当前位置:文档之家› 抽象函数解析式的几种常用求法

抽象函数解析式的几种常用求法

抽象函数解析式的几种常用求法
抽象函数解析式的几种常用求法

高中数学函数的解析式和抽象函数定义域练习题

高中数学函数的解析式和抽象函数定义域练习题 1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ 换元法(3)13)2(2++=-x x x f D P C P A P B

待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

八年级数学一次函数 解析式求法专题练习及答案详解

一次函数 解析式求法专题练习 1.已知52)2(--+=m m x m y 是正比例函数,若A(a,10)在此直线上,求a 的值. 2.已知直线经过原点及另一点A(-2,4),求此直线解析式。 3.已知y 与2x-1成正比例,当x=-1时,y=9,求y 与x 的函数关系式. 4.已知2y-1与3-4x 成正比例,当x=2时,y=-7,求y 与x 的函数关系式.

5.已知y=y1+y2,y1与x2成正比例,y2与x-3成正比例,当x=1时,y=-4;当x=-3时,y= 6.求y与x的函数关系式. 6.如图,已知菱形ABCD在平面直角坐标系中,B(6,2),C(12,6). (1)求D点坐标及菱形ABCD的面积; (2)若直线y=kx始终与线段CD有交点,求k的取值范围. 7.已知直线与坐标轴交于A、B两点,A(-4,0),已知△OAB的面积为12,求直线AB的解析式.

8.已知直线AB,当-2≤x≤4时,函数值y的取值范围为-1≤x≤8,求直线AB的解析式. 9.如图,已知矩形OABC在坐标系中,A(10,0),C(0,6),E在AB上,连接CE,将△BCE沿CE折叠,使B点落在OA的F点处. (1)求F点及E点坐标; (2)求直线CE解析式.

10.已知直线经过点)2 321(, A 和点B(1,6). (1)求直线AB 的解析式; (2)求直线AB 与x 轴、y 轴的交点坐标C 和D,并求CD 的长; (3)若点E 在y 轴上,当C 、D 、E 三点围成的三角形是等腰三角形,求满足条件的E 点坐标. 11.如图,直线y=kx+6与x 轴、y 轴分别交于点E,F.点E 的坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值; (2)若点P(x,y)是第二象限内的直线上的一个动点.当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8 27,并说明理由.

函数解析式的七种求法(讲解)之令狐文艳创作

函数解析式的七种求法 令狐文艳 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)()0(≠a ,则 二、配凑法:已知复合函数 [()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时, 常用配凑法。但要注意所求函数 ()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 三、换元法:已知复合函数 [()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。

例3已知 x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一 般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点 )3,2(-的对称点 则?????=+'-=+'322 2y y x x ,解得:???-='--='y y x x 64, 点),(y x M '''在)(x g y =上 把???-='--='y y x x 64代入得: 整理得 672---=x x y 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例5设,)1(2)()(x x f x f x f =-满足求 )(x f 解 x x f x f =-)1(2)(① 显然,0≠x 将x 换成x 1 ,得:

一元二次函数解析式的8种求法

二次函数解析式的8 种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0;2、x 的最 高次数为 2 次. 例1、若y =( m2+ m )x m2 –2m 1是二次函数,则m = . 2 解:由m + m≠0得:m ≠0,且m ≠-1 2 由m2–2m –1 = 2 得m =-1 或m =3 ∴ m = 3 . 二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不 唯一. 例2、(1)经过点A(0,3)的抛物线的解析式是. 分析:根据给出的条件,点 A 在y 轴上,所以这道题只需满足y a 2b c中的C=3,且a≠0即可∴ y 2 3 (注:答案不唯一) 三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x –h)2 + k,当图像向左(右)平移n 个单位时,就在x –h 上加上(减去)n;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m.其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以 a 得值不变. 1 2 5 1 2 例3、二次函数y 23 的图像是由y 2的图像先向平移 2 2 2 个单位,再向平移个单位得到的. 1 5 1 2

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

求函数解析式的六种常用方法

求函数解析式的九种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。 例1 已知f (x x 1 +)= x x x 112 2++,求f (x )的解析式. 解: 设 x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1 )11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2 -x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2x ,求f (x )的解析式. 解: f (x +1)= 2 )(x +2x +1-1=2)1(+x -1, ∴ f (x +1)= 2 )1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2 -1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2 +bx+c ,则 f (0)= c= 0 ①

f (x+1)= a 2)1(+x +b (x+1)= ax 2 +(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ?? ?==. 7,1b a 故f (x )= x 2 +7x. 评注: 已知函数类型,常用待定系数法求函数解析式. 四、消去法(方程组法) 例4 设函数f (x )满足f (x )+2 f ( x 1 )= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1 去代替已知中x ,便可得到另一个方程,联立方 程组求解即可. 解:∵ f (x )+2 f ( x 1 )= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x 1 (x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32 -3 x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足 ,求 的解析式。 五、特殊值法 例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y ,有 f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y. 解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得 f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.

