数字电压表实验报告
- 格式:doc
- 大小:450.54 KB
- 文档页数:6
万用表使用实验报告篇一:万用表实验报告万用表实训报告班级:姓名:学号:成绩:一、万用表测量前应做哪些准备?二、万用表测电阻1、万用表测电阻的步骤是?2、记录实训中的电阻值R1= R2=人体表面电阻=三、万用表测量直流电压1、万用表测量直流电压的步骤是?2、记录实训中的电压值U1=U2=四、万用表测量交流电压1、万用表测量直流电压的步骤是?2、记录实训中的电压值U1=五、万用表使用时,应注意什么?R3=篇二:实验1_数字万用表的应用实验报告电子测量实验报告实验名称:数字万用表的应用姓名:学号:班级:学院:指导老师:实验一数字万用表的应用一、实验目的1 理解数字万用表的工作原理;2 熟悉并掌握数字万用表的主要功能和使用操作方法。
二、实验内容1 用数字万用表检测元器件——电阻测量、电容测量、二极管检测、三极管检测;2用数字万用表测量电压和电流——直流电压及电流的测量、交流电压及电流的测量。
三、实验仪器及器材1 低频信号发生器1台2 数字万用表1块3 功率放大电路实验板1块4 实验箱1台5 4700Pf、IN4007、9018各1个四、实验要求1 要求学生自己查阅有关数字万用表的功能和相关工作原理,了解数字万用表技术指标;2 要求学生能适当了解一些科研过程,培养发现问题、分析问题和解决问题的能力;3 要求学生独立操作每一步骤;4 熟练掌握万用表的使用方法。
五、万用表功能介绍(以UT39E型为例)1概述UT39E型数字万用表是一种功能齐全、性能稳定、结构新颖、安全可靠、高精度的手持式四位半液晶显示小型数字万用表。
它可以测量交、直流电压和交、直流电流,频率,电阻、电容、三极管β值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程,共有28档。
本万用表最大显示值为±19999,可自动显示“0”和极性,过载时显示“1”,负极性显示“-”,电池电压过低时,显示“2技术特性A直流电压:量程为200mV、2V、20V、200V和1000V五档,200mV档的准确度为±(读数的0.05%+3个字),2V、20V和200V档的准确度为±(读数的0.1%+3个字), 1000V档的准确度为±(读数的0.15%+5个字);输入阻抗,所有直流档为10MΩ。
电路实验实验一 基本电工仪表的使用及测量误差的计算一、实验目的1. 熟悉实验台上各类电源及各类测量仪表的布局和使用方法。
2. 掌握指针式电压表、电流表内阻的测量方法。
3. 熟悉电工仪表测量误差的计算方法。
二、原理说明1. 为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态。
这就要求电压表的内阻为无穷大;电流表的内阻为零。
而实际使用的指针式电工仪表都不能满足上述要求。
因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值$之间出现误差。
这种测量误差值的大小与仪表本身内阻值的大小密切相关。
只要测出仪表的内阻,即可计算出由其产生的测量误差。
以下介绍几种测量指针式仪表内阻的方法。
2. 用“分流法”测量电流表的内阻如图1-1所示。
A 为被测内阻(R A )的直流电流 表。
测量时先断开开关S ,调节电流源的输出电流I 使A 表指针满偏转。
然后合上开关S ,并保持I 值不 变,调节电阻箱R B 的阻值,使电流表的指针指在1/2 满偏转位置,此时有I A =I S =I/2∴ R A =R B ∥R 1 可调电流源 R 1为固定电阻器之值,R B 可由电阻箱的刻度盘上读得。
图 1-13. 用分压法测量电压表的内阻。
如图1-2所示。
V 为被测内阻(R V )的电压表。
测量时先将开关S 闭合,调节直流稳压电源的 输出电压,使电压表V 的指针为满偏转。
然后 断开开关S ,调节R B 使电压表V 的指示值减半。
此时有:R V =R B +R 1电压表的灵敏度为:S =R V /U (Ω/V) 。
式中U 为电压表满偏时的电压值。
可调稳压源 图 1-2 4. 仪表内阻引入的测量误差(通常称之为方法误差, 而仪表本身结构引起的误差称为仪表基本误差)的计算。
R 1(1)以图1-3所示电路为例,R 1上的电压为 U R1=─── 。
R 1+R 2 现用一内阻为R V 的电压表来测量U R1值,当R V 与R 1并联后,R V R 1R AB =───,以此来替代上式中的R 1,则得R V +R 1VR R V BSR 1++R R AV BvU21AR B R AI I sS++1R V R 1 图 1-3────R V +R 1 -R 2 1R 2UU'R1=────── U 。
《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。
