八进制数和进制数相互转换
- 格式:doc
- 大小:148.52 KB
- 文档页数:18
进制转换规则⼀、⼗进制与⼆进制之间的相互转换⼗进制——>⼆进制1. 整数部分和⼩数部分分别转换,2.⼗进制整数转换为⼆进制整数:除2,由下往上取余3.⼗进制⼩数转换为⼆进制⼩数:乘2,由上往下取整⼆进制——>⼗进制将⼆进制数的每⼀位数乘以它的权,然后相加,即可求得对应的⼗进制数值。
⼆、⼋进制与⼗进制、⼆进制之间的相互转换⼆进制——>⼋进制从⼩数点起,每三位⼆进制位分成⼀组(不⾜3位时,在⼩数点左边时左边补0,在⼩数点右边时右边补0),然后写出每⼀组的等值⼋进制数,顺序排列起来就得到所要求的的⼋进制数。
⼋进制——>⼆进制将每⼀位⼋进制数⽤三位⼆进制数表⽰,就可以直接将⼋进制数转换成⼆进制数。
⼋进制——>⼗进制将⼋进制数的每⼀位数乘以它的权,然后相加,即可求得对应的⼗进制数值。
⼗进制——>⼋进制1. 整数部分和⼩数部分分别转换,2.⼗进制整数转换为⼋进制整数:除8,由下往上取余3.⼗进制⼩数转换为⼋进制⼩数:乘8,由上往下取整三、⼗六进制与⼗进制、⼆进制之间的相互转换⼗六进制——>⼗进制将⼗六进制数的每⼀位数乘以它的权,然后相加,即可求得对应的⼗进制数值。
⼗进制——>⼗六进制1. 整数部分和⼩数部分分别转换,2.⼗进制整数转换为⼗六进制整数:除16,由下往上取余3.⼗进制⼩数转换为⼗六进制⼩数:乘16,由上往下取整⼗六进制——>⼆进制将每⼀位⼗六进制数⽤四位⼆进制数表⽰,就可以直接将⼗六进制数转换成⼆进制数。
⼆进制——>⼗六进制从⼩数点开始,每4位⼆进制数为⼀组(不⾜4位时,在⼩数点左边时左边补0,在⼩数点右边时右边补0),将每⼀组⽤相应的⼗六进制数符来表⽰,即可得到正确的⼗六进制数。
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制分析:(2)例1分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。
那么,我们可以得出结果将0.45转换为二进制约等于0.0111上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:1)十进制转换为二进制,需要分成整数和小数两个部分分别转换2)当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法3)注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111。
(3)二进制转换为十进制不分整数和小数部分1)2)二、(1)②将二进制数1101.1转换为八进制得到结果:将1101.1转换为八进制为15.4(2)将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。
十进制转二进制: 用 2 辗转相除至结果为 1 将余数和最后的 1 从下向上倒序写 就是结果 例如 302 302/2 = 151 余 0 151/2 = 75 余 1 75/2 = 37 余 1 37/2 = 18 余 1 18/2 = 9 余 0 9/2 = 4 余 1 4/2 = 2 余 0 2/2 = 1 余 0 故二进制为 100101110 二进制转十进制 从最后一位开始算,依次列为第 0、1、2...位 第 n 位的数(0 或 1)乘以 2 的 n 次方 得到的结果相加就是答案 例如:01101011.转十进制: 第 0 位:1 乘 2 的 0 次方=1 1 乘 2 的 1 次方=2 0 乘 2 的 2 次方=0 1 乘 2 的 3 次方=8 0 乘 2 的 4 次方=0 1 乘 2 的 5 次方=32 1 乘 2 的 6 次方=64 0 乘 2 的 7 次方=0 然后:1+2+0 +8+0+32+64+0=107.二进制 01101011=十进制 107. .十进制转二进制(整数及小数部分): 十进制转二进制(整数及小数部分):1、把该十进制数,用二因式分解,取余。
、把该十进制数,用二因式分解,取余。
