当前位置:文档之家› 陶瓷材料的分类应用及其发展前景

陶瓷材料的分类应用及其发展前景

陶瓷材料的分类应用及其发展前景
陶瓷材料的分类应用及其发展前景

陶瓷材料的分类应用及其发展前景

摘要:根据陶瓷的不同结构性质对陶瓷产品进行分类,并分别对其用途进行阐述,通过对各种类型的陶瓷性能和在不同领域内的应用的总结,来对陶瓷产业的未来发展进行展望。关键词:陶瓷材料分类性能应用发展前景

前言:

陶瓷作为如今生活中应用越来越广泛和频繁的材料,其种类和应用方向也被越来越明细的分类。而且其发展方向和前景也越来越受到重视。在这篇论文中我将通过借鉴一下查阅的资料等发表一下自己对这方面还不太成熟的看法,希望我对这方面的总结能对阅读这篇论文的人有些意义。

首先我们可以按不同的分类标准将陶瓷产品进行分类;

普通陶瓷:

建筑陶瓷:

包括有瓷质砖、锦砖、细炻砖、仿石砖、彩釉砖、劈离砖和釉面砖等。产品具有良好的耐久性和抗腐蚀性,其花色品种及规格繁多(边长在5cm~100cm间),主要用作建筑物内、外墙和室内、外地面的装饰。

卫生陶瓷及卫浴产品:

包括有洗面器、便器、淋浴器、洗涤器、水槽等。该类产品的耐污性、热稳定性和抗腐蚀性良好,具有多种形状、颜色及规格,且配套齐全,主要用作卫生间、厨房、实验室等处的卫生设施。除此之外,还有搪瓷浴缸、压克力浴缸、浴室等卫浴产品。

美术陶瓷:

包括有陶塑人物、陶塑动物、微塑、器皿等。产品造型生动、传神,具有较高的艺术价值,款式及规格繁多。主要用作室内艺术陈设及装饰,并为许多收藏家所珍藏。

园林陶瓷:

包括有中式、西式琉璃制品及花盆等。产品具有良好的耐久性和艺术性,并有多种形状、颜色及规格,特别是中式琉璃的瓦件、脊件、饰件配套齐全,用作园林式建筑的装饰。

日用陶瓷:

包括有细炻餐具、陶质砂锅。产品热稳定性好,基本没有铅、镉溶出,具有多种款式及规格,主要作餐饮、烹饪用具。

陶瓷机械:

包括有球磨机、喷雾干燥塔、压砖机、辊道窑等建筑陶瓷生产用成套设备。

电工陶瓷:

绝缘器件等。

化工陶瓷:

试验器皿、耐热容器、管道、设备等。

特种陶瓷:

氧化物陶瓷:

氧化物陶瓷种类繁多,在陶瓷家族中占有非常重要的地位。最常用的氧化物陶瓷是用

Al2O3、SiO2、MgO、ZrO3、CeO2,CaO.Cr2O3及莫莱石(3Al2O3.2SiO4)和尖晶石(MgAl2O3)等。陶瓷中的Al2O3和SiO2相当于金属材料中的钢铁和铝合金一样被广泛应用,表11.1

中列出了一些氧化物陶瓷.硅酸盐亦属氧化物系列。如ZrsiO4。Call已等,还有复合氧化物如BaT吗、CgyiO;等。

碳化物陶瓷:

碳化物陶瓷~般具有比氧化物更高的熔点。最常用的是碳化硅、碳化硼。碳化物陶瓷在制备过程中应有气氛保护。

氮化物陶瓷:

氮化物中应用最广泛的是氮化硼,它具有优良的综合力学性能和耐高温性能。另外,AI 筹氮化物陶瓷的应用也日趋广泛。最近刚刚出现的C3N4,可望其性能超过Si3O4。

通过对分类的总结,我们也可以分别讨论陶瓷产品的性质。

例如:

日用陶瓷要求白度,光洁度,热稳定性,机械强度。

建筑陶瓷要求强度,热稳定性。

电工陶瓷要求强度,介电性能和热稳定性。

化工陶瓷要求耐腐蚀性。

所以我们可以对其进行一下总结。

1.硬度:是各类材料中最高的。

2.刚度:是各类材料中最高的。耐压、抗弯、不耐拉。

3.塑性:在室温内几乎没有塑性。

4.韧性大,脆性差。(最大缺点)