2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。
3、学会常用直流电工仪表和设备的使用方法。
二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。
线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。
三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。
应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。
2、学会用电流表测量各支路电流。
二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。
即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。
2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。
这一定律实质上是电压与路径无关性质的反映。
基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。
运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。
三、实验设备四、实验内容及实验数据实验线路如图4-1。
把开关K1接通U1,K2接通U2,K3接通R4。
就可以连接出基尔霍夫定律的验证单元电路,如图4-2。
图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。
图4-2中的I1、I2、I3的方向已设定。
三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。
2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。
简易数字电压表设计报告姓名:***班级:自动化1202学号:****************:***2014年11月26日一.设计题目采用C8051F360单片机最小系统设计一个简易数字电压表,实现对0~3.3V 直流电压的测量。
二.设计原理模拟输入电压通过实验板PR3电位器产生,A/D转换器将模拟电压转换成数字量,并用十进制的形式在LCD上显示。
用一根杜邦实验线将J8口的0~3.3V输出插针与J7口的P2.0插针相连。
注意A/D转换器模拟输入电压的范围取决于其所选择的参考电压,如果A/D 转换器选择内部参考电压源,其模拟电压的范围0~2.4V,如果选择外部电源作为参考电压,则其模拟输入电压范围为0~3.3V。
原理框图如图1所示。
图1 简易数字电压表实验原理框图三.设计方案1.设计流程图如图2所示。
图2 简易数字电压表设计A/D转换和计时流程图2.实验板连接图如图3所示。
图3 简易数字电压表设计实验板接线图3.设计步骤(1)编写C8051F360和LCD初始化程序。
(2)AD转换方式选用逐次逼近型,A/D转换完成后得到10位数据的高低字节分别存放在寄存器ADCOH和ADC0L中,此处选择右对齐,转换时针为2MH Z。
(3)选择内部参考电压2.4V为基准电压(在实际单片机调试中改为3.311V),正端接P2.0,负端接地。
四、测试结果在0V~3.3V中取10组测试数据,每组间隔约为0.3V左右,实验数据如表1所示:显示电压(V)0.206 0.504 0.805 1.054 1.406实际电压(v)0.210 0.510 0.812 1.061 1.414相对误差(%) 1.905 1.176 0.862 0.659 0.565显示电压(V) 2.050 2.383 2.652 2.935 3.246实际电压(v) 2.061 2.391 2.660 2.943 3.253相对误差(%)0.421 0.334 0.301 0.272 0.215表1 简易数字电压表设计实验数据(注:其中显示电压指LCD显示值,实际电压指高精度电压表测量值)五.设计结论1.LCD显示模块的CPLD部分由FPGA充当,芯片本身自带程序,所以这个部分不用再通过quartus软件进行编程。