以 235 为例,转为二进制 235 除以 2 得 117,余 1 117 除以 2 得 58,余 1 58 除以 2 得 29,余 0 29 除以 2 得 14,余 114 除以 2 得 7,余 0 7 除以 2 得 3,余 1 3 除以 2 得 1,余 1 从得到的 1 开始写起,余数倒排,加在它后面,就可得 11101011。
2、把十进制中的小数部份,转为二进制。
、把十进制中的小数部份,转为二进制。
把该小数不断乘 2,取整,直至没有小数为止,注意不是所有小数都能转为二进制! 以 0.75 为例, 0.75 剩以 2 得 1.50,取整数 1 0.50 剩以 2 得 1,取整数 1,顺序取数就可得 0.11。
二进制、八进制、十进制、十六进制数据之
间相互转换方法
1. 二进制转十进制:将二进制数从右往左依次乘以2,每一位的乘积再相加,结果即为十进制数。
例如:1101(2)= 1×2³ + 1×2² + 0×2¹ + 1×2⁰ = 13(10)
2. 十进制转二进制:将十进制数不断除以2,余数依次排列得到的数字序列即为二进制数。
例如:13(10)= 1101(2)
3. 八进制转十进制:将八进制数从右往左依次乘以8,每一位的乘积再相加,结果即为十进制数。
例如:345(8)= 5×8⁰ + 4×8¹+ 3×8² = 229(10)
4. 十进制转八进制:将十进制数不断除以8,余数依次排列得到的数字序列即为八进制数。
例如:229(10)= 345(8)
5. 十六进制转十进制:将十六进制数从右往左依次乘以16的幂次方,每一位的乘积再相加,结果即为十进制数。
例如:2D(16)= 13×16⁰ + 2×16¹ = 45(10)
6. 十进制转十六进制:将十进制数不断除以16,余数依次排列得到的数字序列即为十六进制数,若余数为10~15,则用A~F表示。
例如:45(10)= 2D(16)。
一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
不同进制之间的转换1. 不同进制之间的转换(1)不同进制之间进行转换应遵循转换原则。
其转换原则是:如果两个有理数相等,则有理数的整数部分和分数部分一定分别相等。
也就是说,若转换前两数相等,则转换后仍必须相等。
1). 十进制数与二进制数的相互转换(1) 二进制数转换成十进制数将二进制数转换成十进制数,只要将二进制数用计数制通用形式表示出来,计算出结果,便得到相应的十进制数。
(2) 十进制数转换成二进制数整数部分和小数部分分别用不同的方法进行转换。
整数部分的转换采用的是除2取余法。
其转换原则是:将该十进制数除以2,得到一个商和余数(K0),再将商除以2,又得到一个新的商和余数(K1)。
如此反复,直到商是0时得到余数(Kn-1),然后将所得到的各次余数,以最后余数为最高位,最初余数为最低位依次排列,则这就是该十进制数对应的二进制数。
这种方法又称为"倒序法"。
【例1-6】将(123)10转换成二进制数,结果是(1111011)2。
(3) 小数部分的转换小数部分的转换采用的是乘2取整法。
其转换原则是:将十进制数的小数乘2,取乘积中的整数部分作为相应二进制数小数点后最高位K-1,反复乘2,逐次得到K-2、K-3、…、K-m,直到乘积的小数部分为0或位数达到精确度要求为止。
然后把每次乘积的整数部分由上而下依次排列起来(K-1K-2…K-m)。
即所求的二进制数。
这种方法又称为"顺序法"。
【例1-7】将十进制数0.3125转换成相应的二进制数,结果是(0.0101)2。
【例1-8】将(25.25)10转换成二进制数。
分析:对于这种既有整数又有小数部分的十进制数,可将其整数和小数部分分别转换成二进制数,然后再把两者连接起来。
转换过程如下。
2. 不同进制之间的转换(2)十进制数与其他进制数的相互转换方法同十进制数与二进制数的相互转换方法一样,不同之处是具体数制的进位基数不同。
2). 十进制与八进制数的相互转换八进制数转换为十进制数:以8为基数按权展开并相加。
进制数的转换在计算机科学中,进制数是十分重要的概念。
进制数是指使用一定的进位规则,将数字表示为不同进制下的数。
常见的进制有二进制、八进制、十进制和十六进制。
在计算机中,二进制是最常用的进制,因为计算机内部的所有数据都是以二进制形式存储的。
因此,我们需要掌握进制数的转换方法,以便在编程和计算机科学中应用。