5.热膨胀性低,导电性差。(多为较好的绝热材料)

6.热稳定性:即抗热振性,较低。

7.化学稳定性:耐高温,耐火,不可燃烧,抗蚀。

8.导电性:大多数是良好的绝缘体,同时也有一些半导体。

由于陶瓷产品具有不同的性能,所以应用领域具有不同的侧重。

第一部分:陶瓷装修应用趋势

优秀的设计会带给家居更美好的体验,优秀的瓷砖会赋予空间全新的独到气质。无论是陶瓷和石材的跨界力作卓远"健康石材",还是高贵而不矜持的兴辉"石立方"玻化砖,都正诠释着卓越设计和巅峰品质的完美结合。

1、新仿石主义:仿石效果再升级天然石材神韵与美玉气质共舞

2、新环保主义:材料环保,无辐射等放射性污染,并且易洁、抗污,维护洁净环境

3、新复古主义:传承经典文化,承载历史渊源,感受岁月永恒

4、新立体主义:立体化表面装饰效果

第二部分:功能陶瓷

功能陶瓷作为功能材料用来制造功能器件,主要使用其物理性队如电磁性能、热性能、光性能、生物性能等。例如铁氧体.铁电陶瓷主要使用其电磁性能.用来制造电磁元件,介电陶瓷用来制造电容器,压电陶瓷用来制作位移或压力传感器.固体电解质陶瓷利用其离子

传身特性可以制作氧探测器.生物陶瓷用来制造人工骨骼和人工牙齿等。超导材料和光导纤维也属于功能陶瓷的范畴。

值得提出的是,上述分类也是相对的.而不是绝对的,结构陶瓷和功能陶瓷有时并无严格界限,对于某些陶瓷材林二者兼而有之。加压电陶瓷。虽然可将它划分为功能陶瓷之列,但对其力学性能,如杭区强度、韧性、硬度、弹性模量亦有一定的要求。首先必须有足够的强度,在承受E力时不致破坏,才能实现共压电特性。另外如高温结构陶瓷或航天器防热部件用抗热震耐烧依陶瓷,虽属结构陶瓷之列.但抗热展性不但决定于它本身的强度、韧性、模量,而且导热系数、热膨胀系数也与力学性能一样,对抗热震性有着十分重要的影响。耐腐蚀性是化工陶瓷(如耐酸泵)的重要性能,但要求必须具有~定的力学性能,才能满足承我要求。超导材料就是因为脂性大,做成导线困难.因而目前尚不能进入实际应用阶段。综上所述,不论是结构陶瓷还是功能陶瓷,力学性能是陶瓷材料的最基本性能.只不过是不同用途对力学性能要求的高低不同而已。

第三部分:结构陶瓷

结构陶瓷作为结构材料用来制造结构零部件.主要使用其力学性能。加强度、韧性、硬度、模量、耐磨性、耐高温性能(高温强度、抗热震性、耐烧蚀性)等。上面讲到的核化学成分分类的四种陶瓷大多数均为结构陶瓷。如 AjZQ石.3N4、Z戏都是力学性能优越的代表性结构陶瓷材料。

但陶瓷产品也存在一些问题:

首先就是运输问题:

对于陶瓷工艺品这样的易碎品,需要尽可能降低运输流通过程对产品造成的损坏,运输包装或者称缓冲包装在这里所起的作用非常关键。现有运输包装的主要形式有:

外包装

外包装是保护易碎品免受损坏的有效方法。通常要求易碎品外包装应具有一定的抗压强度和抗戳穿强度,可以保护易碎品在正常的运输和仓储码垛条件下完好无损。

最典型和最常用的易碎品外包装是瓦楞纸箱。部分大而重的易碎品采用蜂窝纸板包装箱,部分较轻或本身抗压

强度较高的产品如玻璃空罐等,在使用托盘运输时,采用缠绕薄膜包装代替瓦楞纸箱。

无论何种易碎品外包装件,都应在四个侧面的左上角处,标上“易碎品”字样和相应的图案。瓦楞纸箱

瓦楞纸箱是目前使用量最大的运输包装容器。常用的易碎品外包装用瓦楞纸箱由三层或五层瓦楞纸板制成。

瓦楞纸板一般有A、B、C、E四种楞型,A、B、C楞型瓦楞纸板均可制作易碎品外包装用

纸箱。区别在於A型楞较高、较稀疏,抗压强度较低,B型楞较低、较密,抗压强度较高,C型介于二者之间。选择不同的楞型或不同层数的纸板制作纸箱,主要是依据内装物的重要性和对抗压强度的要求。