《单片机课程设计》设计报告设计题目:数字电压表的设计班级学号:50809xx姓名:xxx设计时间:2010-12-28备注:目录1.引言 (2)2.概述··22.1实验要求 (2)2.2实验目的 (2)2.3 实验器材 (2)3.总体设计方案 (3)3.1系统的总体结构及实验原理 (3)3.2芯片的选择 (4)3.3 ADC0809 的主要性能指标 (4)4.硬件电路设计 (6)4.1 AT89S52 单片机最小系统 (6)4.1.1 AT89S52各引脚及其引脚功能的实现 (6)4.2 ADC0809 与AT89S52 单片机接口电路设计 (7)4.2.1ADC0809和AT89S52单片机接口电路的引脚说明 (8)4.2.2ADC0809与AT89S52单片机的连接与控制的实现 (9)4.3显示电路与AT89S52 单片机接口电路设计 (10)4.3.1显示电路的组成 (11)4.3.2显示电路和AT89S52接口电路的引脚说明 (12)4.3.3显示电路与AT89S52的连接与控制的实现 (12)5.软件设计 (13)5.1主程序流程图 (14)5.1.1 主程序说明 (15)5.2 ADC0809 电压采集程序框图 (16)5.2.1ADC0809电压采集程序说明 (17)5.3显示程序框图 (18)5.3.1显示程序说明 (19)6.调试与测量结果分析 (20)6.1调试和仿真环境 (20)6.2程序调试 (20)6.3 仿真结果 (22)6.4 实验结果分析 (23)7.实验总结和实验收获 (24)8.程序清单和系统原理图(附录) (25)8.1(附录一)程序清单 (25)8.2 (附录二)系统原理图 (26)1.引言本次课程设计要求完成是数字电压表的设计,随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。
万用表的电工实验报告万用表电工实习报告万用表电工实习报告一、实习目的电子技术实习的主要目的就是培养我们的动手能力,要我们对电子元器件识别,相应工具的操作,相关仪器的使用,电子设备制作、装调的全过程,掌握查找及排除电子电路故障的常用方法有个更加详实的体验,不能在面对这样的东西时还像以前那样一筹莫展。
有助于我们对理论知识的理解,帮助我们学习专业知识,更重要的是能够提高我们的实际操作能力。
使我们对电子元件及收音机的装机与调试有一定的感性和理性认识,打好日后深入学习电子技术基础。
同时实习使我获得了收音机的实际生产知识和装配技能,培养理论联系实际的能力,提高分析问题和解决问题的能力,增强独立工作的能力。
同时也培养同学之间的团队合作、共同探讨、共同前进的精神。
具体目的如下:1.熟悉手工焊锡的常用工具的使用。
2.基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接。
熟悉电子产品的安装工艺的生产流程。
3.熟悉印制电路板设计的步骤和方法,熟悉手工制作印制电板的工艺流程,能够根据电路原理图,元器件实物设计并制作印制电路板。
4.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图书。
5.能够正确识别和选用常用的电子器件,并且能够熟练使用普通万用表。
6.了解电子产品的焊接、调试与维修方法。
二、实习内容:(1) 学习识别简单的电子元件与电子线路;(2) 学习并掌握万用表的工作原理;(3) 按照图纸焊接元件,组装一台万用表,并掌握其调试方法。
三、实习器材介绍:(1) 电烙铁:由于焊接的元件多,所以使用的是外热式电烙铁,功率为30 w,烙铁头是铜制。
(2) 螺丝刀、镊子、楔口钳等必备工具。
(3)松香和锡,由于锡它的熔点低,焊接时,焊锡能迅速散步在金属表面焊接牢固,焊点光亮美观。
(4) 两节5号电池。
四、原理简述MF47型万用表使用一,MF47万用表基本功能MF47型是设计新颖的磁电系整流式便携式多量程万用电表.可供侧量直流电流,交直流电压,直流电阻等,具有26个基本量程和电平,电容,电感,晶体管直流参数等7个附加参考量程.二,刻度盘与档位盘刻度盘与档位盘印制成红,绿,黑三色.表盘颜色(转载于: 写论文网:万用表的电工实验报告)分别按交流红色,晶体管绿色,其余黑色对应制成,使用时读数便捷.刻度盘共有六条刻度,第一条专供测电阻用;第二条供测交直流电压,直流电流之用;第三条供测晶体管放大倍数用;第四条供测量电容之用;第五条供测电感之用;第六条供测音频电平.刻度盘上装有反光镜,以消除视差.除交直流2500V和直流5A分别有单独插座之外,其余各档只须转动一个选择开关,使用方便.三,使用方法在使用前应检查指针是否指在机械零位上,如不指在零位时,可旋转表盖的调零器使指针指示在零位上.将测试棒红黑插头分别插入+ -插座中,如测量交流直流2500V或直流5A时,红插头则应分别插到标有2500或5A的插座中.1,直流电流测量测量0.05~500mA时,转动开关至所需电流档,测量5A时,转动开关可放在500mA直流电流量限上而后将测试棒串接于被测电路中. 2,交直流电压测量测量交流10~1000V或直流0.25~1000V时,转动开关至所需电压档.测量交直流2500V时,开关应分别旋转至交流1000V或直流1000V 位置上,而后将测试棒跨接于被测电路两端.3,直流电阻测量装上电池(R14型2#1.5V及6F22型9V各一只).