一、二进制转八进制和十六进制将二进制数转换为八进制或十六进制,需要先将二进制数转换为十进制数,然后再将十进制数转换为八进制或十六进制。
下面是一个将二进制数转换为八进制和十六进制的示例:1. 将二进制数10110101转换为八进制数。
首先,将二进制数转换为十进制数:101101012 = 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 ×23 + 1 × 22 + 0 × 21 + 1 × 20= 18110然后,将十进制数181除以8,得到商22和余数5。
将余数5作为八进制数的第一位。
将商22再次除以8,得到商2和余数6。
将余数6作为八进制数的第二位。
最后,将商2作为八进制数的第三位。
因此,二进制数10110101转换为八进制数265。
2. 将二进制数10110101转换为十六进制数。
首先,将二进制数转换为十进制数:101101012 = 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 ×23 + 1 × 22 + 0 × 21 + 1 × 20= 18110然后,将十进制数181除以16,得到商11和余数5。
将余数5作为十六进制数的第一位。
将商11再次除以16,得到商0和余数11。
将余数11转换为十六进制中的B,作为十六进制数的第二位。
因为商为0,所以最后的十六进制数为5B。
二、八进制和十六进制转二进制将八进制或十六进制数转换为二进制数,需要将每个八进制或十六进制位转换为对应的三个或四个二进制位。
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(101000)2分析:第一步,将168除以2,商84,余数为0。
"第二步,将商84除以2,商42余数为0。
"第三步,将商42除以2,商21余数为0。
"第四步,将商21除以2,商10余数为1。
"第五步,将商10除以2,商5余数为0。
"第六步,将商5除以2,商2余数为1。
"第七步,将商2除以2,商1余数为0。
"第八步,将商1除以2,商0余数为1。
"第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0."125换算为二进制得出结果:将0."125换算为二进制(0."001)2分析:第一步,将0."125乘以2,得0."25,则整数部分为0,小数部分为0."25;第二步,将小数部分0."25乘以2,得0."5,则整数部分为0,小数部分为0."5;第三步,将小数部分0."5乘以2,得1."0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0."001。
八进制076转二进制算法步骤
二进制和八进制相互转换的方法如下:
1、先了解二进制数与八进制数之间的对应关系。
2、进制转换成八进制的方法是,取三合一法,即从二进制的小数点为分界点,向左(或向右)每三位取成一位。
3、分好组以后,对照二进制与八进制数的对应表,将三位二进制按权相加,得到的数就是一位八进制数,然后按顺序排列,小数点的位置不变哦,最后得到的就是八进制数。
4、这里需要注意的是,在向左(或向右)取三位时,取到最高位(最低位)如果无法凑足三位,就可以在小数点的最左边(或最右边)补0,进行换算。
5、下面看看将八进制转为二进制,反过来啦,方法就是一分三,即一个八进制数分成三个二进制数,用三位二进制按权相加,最后得到二进制,小数点依旧就可以了。
二进制是计算技术中广泛采用的一种数制。
二进制数据是用0和1两个数码来表示的数。
它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。
八进制,一种以8为基数的计数法,采用0,1,2,3,4,5,6,7
八个数字,逢八进1。
一些编程语言中常常以数字0开始表明该数字是八进制。
⼆进制、⼋进制、⼗进制、⼗六进制的互相转换在编程⼯作种,我们时常需要对不同的进制的数进⾏转换,以⽅便我们的⼯作、阅读和理解。
在计算机领域,主要设计⼆进制、⼋进制、⼗进制和⼗六进制,下⾯我们就来讲讲这四种机制的整数相互转换⽅法。
⼀、查表法就是我们制作⼀张包含各种进制的值⼀⼀对应数值表,需要时查表就得,但是,我们知道,这不太现实,因为数是⽆穷的,我们不可能做⼀张⽆穷的表。