以往由于中国运输条件较为落后,野蛮装卸现象时有发生,国内对5层瓦楞纸箱的需求量较大,约占70%的比例。但是近年来随着中国运输条件的改善,3层瓦楞纸箱的应用比例逐年提高。并且随着销售方式的改变,很多易碎品的运输包装向销售包装靠拢。瓦楞纸箱的设计越来越复杂,印刷装璜的质量也越来越高,不少已堂而皇之地登上超市的售货架。

蜂窝纸板箱

蜂窝纸板箱是由蜂窝纸板制造而成的箱形容器。蜂窝纸板质轻、抗压、抗弯、抗剪强度高,具有良好的缓冲隔振性能,以蜂窝纸板为主体材料的包装箱有三种。一是复合材料包装箱。箱体外层使用戳穿能力强的纤维板或三合板、中层为蜂窝纸芯、内壁用草纸板粘合而成;二是全蜂窝纸板包装箱。即以蜂窝纸为夹芯,内外用箱纸板粘合而成;三是内衬型包装箱,以瓦楞纸箱作为箱体,箱内上下四壁用蜂窝纸板做衬垫,有较强的防震、抗压、保温、抗戳穿能力。

现在我会根据我在网络上看到的一些相关内容来介绍一下普遍对陶瓷前景的预测和看法。

利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。功能陶瓷种类繁多,用途各异。例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料,用于制作电容器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用陶瓷的光学性能可制造固体激光材料、光导纤维、光储存材料及各种陶瓷传感器。此外,陶瓷还用作压电材料、磁性材料、基底材料等。总之,新剂陶瓷材料几乎遍及现代科技的每一个领域,应用前景十分广阔。

参考文献:

Bi0.5(Na0.96-xKxLi0.04)0.5TiO3(x=0.05,0.10)系无铅压电陶瓷的制备及性能研究

全部作者:张帅

第一作者单位:中国矿业大学材料科学与工程学院

i3N4-SiC纳米复合陶瓷材料的研究

全部作者:董利民;张宝清;田杰谟;郑京

《陶瓷材料显微结构与性能》

作者:张金升//张银燕//王美婷//许凤秀 07年5月

《功能陶瓷材料》

出版社: 化学工业出版社

发行时间: 2003 年06月

《陶瓷材料概论》

作者:何贤昶

出版社:上海科学普及出版社

发行时间:2009年4月

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

陶瓷材料的应用与前景

陶瓷材料的应用与前景 作者:李倩 单位:辽宁工程技术大学 一、陶瓷材料发展历史及其概念的内涵 陶瓷是人类生活和生产中不可缺少的一种材料。陶瓷产品的应用范围遍及国民经济各个领域。它的发展经历了从简单列复杂、从粗糙到精细、从无油到施釉、从低温到高温的过程。随着生产力的发展和技术水平的提高.各个历史阶段赋予陶瓷的涵义和范围也随之发生变化。 原来的陶瓷就是指陶器和瓷器的通称。也就是通过成型和高温烧结所得到的成型烧结体。传统的陶瓷材料主要是指硅铝酸盐。刚开始的时候人们对硅铝酸盐的选择要求不高,纯度不大,颗粒的粒度也不均一,成型压强不高。这时得到陶瓷称为传统陶瓷。后来发展到纯度高,粒度小且均一,成型压强高,进行烧结得到的烧结体叫做精细陶瓷。 接下来的阶段,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。 陶瓷的概念就发展成为可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。(这个概念把玻璃也纳入了陶瓷的范围) 现代陶瓷材料具有高新技术内涵。与传统材料相比.主要具有以下三个特点: (1)以现代科技发展的要求为背景.是现代科技发展的产物,为高新技术产品。 (2)制造工艺复杂,需要现代科技成果的指导.因而为技术知识密集型产品。 (3)具有优异的威特殊的性能,能满足商新技术产业的要求。 二、陶瓷材料的分类 研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。