转动开关至所需测量的电阻档,将测试棒二端短接,调整零欧姆调整旋钮,使指针对准欧姆0位上,(若不能指示欧姆零位,则说明电池电压不足,应更换电池),然后将测试棒跨接于被测电路的两端进行测量.准确测量电阻时,应选择合适的电阻档位,使指针尽量能够指向表刻度盘中间三分之一区域.测量电路中的电阻时,应先切断电路电源,如电路中有电容应先行放电.当检查电解电容器漏电电阻时,可转动开关到R×1K档,测试棒红杆必须接电容器负极,黑杆接电容器正极.4,音频电平测量在一定的负荷阻抗上,用以测量放大极的增益和线路输送的损耗,测量单位以分贝表示音频电平与功率电压的关系式是:NdB=10log10P2/P1 =20log10V2/V1音频电平的刻度系数按0dB=1mW600Ω输送线标准设计.即V1=(PZ)1/2=(0.001*600)1/2=0.775VP2V2分别为被测功率或被测电压音频电平是以交流10V为基准刻度,如指示值大于+22 dB时可以在50V以上各量限测量,其示值可按下表所示值修正.量限按电平刻度增加值电平的测量范围10V-10~+22 dB50V14 dB +4~+36 dB250V28 dB+18~+50 dB500V34 dB+24~+56 dB测量方法与交流电压基本相似,转动开关至相应的交流电压档,并使指针有较大的偏转.如被测电路中带有直流电压成份时,可在+插座中串接一个0.1μf的隔离电容器.5,电容测量转动开关至交流10V位置,被测量电容串接于任一测试棒,而后跨接于10V交流电压电路中进行测量.6,电感测量与电容测量方法相同.7,晶体管直流参数的测量(1)直流放大倍数hFE的测量先转动开关至晶体管调节ADJ位置上,将红黑测试棒短接,调节欧姆电位器,使指针对准300 hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数值.N型晶体管应插入N 型管孔内,P型晶体管应插入P型管孔内.(2)反向截止电流Iceo,Icbo的测量Iceo为集电极与发射极间的反向截止电流(基极开路).Icbo为集电极与基极间的反向截止电流(发射极开路)转动开关Ω×1K档将测试棒二端短路,调节零欧姆上,(此时满度电流值约90uA).分开测试棒,然后将欲测的晶体管插入管座内,此时指针的数值约为晶体管的反向截止电流值.指针指示的刻度值乘上1.2即为实际值.当Iceo电流值大于90μA时可换用Ω×100档进行测量(此时满度电流值约为900μA).N型晶体管应插入N型管座,P型晶体管应插入P型管座.(3)三极管管脚极性的辨别(将万用表置于Ω×1K档)①判定基极b.由于b到c――b 至e分别是二个PN结,它的反向电阻很大,而正向电阻很小.测试时可任意取晶体管一脚假定为基极.将红测试棒接基极, 黑测试棒分别去接触另二个管脚,如此时测得都是低阻值,则红测试棒所接触的管脚即为基极b,并且是P 型管,(如用上法测得均为高阻值.则为N型管).如测量时二个管脚的阻值差异很大,可另选一个管脚为假定基极,直至满足上述条件为止.②判定集电极c.对于PNP型三极管,当集电极接负电压,发射极接正电压时,电流放大倍数才比较大,而NPN型管则相反.测试时假定红测试棒接集电极c,黑测试棒接发射极e,记下其阻值,而后红黑测试棒交换测试,将测得的阻值与第一次阻值相比,阻值小的红测试棒接的是集电极c,黑的是发射极e,而且可判定是P型管(N型管则相反).(4)二极管极性判别测试时选R×10K档,黑测试棒一端测得阻值小的一极为正极. 万用表在欧姆电路中,红测试棒为电池负极,黑的为电池正极.注意:以上介绍的的测试方法,一般都用R×100,R×1K档,如果用R×10K档,则因该档用15V的较高电压供电,可能将被测三极管的PN结击穿,若用R×1档测量,因电流过大(约90mA),也可能损坏被测三极管.四,技术规范量限范围灵敏度及电压降精度误差表示度直流电流0-0.05mA-0.5mA-5mA--50mA-500 mA-5A0.3V2.5以上量限的百分数计算直流电压0-0.25V-1V-2.5V-10V-50V-250V-500V-1000V-2500V20KΩ/V2.55以上量限的百分数计算交流电压0-10V-50V-250V(45-65-500Hz) -500V-1000V-2500V(45-65Hz) 4KΩ/V5以上量限的百分数计算直流电阻R×1,R×10, R×100,R×1K, R×10KR×1中心刻度为16.5Ω2.5以标度尺弧长的百分数计算 10以指示值的百分数计算音频电平-10d B~+22 d B0dB=1mw 600ΩhFE0~300hFE晶体管直流放大倍数电感20~1000H电容0.001~0.3uf五,注意事项1. 万用表虽有双重保护装置,但使用时仍应遵守下列规程,避免意外损失.(1)测量高压或大电流时,为避免烧坏开关,应在切断电源情况下,变换量限.(2) 测未知量的电压或电流时,应先选择最高数,待第一次读取数值后,方可逐渐转至适当位置以取得较准读数并避免烧坏电路. (3)偶然发生因过载而烧断保险丝时,可打开表盒换上相同型号的保险丝(0.5A/250V).2.测量高压时,要站在干燥绝缘板上,并一手操作,防止意外事故.3.电阻各档用干电池应定期检查,更换,以保证测量精度.平时不用万用表应将档位盘打到交流250V档;如长期不用应取出电池,以防止电液溢出腐蚀而损坏其它零件.MF47型万用表的原理图及其线路板:篇二:电工学实验报告物教101实验一电路基本测量一、实验目的1. 学习并掌握常用直流仪表的使用方法。
