是等腰三角形.(3)根据题意,得△PDE是等腰三角形,∴∠EDP=∠DPE,∴,在Rt△OAP中,,∴,自变量x的取值范围是且.。
九年级数学《圆》知识点祥解及习题检测一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;rddCBAO五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
初三数学知识点总结归纳圆圆是初中数学中的一个基础概念,它在几何学和代数学中都有重要的应用。
本文将对初三数学中与圆相关的知识点进行总结归纳。
一、圆的定义和基本性质在几何学中,圆是由平面上距离固定点相等的所有点组成的集合。
圆由以下几个要素组成:1. 圆心:圆心是圆上每一个点到圆心的距离都相等的点,通常用字母O表示。
2. 半径:半径是圆心到圆上任意一点的距离,通常用字母r表示。
3. 直径:直径是圆上通过圆心的一条线段,它的两个端点都在圆上。
4. 弦:弦是圆上连接两点的线段,它的两个端点可以在圆内、圆上或圆外。
基本性质:1. 圆上任意两点之间的距离都等于半径的长度。
2. 圆上的任意弦垂直于该弦所对应的圆心角。
3. 圆上的任意弦,如果和圆心的连线垂直,则它所对应的圆心角为直角。
4. 圆上的任意弦和半径所夹的圆心角相等。
5. 圆上的圆心角是弦所对应的两个弧所夹的角的一半。
二、圆的常见问题和计算公式1. 弧长和扇形面积:- 弧长公式:弧长 = 弧所对应的圆心角(单位:弧度) * 半径- 扇形面积公式:扇形面积 = 弧所对应的圆心角(单位:弧度) / 2 * 半径的平方2. 圆的周长和面积:- 周长公式:周长= 2 * π * 半径- 面积公式:面积= π * 半径的平方3. 相关角:- 同位角:同位角是两个弧之间或角之间所对应的相等的角。
- 对顶角:对顶角是两个相交弧所对应的两对相等角。
4. 切线与切点:- 切线是与圆只有一个交点的直线。
切线与半径所构成的夹角是直角。
- 切点是切线与圆的交点,切点到圆心的线段与切线垂直。
三、圆的相关定理1. 弧长和扇形面积等于整个圆的弧长和面积。
- 弧长:一个弧的弧长等于整个圆的弧长(360度)乘以弧所对应的圆心角度数除以360。
- 扇形面积:一个扇形的面积等于整个圆的面积乘以扇形所对应的圆心角度数除以360。
2. 切线与半径垂直- 切线与切点的切线垂直。
3. 弦上的角等于其所对应的弧所对应的圆心角的一半。
【文库独家】圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)知识点总结1.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
2.圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
5.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
练习题1、(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.【分析】首先利用勾股定理逆定理得∠AOC=90°,再根据一条弦对着两种圆周角可得答案.【解答】解:如图,∵OA=OC=1,AC=,∴OA2+OC2=AC2,∴∠AOC=90°,∴∠ADC=45°,∴∠AD'C=135°,故答案为:45°或135°.2、(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC 即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC===13(cm),所以圆形镜面的半径为cm,故答案为:cm.3、(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.4、(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.5、(2022•湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AB ⌒所对的圆周角,则∠APD 的度数是 .【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴,∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =∠AOB =60°,∴∠APD =∠AOD =×60°=30°,故答案为:30°.6、(2022•徐州)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【解答】解:∵∠ACB =∠AOB ,∠ACB =36°,∴∠AOB =2×∠ACB =72°.故答案为:72°.7、(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB=90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.8、(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.【解答】解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.9、(2022•甘肃)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.。
教学内容圆的题型分类教学目标巩固圆的相关题型重点垂径定理、切线性质的运用难点垂径定理、切线性质的运用教学过程圆中辅助线1、有关弦的问题,常做其弦心距,构造直角三角形2、有关直径问题,常做直径所对的圆周角3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系【类型1】:圆的基本性质的综合应用1.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=【变式练习】2.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC 的长为【类型2】:圆的相切和圆中位置关系的问题题型一:连半径,证垂直例1、如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD 的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.例2、如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【课堂练习】1、如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE 交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;3、如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,CT=,求AD的长.4、如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.5、如图,四边形ABCD是菱形,对角线BD上有一点O,以O为圆心,OD长为半径的圆记为⊙O。
《圆》全章复习与珥固一知识讲解(提高)【学习目标】1. 理解圆及其有关柢念,理解弧、弦、圆心角的关系J 探素并了解点与圆、直线与圆、圆与圆的 位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2. 了解切线的概念'探索并摹握切我与过切点的半径之间的位置关系'能判定一条直线是否为圆 的切线,会过圆上一点画圆的切线,3. 了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆34. 了解正多边形的瞬,摹握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、 圆锥的侧面积及全面积55. 结合相关图形性质的探素和证明,进一步培养合情推理能如 发展i 罗辑思维能力彳瞒理论证的 表达能力;通过这一童的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知说网络】的时房件其应用T 具的野典LJ-T 弧.夜、网心角之间的忐IT 时兑上的隔用角与Bi心角的美系三角於FT/卜接携切咬的件项及捋定与K 有关的传置关系T 正多边形和直线利01的位置关系曜长的讨算反其魔用周扇形血秋沮形面秘的计斯我其应的计鼻I ~H [要点橙理]要点二'圜的定义、性质及与圈有矣的角1. 圆的定义0舞殳0A 绕着它的T 端点。