陶瓷分类

陶瓷分类 (一)按瓷种分。目前市场上流通的主要有日用瓷器、骨灰瓷器、玲珑日用瓷器、釉下(中)彩日用瓷器、日用精陶器、普通陶瓷和精细陶瓷烹调器等。除骨灰瓷外,其余产品又按外观缺陷的多少或幅度的大小分为优等品、一等品、合格品等不同等级。 (二)按花面装饰方式分。按花面特色可分为釉上彩、釉中彩、釉下彩和色釉瓷及一些未加彩的白瓷等。 釉上彩陶瓷就是用釉上陶瓷颜料制成的花纸贴在釉面上或直接以颜料绘于产品表面,再经700~850℃烤烧而成的产品。因烤烧温度没有达到釉层的熔融温度,所以花面不能沉入釉中,只能紧贴于釉层表面。如果用手触摸,制品表面有凹凸感,肉眼观察高低不平。 釉中彩陶瓷彩烧温度比釉上彩高,达到了制品釉料的熔融温度,陶瓷颜料在釉料熔融时沉入釉中,冷却后被釉层覆盖。用手触摸制品表面平滑如玻璃,无明显的凹凸感。 釉下彩陶瓷是我国一种传统的装饰方法,制品的全部彩饰都在瓷坯上进行,经施釉后高温一次烧成,这种制品和釉中彩一样,花面被釉层覆盖,表面光亮、平整,无高低不平的感觉。 色釉瓷则在陶瓷釉料中加入一种高温色剂,使烧成后的制品釉面呈现出某种特定的颜色,如黄色、兰色、豆青色等。 白瓷通常指未经任何彩饰的陶瓷,这种制品市场上销量一般不大。 以上不同的装饰方式,除显示其艺术效果外,主要区别铅、镉等重金属元素含量上。其中釉中彩、釉下彩和绝大部份的色釉瓷、白瓷的铅、镉含量是很低的,而釉上彩如果在陶瓷花纸加工时使用了劣质颜料,或在花面设计上对含铅、镉高的颜料用量过大,或烤烧时温度、通风条件不够,则很容易引起铅、镉溶出量的超标。有的白瓷,主要是未加彩的骨灰瓷,由于采用含铅的熔块釉,如果烧成时不严格按骨灰瓷的工艺条件控制,铅溶出量超标的可能性也很大。 铅、镉溶出量是一项关系人体健康的安全卫生指标。人体血液中的铅、镉含量应越少越好。人们如长期食用铅、镉含量过高的产品盛装的食物,就会造成铅在血液中的沉积,导致大脑中枢神经,肾脏等器官的损伤。尤其对少年儿童的智力发育会产生严重的影响。 (一)按用途的不同分类 1、日用陶瓷:如餐具、茶具、缸,坛、盆、罐、盘、碟、碗等。 2、艺术{工艺}陶瓷:如花瓶、雕塑品.园林陶瓷器皿陈设品等。 3、工业陶瓷:指应用于各种工业的陶瓷制品。又分以下6各方面: ①建筑一卫生陶瓷:如砖瓦,排水管、面砖,外墙砖,卫生洁其等; ②化工{化学}陶瓷:用于各种化学工业的耐酸容器、管道,塔、泵、阀以及搪砌反应锅的耐酸砖、灰等; ③电瓷:用于电力工业高低压输电线路上的绝缘子。电机用套管,支柱绝缘于、低压电器和照明用绝缘子,以及电讯用绝缘子,无线电用绝缘子等; ④特种陶瓷:甩于各种现代工业和尖端科学技术的特种陶瓷制品,有高铝氧质瓷、镁石质瓷、钛镁石质瓷、锆英 石质瓷、锂质瓷、以及磁性瓷、金属陶瓷等。 (二)按所用原料及坯体的致密程度分类可分为: 粗陶(brickware or terra-cotta),细陶(potttery),炻器(stone Ware),半瓷器(semivitreous china),以至瓷器(130relain),原料是从粗到精,坯体是从粗松多孔,逐步到达致密,烧结,烧成温度也是逐渐从低趋高。