实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌握线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理说明电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。
实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。
万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。
一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。
1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。
图1-1 元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。
一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。
通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。
3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。
二极管的电阻值随电压或电流的大小、方向的改变而改变。
它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。
发光二极管正向电压在0.5~2.5V 之间时,正向电流有很大变化。
可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
综合实验三213位直流数字电压表一、实验目的 1、了解双积分式A / D 转换器的工作原理2、熟悉213位A / D 转换器CC14433的性能及其引脚功能3、掌握用CC14433构成直流数字电压表的方法二、实验原理直流数字电压表的核心器件是一个间接型A / D 转换器,它首先将输入的模拟电压信号变换成易于准确测量的时间量,然后在这个时间宽度里用计数器计时,计数结果就是正比于输入模拟电压信号的数字量。
1、V -T 变换型双积分A / D 转换器图3-1是双积分ADC 的控制逻辑框图。
它由积分器(包括运算放大器A 1 和RC 积分网络)、过零比较器A 2,N 位二进制计数器,开关控制电路,门控电路,参考电压V R 与时钟脉冲源CP图3-1 双积分ADC 原理框图转换开始前,先将计数器清零,并通过控制电路使开关 S O 接通,将电容C 充分放电。
由于计数器进位输出Q C =0,控制电路使开关S 接通v i ,模拟电压与积分器接通,同时,门G 被封锁,计数器不工作。
积分器输出v A 线性下降,经零值比较器A 2 获得一方波v C ,打开门G ,计数器开始计数,当输入2n个时钟脉冲后t =T 1,各触发器输出端D n-1~D O 由111…1回到000…0,其进位输出Q C =1,作为定时控制信号,通过控制电路将开关S转换至基准电压源-V R ,积分器向相反方向积分,v A 开始线性上升,计数器重新从0开始计数,直到t =T 2,v A 下降到0,比较器输出的正方波结束,此时计数器中暂存二进制数字就是v i 相对应的二进制数码。
2、213位双积分A / D 转换器CC14433的性能特点 CC14433是CMOS 双积分式213位A / D 转换器,它是将构成数字和模拟电路的约7700多个MOS 晶体管集成在一个硅芯片上,芯片有24只引脚,采用双列直插式,其引脚排列与功能如图18-2所示。
图3-2 CC14433引脚排列引脚功能说明:V AG (1脚):被测电压V X 和基准电压V R 的参考地V R (2脚):外接基准电压(2V 或200mV )输入端V X (3脚):被测电压输入端R 1(4脚)、R 1 /C 1(5脚)、C 1(6脚):外接积分阻容元件端C 1=0.1μf (聚酯薄膜电容器),R 1=470K Ω(2V 量程);R 1=27K Ω(200mV 量程)。