放转一周,另T 、端点A 所形成的封闭曲添叫偷凰(2)圆是到定点的距离等于定长的点的集合.要点诠释:① 圆心确定圆的位置,半径福定圆的大小J 确定一个圆应先确定圆心,再珊定半径,二者缺一不可;② 圆是一条封闭曲线.2. 圆的性质令旅转不变性:圆是族转对称图形,绕圆心族转任一南度都和原来图形重合,圆是中心对称图形, 对称中心是圆心・在同圆或等圆中,两个圆6角,两条弘.两条弦,两条弦心距,这ES 瞠中的任意一卸爵)那么 它所对应的耳他各组分别相等・0轴对称:圆是轴对称图形,经过圆心的任一直线都是它根I称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心'且平分弦对的两条强.吵平分一条弦所对的两条弧的直线过圆心;且垂直平分此弦.⑤平行弦夹的弧相等.要点诠释:'…在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的当弧,在这五个条件中,知道任意两个,就能推出其他三个结论・(注意:“过圆心、平分弦〃作为题设时,平分的弦不能是直径〉3.两国的性质6两个圆是一个轴对称图形'对称轴是两圆连心场0相交两圆的连心线垂直平分公共弦'相切两圆的连心线经过切点.4.与圆有美的危6圆心角;顶点在圆心的角叫圆心角.EI心角的,性质:圆心角的度数等于它所对的孤的度数.⑵圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的,性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中』相等的圆周角所对的弧相等.③ 90°的圆周角所对的弦为直径;半国或直径所对的圆周角为直角.四如果三角形一边上的中线等于这边的一半'那么这个三角形是直角三角形.⑤圆内接四边形的对角互补J外角等于它的内对角.要点逢释:"、(1)圆周角必须海足两个条件:①顶点在鼠h②角的两边都和圆相交.⑵圆周角定理成立的前提条件是在同圆成等圆中.要点二'与园有笑触位置笑系1.判定一个点P是否在oo±设3的半径为,,0P=d,贝惰d>厂=点「在。
第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²—r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
初三数学圆的知识点总结及经典例题详解
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等.
5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等.
10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切.
2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切.
2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交.
4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.
正多边形基本性质
1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.
圆的基本性质
1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .
A. 50°
B. 80°
C. 90°
D. 100°
2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50°
3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数
是 .
A.100°
B.130°
C.80°
D.50°
4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 .
•
B
•
•
C
B
A
O
•
B
O
C
A
D
D
C
A
O
A.∠A+∠C=180°
B.∠A+∠C=90°
C.∠A+∠B=180°
D.∠A+∠B=90
5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离
为 .
A.3cm
B.4cm
C.5cm
D.6cm
6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50
7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数
是 .
A.100°
B.130°
C.200°
D.50
8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50°
9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.
A.3
B.4
C.5
D. 10
点、直线和圆的位置关系
1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .
A.相离
B.相切
C.相交
D.相交或相离
2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .
A.相切
B.相离
C.相交
D. 相离或相交
3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是
•
B
O
C
A
D
•
B
O
C
A
D
•
D
B
C
A
O •
D
B
C A
O
A.点在圆上
B. 点在圆内
C. 点在圆外
D.不能确定
4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 .
A.0个
B.1个
C.2个
D.不能确定
5.一个圆的周长为a cm,面积为a cm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .
A.相切
B.相离
C.相交
D. 不能确定
6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .
A.相切
B.相离
C.相交
D.不能确定
7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .
A.相切
B.相离
C.相交
D. 相离或相交
8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .
A.点在圆上
B. 点在圆内
C. 点在圆外
D.不能确定
圆与圆的位置关系
1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .
A. 外离
B. 外切
C. 相交
D. 内切
2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是 .
A.内切
B. 外切
C. 相交
D. 外离
3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是 .
A.外切
B.相交
C. 内切
D. 内含
4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是 .
A.外离
B. 外切
C.相交
D.内切
5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长43,则两圆的位置关系是 .
A.外切
B. 内切
C.内含
D. 相交
6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是 .
A.外切
B.相交
C. 内切
D. 内含
公切线问题
1.如果两圆外离,则公切线的条数为 .
A. 1条
B.2条
C.3条
D.4条
2.如果两圆外切,它们的公切线的条数为 .
A. 1条
B. 2条
C.3条
D.4条
3.如果两圆相交,那么它们的公切线的条数为 .
A. 1条
B. 2条
C.3条
D.4条
4.如果两圆内切,它们的公切线的条数为 .
A. 1条
B. 2条
C.3条
D.4条
5. 已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=9cm,则这两个圆的公切线有 条.
A.1条
B. 2条
C. 3条
D. 4条
6.已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=7cm,则这两个圆的公切线有 条.
A.1条
B. 2条
C. 3条
D. 4条
正多边形和圆
1.如果⊙O 的周长为10πcm ,那么它的半径为 . A. 5cm B.10cm C.10cm D.5πcm
2.正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B. 3 C.1 D.2
3.已知,正方形的边长为2,那么这个正方形内切圆的半径为 . A. 2 B. 1 C.2 D.3 4.扇形的面积为
3
2π
,半径为2,那么这个扇形的圆心角为= . A.30° B.60° C.90° D. 120°
5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为 .
A.21
R B.R C.2R D.R 3 6.圆的周长为C,那么这个圆的面积S= .
A.2
C π B.π2
C C.π22C D.π
42
C
7.正三角形内切圆与外接圆的半径之比为 . A.1:2 B.1:3 C.3:2 D.1:2 8. 圆的周长为C,那么这个圆的半径R= .
A.2C π
B. C π
C.
π2C D. π
C 9.已知,正方形的边长为2,那么这个正方形外接圆的直径为 . A.2 B.4 C.22 D.23
10.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为 . A. 3 B. 3 C.32 D.33。