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

日用陶瓷材料的应用及其发展

日用陶瓷材料的应用与发展 法学092 刘婷09437105 陶瓷材料是人类应用时间最早,并且应用领域最广的材料之一。它是一种天然或人工合成的粉状合成物,经过成型或高温烧结,由金属元素和非金属的无机化合物构成的固体材料。 陶瓷具有耐高温、耐腐蚀、耐磨损、原料丰富、成本低廉等诸多优点。现在,最受关注的三大固体材料是金属材料、高分子材料,以及陶瓷材料。按照其用途的不同,通常可将陶瓷材料分为工业、艺术和日用陶瓷三大类。其中工业陶瓷是指应用于各种工业的陶瓷制品,包括建筑陶瓷、化工陶瓷、电子陶瓷和特种陶瓷几大类;艺术陶瓷主要指花瓶、雕塑等以陈列欣赏和美化环境为主要作用的陶瓷;而日用陶瓷主要是指如餐具、茶具、洁具等日常生活中应用的陶瓷制品。本文主要研究日用陶瓷的应用形式及其发展趋势。 陶瓷材料与其他材料 相对而言,金属材料具有良好的延展性和可塑性,具有良好的热传导性,可是其耐温性和耐腐蚀性较差。高分子材料具有耐腐蚀性和可加工性,色彩丰富,但是其机械强度,耐高温性和耐磨性较差。陶瓷具有高硬度、耐磨、耐酸、耐碱、耐热、耐冷等优越的性能,肌理富于变化,色彩丰富而且不褪色,造型可塑性强,在丰富人们的物质和精神生活,美化环境,以及提升生活品质等方面可达到作用,是其他材料不可替代的。陶瓷致命的缺点在于高脆性和韧性差,这是材料结构所决定的。在室温下,陶瓷材料分子结构几乎不会产生滑移和位错运动,材料处于受力状态时无法通过塑性变形来松弛应力[2]。但是随着生产技术的发展和陶瓷新品种的开发,必然可在其原有基础上逐步改善其容易碎裂的不足,满足相应的产品设计要求。 现在,金属材料和高分子材料越来越多的应用于餐具,容器等日用产品,走

陶瓷材料的分类应用及其发展前景

陶瓷材料的分类应用及其发展前景 摘要:根据陶瓷的不同结构性质对陶瓷产品进行分类,并分别对其用途进行阐述,通过对各种类型的陶瓷性能和在不同领域内的应用的总结,来对陶瓷产业的未来发展进行展望。关键词:陶瓷材料分类性能应用发展前景 前言: 陶瓷作为如今生活中应用越来越广泛和频繁的材料,其种类和应用方向也被越来越明细的分类。而且其发展方向和前景也越来越受到重视。在这篇论文中我将通过借鉴一下查阅的资料等发表一下自己对这方面还不太成熟的看法,希望我对这方面的总结能对阅读这篇论文的人有些意义。 首先我们可以按不同的分类标准将陶瓷产品进行分类; 普通陶瓷: 建筑陶瓷: 包括有瓷质砖、锦砖、细炻砖、仿石砖、彩釉砖、劈离砖和釉面砖等。产品具有良好的耐久性和抗腐蚀性,其花色品种及规格繁多(边长在5cm~100cm间),主要用作建筑物内、外墙和室内、外地面的装饰。 卫生陶瓷及卫浴产品: 包括有洗面器、便器、淋浴器、洗涤器、水槽等。该类产品的耐污性、热稳定性和抗腐蚀性良好,具有多种形状、颜色及规格,且配套齐全,主要用作卫生间、厨房、实验室等处的卫生设施。除此之外,还有搪瓷浴缸、压克力浴缸、浴室等卫浴产品。 美术陶瓷: 包括有陶塑人物、陶塑动物、微塑、器皿等。产品造型生动、传神,具有较高的艺术价值,款式及规格繁多。主要用作室内艺术陈设及装饰,并为许多收藏家所珍藏。 园林陶瓷: 包括有中式、西式琉璃制品及花盆等。产品具有良好的耐久性和艺术性,并有多种形状、颜色及规格,特别是中式琉璃的瓦件、脊件、饰件配套齐全,用作园林式建筑的装饰。 日用陶瓷: 包括有细炻餐具、陶质砂锅。产品热稳定性好,基本没有铅、镉溶出,具有多种款式及规格,主要作餐饮、烹饪用具。 陶瓷机械: 包括有球磨机、喷雾干燥塔、压砖机、辊道窑等建筑陶瓷生产用成套设备。 电工陶瓷: 绝缘器件等。 化工陶瓷: 试验器皿、耐热容器、管道、设备等。 特种陶瓷: 氧化物陶瓷: 氧化物陶瓷种类繁多,在陶瓷家族中占有非常重要的地位。最常用的氧化物陶瓷是用