电位电压的测定实验报告范文三篇篇一:电极电位的测量实验报告一. 实验目的1. 理解电极电位的意义及主要影响因素2. 熟悉甘汞参比电极的性能以及工作原理3. 知道电化学工作站与计算机的搭配使用方法二. 实验原理电极和溶液界面双电层的电位称为绝对电极电位,它直接反应了电极过程的热力学和动力学特征,但绝对电极电位是无法测量的。
在实际研究中,测量电极电位组成的原电池的电动势,而测量电极电位所用的参考对象的电极称为参考电极,如标准氢电极、甘汞电极、银-氯化银电极等,该电池的电动势为:E=φ待测-φ参比上述电池电动势可以使用高阻抗的电压表或电位差计来计量在该实验中,采用甘汞电极为研究电极,铁氰、化钾/亚铁氰、化钾为测量电极。
在1mol的KCl支持电解质下,分别用10mM摩尔比1:1和1:2的铁氰、化钾/亚铁氰、化钾溶液在常温(27℃)以及45℃下测量,收集数据,可得到相同温度不同浓度的两条开路电位随时间变化曲线、相同浓度不同温度的两条开路电位随时间变化曲线。
可以用电极电势的能斯特方程讨论温度对于电极电势的影响三. 实验器材电化学工作站;电解池;甘汞电极;玻碳电极;水浴锅铁氰、化钾/亚铁氰、化钾溶液(摩尔比1:1和1:2)(支持电解质为1M KCl);砂纸;去离子水四. 实验步骤1. 在玻碳电极上蘸一些去离子水,然后轻轻在细砂纸上打磨至光亮,最后再用去离子水冲洗。
电化学工作站的电极也用砂纸轻轻打磨2. 在电解池中加入铁氰、化钾/亚铁氰、化钾溶液至其1/2体积,将玻碳电极和甘汞电极插入电解池中并固定好,将两电极与电化学工作站连接好,绿色头的电极连接工作电极,白色头的电极连接参比电极。
3. 点开电化学工作站控制软件,点击setup—技术(technique)—开路电压—时间,设置记录时间为5min,记录数据时间间隔为0.1s,开始进行数据记录,完成后以txt形式保存实验结果。
4. 将电解池放入45度水浴锅中,再重复一次步骤2和步骤3。
西安电子科技大学长安学院课程设计设计题目:数字电压表的仿真与设计学院:长安学院系别:电子工程专业:电子科学与技术:班级:06521学号:06521002姓名:***指导老师:王勇目录一. 摘要 (2)二.课程设计任务与要求 (2)2.1设计目的 (2)2.2设计要求 (2)三.总体设计思路 (3)3.1方案选择 (3)3.2系统框图 (3)四.课程设计框图及工作原理 (4)4.1 工作原理 (4)4.2 ICL7107的工作原理 (5)4.3 ICL7107 安装电压表头时的一些要点 (8)4.4 关于多量程电路部分 (10)五.电路设计与仿真 (12)六.系统调试及结果分析 (13)6.1调试仪器 (13)6.2 调试方法 (13)6.3 测试结果分析 (13)6.4 硬件实物图 (13)七.元器件清单 (14)八.设计心得体会 (14)九.参考文献 (14)一.摘要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本章重点介绍单片A/D 转换器以及由它们构成各种新型数字电压表的工作原理。
数字电压表具有以下九大特点:1. 显示清晰直观,读数准确2. 准确度高3. 分辨率高4. 测量范围宽5. 扩展能力强6. 测量速率快7.输入阻抗高8. 集成度高,微功耗9. 抗干扰能力强二.课程设计任务与要求2.1、设计目的1、了解双积分式A/D转换器的工作原理2、熟悉A/D转换器ICL7107的性能及其引脚功能3、掌握用ICL7107构成直流数字电压表的方法2.2、设计要求1、设计一个数字电压表电路。
简易数字电压表设计报告姓名:何绍金班级:自动化1202学号:201203870408指导教师:贾立新2014年11月26日一.设计题目采用C8051F360单片机最小系统设计一个简易数字电压表,实现对0~3.3V 直流电压的测量。
二.设计原理模拟输入电压通过实验板PR3电位器产生,A/D转换器将模拟电压转换成数字量,并用十进制的形式在LCD上显示。
用一根杜邦实验线将J8口的0~3.3V输出插针与J7口的P2.0插针相连。
注意A/D转换器模拟输入电压的范围取决于其所选择的参考电压,如果A/D 转换器选择内部参考电压源,其模拟电压的范围0~2.4V,如果选择外部电源作为参考电压,则其模拟输入电压范围为0~3.3V。
原理框图如图1所示。
图1 简易数字电压表实验原理框图三.设计方案1.设计流程图如图2所示。
图2 简易数字电压表设计A/D转换和计时流程图2.实验板连接图如图3所示。
图3 简易数字电压表设计实验板接线图3.设计步骤(1)编写C8051F360和LCD 初始化程序。
(2)AD 转换方式选用逐次逼近型,A/D 转换完成后得到10位数据的高低字节分别存放在寄存器ADCOH 和ADC0L 中,此处选择右对齐,转换时针为2MH Z 。