求抽象函数解析式的几种方法及适用范围

求抽象函数解析式的几种方法及适用范围 Last revised by LE LE in 2021

求函数的解析式的几种方法 一: 方法名称:配凑法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有 g(x)的形式 2再把g(x)用h(x)代替 例: 的解析式。 已知求的解析式。 已知f(x+1)=x-3,求f(x)的解析式。 已知,求的解析式。 二: 方法名称:换元法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围) 2在用一个只含有t的式子把x表示出来 3然后把这个式子在解析式的右端的x中,使右边只含有t 4再把t用h(x)代替。 例题: 已知求的解析式。 已知f()=x2+5x,则f(x)的解析式。 三 方法名称:待定系数法 适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)

方法步骤:1先设出函数解析式(如f(x)=ax+b) 2把解析式的左端用这个函数模型表示出来 4求出函数模型的系数 例: 四 方法名称:方程组法 适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。等号右边也含有变量x。 方法步骤:将左边的两个抽象函数看成两个变量。变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式 例: 设f(x)满足关系式,求函数的解析式. 五: 方法名称:赋值法 适用范围:一般包含一句话“对任意实数满足” 方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。 例:

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴??????=-===32 12b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直 线的对称函数时,一般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

重点高中数学:函数解析式的十一种方法

重点高中数学:函数解析式的十一种方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学:函数解析式的十一种方法 一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法 七、利用给定的特性求解析式. 六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法 一、定义法: 【例1】设23)1(2+-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f Θ =6)1(5)1(2++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 【解析】设x x x x x x f f ++=+++=++= 11111 11 21)]([Θ x x f += ∴11)( 【例3】设33221 )1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f . 【解析】2)(2)1(1)1(2222 -=∴-+=+=+x x f x x x x x x f Θ 又x x x g x x x x x x x x g 3)() 1(3)1(1)1(3333 -=∴+-+=+=+Θ 故2962)3()]([24623-+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 【解析】 )2 (17cos )]2[cos()(sin x x f x f -=-=π π

求函数解析式,的四种常用方法

求函数解析式的四种常用方法 1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可. 2.换元法:设t =g(x ),解出x ,代入f (g(x )),求f (t)的解析式即可. 3.配凑法:对f (g(x ))的解析式进行配凑变形,使它能用g(x )表示出来,再用x 代替两边所有的“g(x )”即可. 4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. [再练一题] 3.已知函数f (x )是二次函数,且f (0)=1,f (x +1)-f (x )=2x ,则f (x )=________. 【解析】 设f (x )=ax 2+bx +c ,由f (0)=1得c =1. 又f (x +1)=a (x +1)2+b (x +1)+1, ∴f (x +1)-f (x )=2ax +a +b . 由2ax +a +b =2x ,得????? 2a =2a +b =0, 即a =1,b =-1, ∴f (x )=x 2-x +1. 【答案】 x 2-x +1 1.下列表示函数y =f (x ),则f (11)=( ) A .2

C .4 D .5 【解析】 由表可知f (11)=4. 【答案】 C 2.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( ) A .f (x )=x 2+6x B .f (x )=x 2+8x +7 C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10 【解析】 法一 设t =x -1,则x =t +1. ∵f (x -1)=x 2+4x -5, ∴f (t )=(t +1)2+4(t +1)-5=t 2+6t , 即f (x )的表达式是f (x )=x 2+6x . 法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x . ∴f (x )的表达式是f (x )=x 2+6x , 故选A . 【答案】 A 3.f (x )=|x -1|的图象是( ) 【解析】 ∵f (x )=|x -1|=????? x -1,x ≥1,1-x ,x <1, 当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D. 【答案】 B 4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm )之间的表达式是________.

八年级数学 一次函数解析式求法及答案详解

一次函数解析式求法 1.已知52)2(--+=m m x m y 是正比例函数,若A(a,10)在此直线上,求a 的值. 2.已知直线经过原点及另一点A(-2,4),求此直线解析式。 3.已知y 与2x-1成正比例,当x=-1时,y=9,求y 与x 的函数关系式. 4.已知2y-1与3-4x 成正比例,当x=2时,y=-7,求y 与x 的函数关系式.

5.已知y=y1+y2,y1与x2成正比例,y2与x-3成正比例,当x=1时,y=-4;当x=-3时,y= 6.求y与x的函数关系式. 6.如图,已知菱形ABCD在平面直角坐标系中,B(6,2),C(12,6). (1)求D点坐标及菱形ABCD的面积; (2)若直线y=kx始终与线段CD有交点,求k的取值范围. 7.已知直线与坐标轴交于A、B两点,A(-4,0),已知△OAB的面积为12,求直线AB的解析式.

8.已知直线AB,当-2≤x≤4时,函数值y的取值范围为-1≤x≤8,求直线AB的解析式. 9.如图,已知矩形OABC在坐标系中,A(10,0),C(0,6),E在AB上,连接CE,将△BCE沿CE折叠,使B点落在OA的F点处. (1)求F点及E点坐标; (2)求直线CE解析式.

10.已知直线经过点)2321(, A 和点B(1,6). (1)求直线AB 的解析式; (2)求直线AB 与x 轴、y 轴的交点坐标C 和D,并求CD 的长; (3)若点E 在y 轴上,当C 、D 、E 三点围成的三角形是等腰三角形,求满足条件的E 点坐标. 11.如图,直线y=kx+6与x 轴、y 轴分别交于点E,F.点E 的坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值; (2)若点P(x,y)是第二象限内的直线上的一个动点.当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8 27,并说明理由.

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

函数解析式的七种求法(讲解)

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f Θ, 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直线 的对称函数时,一般用代入法。 例4 已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

相关主题
文本预览
相关文档 最新文档