生物陶瓷材料的分类

惰性生物陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,生物相容性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度、耐磨性以及化学稳定性。主要由氧化物陶瓷、非氧化物陶瓷以及陶材组成。其中,以Al、Mg、Ti、Zr 的氧化物应用最为广泛。 早在1969 年,Talbert[2]就将不同孔隙率的颗粒状Al2O3 陶瓷作为永久性可移植骨假体,植入成年杂种狗的股骨中进行实验,发现多晶氧化铝陶瓷对包括生物环境在内的任何环境都呈现惰性及其优越的耐磨损性和高的抗压强度。使氧化铝陶瓷材料成为最早获得临床应用的生物惰性陶瓷材料。目前氧化铝陶瓷材料已经应用于人造骨、人工关节及人造齿根的制作方面。 氧化铝陶瓷植入人体后,体内软组织在其表面生成极薄的纤维组织包膜,在体内可见纤维细胞增生,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接[3]。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位。但是由于Al2O3 属脆性材料,冲击韧性较低,且弹性模量和人骨相差较大,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤,且不能直接与骨结合。 目前,国外有关学者通过各种方法,使Al2O3 陶瓷在韧性和相容性方面取得了显著提高[4],如在陶瓷表面涂上骨亲和性高的陶瓷,特别是能和骨发生化学结合的磷灰石,已经制造出更加先进的人工关

节。通过相变或微裂等方法,使材料内部产生微裂纹,只要微裂纹的尺寸足够小,则均匀分布的微裂纹会起到应力分散的作用。也可以提高材料的韧性[5]。 近年,氧化锆陶瓷由于其优良的力学性能,尤其是其远高于氧化铝瓷的断裂韧性,使其作为增强增韧第二相材料在人体硬组织修复体方面取得了较大研究的进展。Hench[6]报道,部分稳定氧化锆陶瓷的抗弯强度可达100 MPa,断裂韧性可达15MPa·m- 1/2。 但惰性生物陶瓷在体内被纤维组织包裹或与骨组织之间形成纤维组织界面的特性影响了该材料在骨缺损修复中的应用,因为骨与材料之间存在纤维组织界面,阻碍了材料与骨的结合,也影响材料的骨传导性,长期滞留体内产生结构上的缺陷,使骨组织产生力学上的薄弱。 2 生物活性陶瓷材料 生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。 2.1 羟基磷灰石陶瓷 羟基磷灰石(hydroxyapatite),简称HAp,化学式为Ca10(PO4)6(OH)2,属表面活性材料,由于生物体硬组织(牙齿、骨)

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

陶瓷材料的分类及性能

陶瓷材料的力学性能 高分子091 项淼学号17 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔…… 特种陶瓷--电容器,压电,磁性,电光,高温…… 金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料) 特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物) (2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。