(3)选择内部参考电压2.4V 为基准电压(在实际单片机调试中改为3.311V ),正端接P2.0,负端接地。
四、测试结果在0V~3.3V 中取10组测试数据,每组间隔约为0.3V 左右,实验数据如表1所示:显示电压(V ) 2.050 2.383 2.652 2.935 3.246 实际电压(v ) 2.061 2.391 2.660 2.943 3.253 相对误差(%)0.4210.3340.3010.2720.215表1 简易数字电压表设计实验数据(注:其中显示电压指LCD 显示值,实际电压指高精度电压表测量值)五.设计结论1.LCD 显示模块的CPLD 部分由FPGA 充当,芯片本身自带程序,所以这个部分不用再通过quartus 软件进行编程。
2.在参考电压选择过程中发现,单片机实际最大电压并不是2.4V 而是3.3V ,则在转换中将3.3V 替换2.4V 即可。
3.开始时发现调节电阻之后,实际电压值改变但LCD 显示电压值并没有发生改变,原因是:EC6仿真器没有开启并且每次KEIL 重新开启后,要重新输入相应解码。
显示电压(V ) 0.206 0.504 0.805 1.054 1.406 实际电压(v ) 0.210 0.510 0.812 1.061 1.414 相对误差(%) 1.905 1.176 0.862 0.659 0.565附录:程序源代码(C语言)/*简易数字电压表*/#include <C8051F360.H>#define uchar unsigned char#define uint unsigned int#define WCOMADDR 0xC008 //写命令寄存器的地址#define WDA TADDR 0xC009 //写数据寄存器的地址#define RCOMADDR 0xC00A //读命令寄存器的地址#define RDA TADDR 0xC00B //读数据寄存器的地址#define KEYCS 0xC00Cuchar code hanzi[] = "简易数字电压表";uchar code keynum[]="键值";uchar code keyc[]="次数";uint time=0;float volt;uint v[4];uint A T,voltage;uchar keyn,keycode;void OscInit(); //内部振荡器初始化void PortIoInit(); //I/O端口初始化void XramInit(); //外部数据存储器接口初始化void PcaInit(); //PCA初始化(设置看门狗定时器的工作状态)void InitDevice(); //内部资源初始化void CheckLcd(); //检查LCD是否空闲子程序void WriteCom(uchar n); //Lcd写指令子程序void WriteData(uchar m); //Lcd写数据子程序void InsitiLcd(); //Lcd初始化子程序void DispHan( uchar code *a,uchar m,uchar k);//显示汉字子程序void TimerInit(); //定时器初始化void InterruptsInit(); //中断系统初始化void ADC_init(); //ADC0初始化详见书本P144 void Int0Init(); //外部中断初始化void main(){uchar i;InitDevice(); //F360初始化InsitiLcd(); //LCD模块初始化ADC_init();DispHan(hanzi,0x90,0x0e); //显示“键盘显示测试程序”AD0BUSY=1;while(1){if(TF0==1){TF0=0;TL0=0xf0;TH0=0xd8; //重置时间常数10mstime++;}if(time >=49){time = 0;A T=ADC0H*256+ADC0L;volt=A T*0.003234;voltage=volt*1000;for(i=0;i<4;i++){v[i]=voltage%10;voltage=voltage/10;}WriteCom(0x8d);WriteData(v[3]+0x30);WriteData(0x2e);WriteData(v[2]+0x30);WriteData(v[1]+0x30);WriteData(v[0]+0x30);TR0=1;AD0BUSY=1;}}}void ReadKey() interrupt 0{uchar xdata *addr;uchar