在次但是,这也不是说查表法就不⽤了,其实我们⼀直在使⽤,你可能会说,没有,没见过,不对,有的,就在你的脑海⾥,我相信绝⼤部分程序员都有,⽐如,问你,(15)10对应的⼗六进制是多少,你肯定张⼝就答(F)16,为什么你能很快答出,是因为我们在⽇常⼯作和学习中,⽆形在脑海⾥建⽴了这张表。
只是这张表很有限,更⼤的数你就不能⼀⼝答了,所以需要其他的转换⽅法,但是其他⽅法会⽤到查表法。
我们⾄少要建⽴起如下的⼀张表⼆、短除法短除法运算⽅法是先⽤⼀个除数除以能被它除尽的⼀个质数,以此类推,除到商是质数为⽌。
具体在我们的进制换算⾥,当⼀个M进制数转N进制数时,就是⽤这个数除N取余,逆序排列。
具体做法是:将N作为除数,⽤M进制整数除以N,可以得到⼀个商和余数;保留余数,⽤商继续除以N,⼜得到⼀个新的商和余数;仍然保留余数,⽤商继续除以N,还会得到⼀个新的商和余数;如此反复进⾏,每次都保留余数,⽤商接着除以N,直到商为0时为⽌下⾯举例:⼗进制转⼆进制、⼋进制、⼗六进制(10)10--->(x)2结果为(10)10--->(1010)2(100)10--->(x)8结果为(100)10--->(144)8 。
(100)10--->(x)16结果为(100)10--->(64)16⼋进制转⼆进制、⼗进制、⼗六进制(27)8--->(x)2结果为(27)8--->(10111)2(27)8--->(x)10⾸先查表得 (10)10<===>(12)8有如下算式结果为(27)8--->(23)10(756)8--->(x)16⾸先查表得 (16)10<===>(20)8(E)16<===>(16)8有如下算式结果,(756)8--->(1EE)16⼆进制转其他进制和⼗六进制转其他进制我就不⼀⼀举例了,通过上⾯的例⼦,我们可以看到⽤短除法我们是可以进⾏任意进制的相互转换的,同时我们也可以发现,将⾼进制向低进制(只限于这⼏种进制,我们姑且认为⾼低顺序为:⼆进制<⼋进制<⼗进制<⼗六进制)转换时,要先有⼀步进制基数的查表换算过程,在加上我们⼈对⼆、⼋、⼗六进制的四则运算不熟悉,所以这三种进制进⾏短除法换算⽐较困难。
八进制转十进制方法:将第一位乘以8^(N次方)+第二位乘以8^(N-1次方)+。
直到N为0为止注:N为从右至左的位数减一例如:123=1x8^2+2x8^1+3x8^0=64+16+3=83一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
二进制、十进制、八进制、十六进制四种进制之间相互的变换一.在计算机应用中,二进制使用后缀b表示;十进制使用后缀d表示八制使用后缀Q表示,十六制使用后缀H表示。
二.二进制,十六进制与十进制的计算变换1.二进制变换为十进制计算公式:二进制数据X位数字乘以2的X-1次方的积的总和例:b=( )d数据10101011X-1位76543210相应的十进制值即为:27+25+23+21+20=128+32+8+2+1=1712.十六进制变换十进制计算公式:二进制数据X位数字乘以16的X-1次方的积的总和(与二进制变换十制进同理的,将底数换为16)注意:在十六进制中,10-15挨次用A,B,C,D,E,F表示例:1F3EH=()d计算:1*16的3次方+15*16的2次方+3*16的1次方+14*16的0次方=1*4096+15*256+3*16+14=7998三.十进制与二进制,十六制的计算变换1.十进制变换为二进制十进制数据数字除以2的余数的逆序组合例:404d=()b2|404余02|202余02|101余02|50余12|25余02|12余12|6余02|3余12|1计算结果即是:02.十进制变换十六进制。
与上边同理,注意的是10以上的数字用字母表示,除数是16十六进制与二进制的变换,建议经过十进制来进行中转。
带小数点的十进制变换为二进制时同理,小数店后的数位指数为负指数====================================================================================== 对于“进制之间的变换”问题的剖析指导在计算机文化一书中,在此中一个章节里面详尽介绍了进制之间的变换,并且在考试中进制变换也占了必定的比率,固然分数不是好多,可是因为平常大家接触的不多,并且有点复杂,所以好多学员在做这类题目,要么选择猜答案,要么选择放弃。