现代工业上陶瓷材料的应用与发展

现代工业上陶瓷材料的应用与发展 摘要:阐述陶瓷材料的结构相、分类和陶瓷基复合材料的特性,以及陶瓷材料 在车辆上的应用。简要介绍手机电池中正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)和它们所起的不同作用。 关键词:传统陶瓷新型陶瓷传感器 PTC热敏电阻 NTC热敏电阻特性应用 引言:本文主要介绍陶瓷材料在汽车和手机这两个在当今社会中最具代表性的 工业中的应用与发展。陶瓷是古老而又新型的材料,它是用天然或人工合成的无机粉状物料,经过成型和高温烧结而制成的一种多相固体材料。利用天然硅酸盐矿物(如粘土、长石、石英等)为原料制成的陶瓷叫普通陶瓷,也叫传统陶瓷。这类陶瓷原料来源广,成本低,用量大。天然原料中的杂质对陶瓷的性能不利,人们用纯度高的人工合成原料(如氧化物、氮化物、碳化物、硅化物、硼化物、氟化物等),用传统陶瓷工艺方法制造的新型陶瓷,也叫现代陶瓷或特种陶瓷。新型陶瓷材料在现代工业的许多方面都已经发挥了巨大作用,现代工业应用多属精细陶瓷。比如在汽车上很早以前就有火花塞、窗玻璃、水泵的机械式密封使用了陶瓷。而且作为排放对策,触媒载体、氧传感器、爆震传感器等功能陶瓷相继出现。目前,已有许多发动机零件采用结构陶瓷制造,不久将来,陶瓷发动机将会出现。而在当今社会不可或缺的通讯工具——手机中,也可以看到精细陶瓷材料的身影。 1.陶瓷的结构相 陶瓷一般由晶相、玻璃相和气相组成。 (1)晶相晶相是体现陶瓷材料性质的主要组成相。大多数陶瓷材料是由离子键(如MgO、CaO、Al203等)和共价键(如金刚石、SiC等)为主要结合键。晶体中非金属元素的原子直径大,可排列成不同的晶系,形成晶体"骨架",金属原子的直径小,处于骨架的间隙中。 陶瓷晶体中主要的两类结构是硅酸盐结构和氧化物结构。陶瓷材料是多相多晶体材料,其物理化学性能主要由晶相决定。晶相中晶粒的大小对陶瓷的性能影响很大。晶粒越细,晶界越多,裂纹扩展越不容易,材料的强度越高。这一点和金属材料很相似。 (2)玻璃相玻璃是非晶态材料,由熔融的液体凝固得到。陶瓷中玻璃相的作用是将分散的晶相粘结在一起;降低烧成温度;抑制晶体长大以及填充气孔空隙。但玻璃相的机械强度比晶相低,热稳定性差,在较低的温度下就开始软化。而且往往因带有一些金属离子而降低陶瓷的绝缘性能。工业陶瓷要控制玻璃相的数量,一般约为20%~40%。

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷,而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展,各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各行各业。 3.1应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作航天发动机

功能陶瓷材料总复习题

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 频率围: 铁电体, 晶体在某温度围具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。 材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居 里点附近的临界特性。 电滞回线:铁电体的P滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相T铁电相的转变温度 T>Tc 顺电相TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据 /辭眩,才才(附必… 〃'一Mg2打Z0, M笔屁强… B”一Nb=TF 严… Pb(Mg l/3Nb2J3)O3尸风2也N% M 介电陶瓷的改性机理。 1、居里区与相变扩:热起伏相变扩、应力起伏相变扩、成分起伏相变扩散、结构起伏相

现代陶瓷材料发展及应用

现代陶瓷材料发展及应用 摘要:本文简述了现代技术陶瓷最新研究、发展动态以及在实际中的应用,其中包括结构陶瓷、陶瓷基复合材料和功能陶瓷三个部分。还介绍了绿色陶瓷的发展及前景,科 学家试图使陶瓷生产与环境和谐完美的结合,开发出新型的绿色陶瓷材料。 关键词:陶瓷材料绿色陶瓷碳化硅晶须切削刀具氧化铝非氧化物陶瓷功能陶瓷结构陶瓷陶瓷基复合材料发展应用环境和谐 参考文献:《陶瓷材料概述》《现代技术陶瓷展与应用》《绿色陶瓷的发展前景》《陶瓷生产与环境和谐》 我国是一个具有悠久历史的陶瓷古国,在世界长期享有盛誉。当今陶瓷可以说已然成为了对我们生活产生重大影响的一门重要学科。近半个多世纪以来,随着先进陶瓷材料的研究和开发,在与人类生活息息相关的各个领域,如电子、通讯、能源、交通、宇宙探索和国家安全等,都能找到陶瓷的身影。可以说现代人的生活离不开陶瓷,陶瓷的进步给人类带来的是生活方式的日新月异。 陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等)为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等),而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。 现代陶瓷材料主要有三大领域:结构陶瓷、陶瓷基复合材料和功能陶瓷。 一、结构陶瓷 同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。 1、氧化物陶瓷 主要包括氧化铝、氧化错、莫来石和钦酸铝。氧化铝和氧化错主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温是陶瓷发动机的主要候选材料之一。这些氧化物也可制成泡沫或纤维状用于高温保温材料。一般用钛酸铝陶瓷加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。 2、非氧化物陶瓷 含硅的非氧化物陶瓷具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。它在能源利用和环保方面具有重要的战略意义。非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无润滑陶瓷轴承、密封件、窑具和磨球等。 3、玻璃陶瓷 玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁一铝一硅酸盐、锂一镁一铝一硅酸盐和钙一镁一铝一硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。 二、陶瓷基复合材料

相关主题
文本预览
相关文档 最新文档