c1,c2;addr=KEYCS;keycode=*addr;keycode&=0x0F;keyn++;DispHan(keynum,0x88,0x04);WriteCom(0x8b);if(keycode<10){WriteData(0x30);WriteData(keycode+0x30);}else{c1=keycode%10;c2=keycode/=10;WriteData(c2+0x30);WriteData(c1+0x30);}DispHan(keyc,0x98,0x04);WriteCom(0x9b);if(keyn==10)keyn=0;WriteData(keyn+0x30);}void Int0Init(){EA=1;IT01CF=0x05;EX0=1;IT0=1;}void OscInit(void) //内部振荡器初始化{SFRPAGE=0x0f; //选择特殊功能寄存器页地址OSCICL=OSCICL+4;OSCICN=0xc2; //允许内部振荡器,频率除2作为SYSCLK=12MHzCLKSEL=0x00; //选择内部振荡器SFRPAGE=0x00;}void ADC_init(){ADC0CF=0x28; // 选择内部参考电压2.4V为基准ADC0CN=0x80; //正端接P2.0AMX0P=0x08; //负端接地AMX0N=0x1F; //右对齐,转换时针为2MHZREF0CN=0x08; //写AD0BUSY启动A/D转换器}void TimerInit(){TMOD=0x01;TH0=0xd8;TL0=0xf0;TR0=1;}void InterruptsInit(void){EA=1;ET0=1;EX0=1;PX0=1;IE0=0;}void PortIoInit(void) //I/O口初始化{SFRPAGE=0x0f;P0MDIN=0xe7; //P0.3、P0.4模拟量输入P0MDOUT=0x83; //P0.0、P0.1、P0.7推拉式输出P0SKIP=0xf9; //P0.1、P0.2被交叉开关跳过P1MDIN=0xff; //P1设置为数字量输入P1MDOUT=0xff; //P1设置为推拉式输出P1SKIP=0xff; //P1被交叉开关跳过P2MDIN=0xff; //P2设置为数字量输入P2MDOUT=0xff; //P2设置为推拉式输出P2SKIP=0xff;P3MDIN=0xff; //P3设置为数字量输入P3MDOUT=0xff; //P3设置为推拉式输出P3SKIP=0xff;P4MDOUT=0xff; //P4.5设为OC输出,其余推拉式输出XBR0=0x01; //使能UARTXBR1=0xC0; //禁止弱上拉,交叉开关允许SFRPAGE=0x00;return;}void XramInit(void) //外部数据储存器初始化{SFRPAGE=0x0f;EMI0CF=0x07; //引脚复用方式SFRPAGE=0x00;return;}void PcaInit(void) //PCA初始化{PCA0CN=0x40; //允许PCA计数器/定时器PCA0MD=0x00; //禁止看门狗定时器return;}void InitDevice(void){OscInit();PortIoInit();XramInit();//SmbInit();//UartInit();ADC_init();TimerInit();InterruptsInit();Int0Init();PcaInit();return;}void CheckLcd(){uchar temp = 0x00;uchar xdata *addr;while (1){addr=RCOMADDR;temp=*addr;temp &= 0x80;if(temp == 0x00)break;}}void WriteCom(uchar n){uchar xdata *addr;CheckLcd();addr=WCOMADDR;*addr=n;}void WriteData(uchar m){uchar xdata *addr;CheckLcd();addr=WDA TADDR;*addr = m;}void InsitiLcd(){WriteCom(0x30); //设为基本指令集WriteCom(0x01); //清屏WriteCom(0x0c); //开整体显示}void DispHan( uchar code *a,uchar m,uchar k) // 书本177页有详细解释{uchar dat, i, j, length;length = k/2;WriteCom(m);for (i=0;i < length;i++){j = 2*i;dat = a[j];WriteData(dat);dat = a[j+1];WriteData(dat);}WriteData(0x3a);}void DispShu( unsigned int a,uchar m){WriteCom(m);WriteData(a+0x30);}。