笔者感觉只需掌握了方法,其实这些题目也很简单的,下边我就对进制的变换进行详细的剖析和解说,以供大家参照。
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分① 整数部分方法:除 2 取余法,即每次将整数部分除以 2,余数为该位权上的数,而商继续除以 2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为 0 为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的 168 转换为二进制得出结果将十进制的 168 转换为二进制,(10101000)2分析 : 第一步,将 168 除以 2, 商 84, 余数为 0。
第二步,将商 84 除以 2,商 42 余数为 0。
第三步,将商 42 除以 2,商 21 余数为 0。
第四步,将商 21 除以 2,商 10 余数为 1。
第五步,将商 10 除以 2,商 5 余数为 0。
第六步,将商 5 除以 2,商 2 余数为 1。
第七步,将商 2 除以 2,商 1 余数为 0。
第八步,将商 1 除以 2,商 0 余数为 1。
第九步,读数,因为最后一位是经过多次除以 2 才得到的,因此它是最高位,读数字从最后的余数向前读,即 10101000(2)小数部分方法:乘 2 取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是 0 还是 1,取舍,如果是零,舍掉,如果是 1,向入一位。
换句话说就是 0 舍 1 入。
读数要从前面的整数读到后面的整数,下面举例:例 1:将 0.125 换算为二进制得出结果:将 0.125 换算为二进制( 0.001 )2分析:第一步,将0.125 乘以 2,得 0.25, 则整数部分为0, 小数部分为0.25;第二步 ,将小数部分0.25 乘以 2, 得 0.5, 则整数部分为0, 小数部分为0.5;第三步 ,将小数部分0.5乘以2,得 1.0,则整数部分为1,小数部分为0.0;第四步 , 读数 , 从第一位读起 , 读到最后一位 , 即为 0.001 。
二进制、八进制、十进制、十六进制之间变换一、十进制与二进制之间的变换(1)十进制变换为二进制,分为整数部分和小数部分① 整数部分方法:除 2 取余法,即每次将整数部分除以 2,余数为该位权上的数,而商连续除以 2,余数又为上一个位权上的数,这个步骤向来连续下去,直到商为 0 为止,最后读数时候,从最后一个余数读起,向来到最前方的一个余数。
下边举例:例:将十进制的 168 变换为二进制得出结果将十进制的 168 变换为二进制,(10101000)2剖析 : 第一步,将 168 除以 2, 商 84, 余数为 0。
第二步,将商 84 除以 2,商 42 余数为 0。
第三步,将商 42 除以 2,商 21 余数为 0。
第四步,将商 21 除以 2,商 10 余数为 1。
第五步,将商 10 除以 2,商 5 余数为 0。
第六步,将商 5 除以 2,商 2 余数为 1。
第七步,将商 2 除以 2,商 1 余数为 0。
第八步,将商 1 除以 2,商 0 余数为 1。
第九步,读数,因为最后一位是经过多次除以 2 才获得的,所以它是最高位,读数字从最后的余数向前读,即 10101000(2)小数部分方法:乘 2 取整法,马上小数部分乘以2,而后取整数部分,剩下的小数部分连续乘以2,而后取整数部分,剩下的小数部分又乘以2,向来取到小数部分为零为止。
假如永久不可以为零,就同十进制数的四舍五入同样,依据要求保存多少位小数时,就依据后边一位是 0 仍是 1,弃取,假如是零,舍掉,假如是 1,向入一位。
换句话说就是 0 舍 1 入。
读数要以前方的整数读到后边的整数,下边举例:例 1:将 0.125 换算为二进制得出结果:将 0.125 换算为二进制( 0.001 )2剖析:第一步,将0.125 乘以 2,得 0.25, 则整数部分为0, 小数部分为0.25;第二步 ,将小数部分0.25 乘以 2, 得 0.5, 则整数部分为0, 小数部分为0.5;第三步 ,将小数部分0.5乘以2,得 1.0,则整数部分为1,小数部分为0.0;第四步 , 读数 , 从第一位读起 , 读到最后一位 , 即为 0.001 。
一、十进制、二进制、八进制和十六进制的定义十进制:十进制是我们平时最常用的计算方法,使用0到9这十个数字进行计数,每增加一位数,就是10的倍数,每一位都是10的幂次方。
二进制:二进制是计算机中最基础的计算方式,只包含0和1两个数字,每增加一位数,就是2的倍数,每一位都是2的幂次方。
八进制:八进制使用0到7这八个数字进行计数,每增加一位数,就是8的倍数,每一位都是8的幂次方。
十六进制:十六进制使用0到9以及A到F这十六个数字进行计数(A代表10,B代表11,依此类推),每增加一位数,就是16的倍数,每一位都是16的幂次方。
二、四种进制的相互转换1. 十进制转换为二进制、八进制、十六进制:a. 十进制转换为二进制:利用除2取余法,将十进制数不断除以2,然后将余数从下往上倒序排列即可。
b. 十进制转换为八进制:利用除8取余法,将十进制数不断除以8,然后将余数从下往上倒序排列即可。
c. 十进制转换为十六进制:利用除16取余法,将十进制数不断除以16,然后将余数从下往上倒序排列,其中10~15对应A~F。
2. 二进制、八进制、十六进制转换为十进制:a. 二进制转换为十进制:将二进制数按权展开相加即可,权值从右往左依次为1、2、4、8、16...b. 八进制转换为十进制:将八进制数按权展开相加即可,权值从右往左依次为1、8、64、512...c. 十六进制转换为十进制:将十六进制数按权展开相加即可,权值从右往左依次为1、16、256、4096...3. 二进制、八进制、十六进制相互转换:a. 二进制转换为八进制:先将二进制转换为十进制,再将十进制转换为八进制。
b. 八进制转换为二进制:先将八进制转换为十进制,再将十进制转换为二进制。
c. 十六进制转换为二进制:先将十六进制转换为十进制,再将十进制转换为二进制。
d. 二进制转换为十六进制:先将二进制转换为十进制,再将十进制转换为十六进制。
e. 八进制转换为十六进制:先将八进制转换为十进制,再将十进制转换为十六进制。
二进制十进制八进制十进制相互转换方法在计算机科学和数字化世界中,我们经常会遇到二进制、十进制和八进制这些不同的数制形式。
它们在不同的场景下具有不同的意义和用途,同时在它们之间进行转换也是非常常见的操作。
本文将从深度和广度两个方面对这些数制形式进行全面评估,并据此探讨其转换方法,以便读者能更深入地理解这一主题。
1. 二进制二进制是计算机科学中最基本的数制形式,它只包含两个数字0和1。
在计算机中,所有的数据和指令都以二进制形式表示和存储。
理解和使用二进制是计算机科学中的基本功。
2. 十进制十进制是我们日常生活中最常用的数制形式,它包含0到9共10个数字。
十进制是我们最熟悉的数字系统,因为我们在日常生活和学习中都在使用十进制数进行计数和计算。
3. 八进制八进制是一种较少被使用的数制形式,它包含0到7共8个数字。
在计算机科学中,八进制常常用于表示和转换二进制数,因为八进制和二进制具有一定的对应关系,便于计算和表示。
二进制、十进制和八进制是我们在数字化世界中经常会遇到的数制形式。
它们分别代表了不同层次和用途的数字系统,理解和掌握它们之间的转换方法对于深入理解计算机科学和数字化世界至关重要。
接下来,我们将重点探讨二进制、十进制和八进制之间的相互转换方法。
1. 二进制到十进制的转换方法二进制到十进制的转换方法非常简单。
以101011为例,从右往左依次为每一位二进制数分配权值,即1、2、4、8、16、32。
然后将每位二进制数与其对应的权值相乘,并将结果相加即可得到对应的十进制数。
2. 十进制到二进制的转换方法十进制到二进制的转换方法需要使用到除2取余的思想。
以26为例,不断用2整除26,将余数写下直至商为0,然后将余数倒序排列即可得到对应的二进制数。
3. 二进制到八进制的转换方法二进制到八进制的转换方法比较简单,只需要将二进制数从右往左每三位分为一组,然后将每一组二进制数转换为对应的八进制数即可。
4. 八进制到二进制的转换方法八进制到二进制的转换方法与二进制到八进制的转换方法正好相反,只需要将八进制数每一位转换为对应的三位二进制数即可。